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FOREWORD 

 

AR&R Revision Process 

 

Since its first publication in 1958, Australian Rainfall and Runoff (AR&R) has remained one of 
the most influential and widely used guidelines published by Engineers Australia (EA).  The 
current edition, published in 1987, retained the same level of national and international acclaim 
as its predecessors. 
 
With nationwide applicability, balancing the varied climates of Australia, the information and the 
approaches presented in Australian Rainfall and Runoff are essential for policy decisions and 
projects involving: 
• Infrastructure such as roads, rail, airports, bridges, dams, stormwater and sewer systems; 
• Town planning; 
• Mining; 
• Developing flood management plans for urban and rural communities; 
• Flood warnings and flood emergency management; 
• Operation of regulated river systems; and 
• Estimation of extreme flood levels. 
 
One of the major responsibilities of the National Committee on Water Engineering of Engineers 
Australia is the periodic revision of A&RR.  As part of the revision process, there is a need to 
consult with the profession to provide early advice on likely changes to AR&R and to receive 
feedback on these potential changes. 
 
For this reason, the AR&R Revision Team will publish Discussion Papers outlining concepts and 
methods that are being considered for inclusion in AR&R.  Feedback from the profession on 
these concepts and methods will form an essential aspect of the final decision regarding their 
inclusion or exclusion in AR&R. 
 
This Discussion Paper deals with Monte Carlo approaches to design event simulation.  Outlined 
in the paper are details of both the concept and available information for its implementation.  
Discussion on both aspects of the paper is welcomed and encouraged. 
 

 

 

 

    
Mark Babister    Assoc Prof James Ball 

Chair Technical Committee for  ARR Editor 

ARR Research Projects 
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EXECUTIVE SUMMARY 

 

Current practice for estimation of design floods is typically based on the “design event” 

approach, in which all parameters other than rainfall are input as fixed, single values. 

Considerable effort is made to ensure that the single values of the adopted parameters are 

selected with the objective of ensuring that the resulting flood has the same annual exceedance 

probability as its causative rainfall. 

 

Monte Carlo simulation offers an alternative to the design event method. This approach 

recognises that any design flood characteristics (e.g. peakflow) could result from a variety of 

combinations of flood producing factors, rather than from a single combination. The approach 

mimics “mother nature” in that the influence of all probability distributed inputs are explicitly 

considered, thereby providing a more realistic representation of the flood generation processes.  

 

This report describes the practical implementation of Monte-Carlo techniques for flood 

estimation. The discussion focuses on the manner in which the current (ARR) guidelines and 

available design information can be used to take into account the natural variability of the inputs, 

and presents the concepts in a manner that can be implemented in a spreadsheet. While it 

would be possible to directly employ these techniques with existing models, this guidance 

should also be found helpful to those using Monte Carlo frameworks that are available in the 

public domain. 
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1. Introduction 

1.1. Hydrologic Applications of Monte Carlo Simulation  

Monte Carlo simulation is a technique that uses a large number of random samples to find 

solutions to physical problems that cannot otherwise be easily solved. The first systematic 

development of Monte Carlo methods derives from work on the atomic bomb during the second 

world war, though a number of isolated and undeveloped instances have been reported 

(Hammersley and Handscomb, 1964). The name was coined to capture the random properties 

of the roulette wheel as most famously played in the city of the same name in Monaco. 

 

In modelling hydrologic systems, there are two sources of random variation that may affect the 

estimated system outputs: (i) the natural temporal and spatial variability of climate and 

catchment factors being modelled, and (ii) the random variation resulting from unavoidable 

uncertainty in the definition of the model structure, the model inputs and in the estimated model 

parameters. Monte Carlo simulation has been widely used to determine the impacts of model 

and parameter uncertainty on simulation results; these are generally expressed in the form of 

confidence limits on hydrologic estimates (Section 6). 

 

Monte Carlo simulation of natural variability of climate and catchment factors has also been 

used to solve hydrological problems for many years. An early hydrological example occurred 

before the advent of computers and involved the use of a deck of cards to simulate the 

stochastic processes of the Nile floodwaters for estimating yield (Hurst et al, 1965, as reported 

by McMahon and Mein, 1986). The approach is ideally suited to the solution of many 

hydrological problems which involve both a stochastic and a deterministic component in the 

manner described by Laurenson (1974). In the context of flood estimation the stochastic 

component comprises the (notionally random) occurrence of rainfall, its temporal and spatial 

distribution, and antecedent conditions such as losses and initial reservoir level. These random 

factors are represented in the simulation by probabilistic sampling of model inputs (and possibly 

parameter values) from their respective distributions. The deterministic component is the 

transformation (via an appropriate hydrologic model) of rainfall into rainfall excess, and its 

subsequent routing through the catchment, to yield a catchment outflow hydrograph. This 

transformation is deterministic in the sense that, for a given set of conditions and events of 

similar magnitude, the catchment response can be assumed to remain essentially unchanged. 

The deterministic catchment model will thus always predict the same outflow hydrograph for a 

given set of rainfall inputs, antecedent conditions, and parameter values. 

 

1.2. Monte Carlo Simulation vs. ‘Design Event’ Approach 

In essence, Monte Carlo methods provide a framework for simulating “mother nature”, where all 

important flood producing factors can be treated as stochastic variables, and the less important 

ones can be fixed. Most traditional rainfall-based flood estimation techniques are based on the 

design event approach, in which all parameter values and inputs other than rainfall are treated 

as fixed values. The application of these traditional methods generally involves the implicit 

assumption that the annual exceedance probability (AEP) of the flood is the same as its 

causative rainfall. To satisfy this probability-neutral assumption, it is necessary to select model 
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inputs carefully to ensure that no probability bias is introduced in the transformation of rainfall to 

the flood characteristics of interest. While over the years a considerable body of experience has 

evolved to guide the selection of fixed parameter values, their adoption without the benefit of 

comparison with independent design flood estimates necessarily involves a degree of faith. 

When tested more rigorously it is usually found necessary to vary fixed inputs such as losses 

(and other factors) with the severity of the event to ensure that probability-neutrality is 

maintained. Kuczera et al (2003) provide a number of examples that highlight the deficiencies of 

the design event approach. 

 

The design event approach also assumes that there is a critical rainfall duration that produces 

the design flood for a given catchment. This critical duration depends on the interplay of 

catchment and rainfall characteristics; it is not known a priori but is usually determined by 

trialling a number rainfall durations and then selecting the one that produces the highest flood 

peak (or volume) for the specific design situation.  

 

In the most general Monte Carlo simulation approach for design flood estimation, rainfall events 

of different duration are sampled stochastically from their distribution. The simulated design 

floods are then weighted in accordance with the observed frequency of occurrence of rainfall 

events of different durations that produced them. This avoids any positive bias of estimated 

flood probabilities which may be associated with the application of the critical rainfall duration 

concept (Weinmann et al., 2002).  

 

The application of this generalised approach relies on the derivation of new design data for 

rainfall events that are consistent with a new probabilistic definition of storm ‘cores’ or complete 

storms (Hoang et al., 1999). Such new design rainfall data is currently not widely available, thus 

limiting the application of the generalised approach. Accordingly the description in Section 2 of 

the proposed generic Monte Carlo simulation approach for design flood estimation is still based 

on the concept of critical rainfall duration. This aspect is further discussed in Section 4.4. 

 

1.3. Practical Considerations 

One of the main attractions of Monte Carlo methods is that the modelling tools and hydrologic 

concepts involved are essentially identical to those used in traditional flood estimation 

approaches. Differences only arise in the manner in which the inputs are handled and the 

results analysed.  Thus, whether the adopted model of choice is based on a simple runoff-

coefficient, a loss-model combined with a unit hydrograph, or a more complex runoff-routing 

approach, the model can be applied in a Monte Carlo framework to better capture the natural 

variability of the flood producing and flood modifying factors. 

 

Adapting models to run in a stochastic environment allows the practitioner to take advantage of 

existing design information and experience. If industry-accepted models are used, the vast body 

of experience and empirical relationships available concerning model configuration and 

parameterisation are still largely applicable. Less important parameters can be fixed at values 

deemed appropriate from previous experience and available design guidance, and average 

values of stochastically varying inputs can be expected to fall within a range previously 

considered for use in deterministic design. 
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The information available for specifying input distributions is often the same as that used to 

derive typical or average values of fixed inputs, and many inputs can easily be non-

dimensionalised and pooled from regional observations. For example it is already common to 

represent temporal patterns in a dimensionless form (as provided in Section 2, Book II), and 

suitable empirical samples can easily be extracted from pluviograph data. Of course some 

thought and care is required to ensure that the distributions being used are relevant to the 

design problem of interest, and that correlations between inputs are handled appropriately, but 

the concepts involved in the preparation and treatment of design data are very similar to those 

used in traditional design practice. 

 

1.4. Scope of Application 

For many practical problems Monte Carlo simulation is well suited to deriving unbiased 

estimates of design flood characteristics. Allowing the important flood producing factors to vary 

in accordance with the variation found in nature obviates the need to identify fixed, probability-

neutral, design inputs. As long as the governing distributions are based on processes relevant to 

the design events of interest, and they are adequately characterised and sampled, it is possible 

to substantially reduce the degree of uncertainty and bias involved in estimating the required 

probabilities of exceedance.  

 

Monte Carlo simulation is particularly suitable in cases where design flood characteristics need 

to be determined at multiple locations within a system. Using the design event approach with 

fixed input values, the probability-neutral transformation from design rainfall to design flood 

would require a separate model run for each location of interest, each run using the 

appropriately selected input value for that location. With Monte Carlo simulation, the sampling of 

input values over a wide range ensures that the changing influence of different factors is 

automatically allowed for when moving from sites of interest in the upper catchment to sites near 

the catchment outlet. 

 

There are, however, a number of problems in which the design objective is more easily 

accommodated by continuous simulation approaches. Predominately these involve systems 

which posses multiple flood controlling factors that are dependent on antecedent conditions 

and/or other correlated variables. 

 

The following discussion of Monte Carlo techniques is narrowly focused on those analyses that 

are of most relevance to design flood estimation. A general and very accessible introduction to 

Monte Carlo methods can be found in Burgman (2005), and more comprehensive and practical 

guidance is provided in Vose (2000) and Saucier (2000); the latter reference includes C++ 

source code for a collection of various distributions of random numbers suitable for performing 

Monte Carlo simulations. Hammersley and Handscomb (1964) provide a more advanced 

theoretical treatment of the subject, and useful discussion on the advantages of using Monte 

Carlo methods to estimate design floods can be found in Weinmann et al (2002), Kuczera et al 

(2003), and Weinmann and Nathan (2004).  
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2. Overview of the Monte Carlo Simulation Process 

The generic steps involved in undertaking a Monte Carlo simulation for design flood estimation 

are illustrated by the flowchart in Figure 1. In essence, there are three preparatory steps, 

followed by the actual Monte Carlo simulation and the construction of the derived flood 

frequency curve. In the following, these steps are briefly described.  

(i) Selecting an appropriate flood event simulation model 

The criteria for selecting an appropriate model are similar to those used with the traditional 

design event approach and are described in Chapters 4 and 6 of Book V, and Chapter 5 of Book 

VI. The selected model should be able to be run in batch mode with pre-prepared input files or 

be called from the Monte Carlo simulation application. Models with fast execution speeds are 

well suited to Monte-Carlo simulation; complex models with slow run-times can still be utilised, 

though generally they need to be invoked within a stratified sampling scheme (Section 4.3) to 

ensure that the simulations times are within practical constraints.  

(ii) Identifying the model inputs and parameters to be stochastically generated 

The stochastic representation of model inputs should focus on those inputs and parameters 

which are characterised by a high degree of natural variability and a non-linear flood response. 

Examples include rainfall temporal pattern, initial loss and reservoir storage content at the onset 

of a storm event. If the assessment indicates limited variability and essentially linear system 

response, then there may be little to be gained from applying a Monte Carlo simulation 

approach. 

(iii) Defining the variation of inputs/parameters by appropriate distributions and correlations 

The considerations and methods applied in this step are presented in detail in Section 5. The 

distributions used to generate the stochastic inputs can be defined by the use of specific 

probability distributions or else an empirical, non-parametric approach can be adopted (Section 

3.3). Schaeffer (2002, 2004) adopts a strongly parametric approach to sampling a wide range of 

storm and catchment processes, and Rahman et al (2002a,b) provides examples in which both 

losses and temporal patterns are defined using a Beta distribution. Nathan et al (2003) and 

Nathan and Weinmann (2004) adopt a more empirical approach that is strongly based on the 

nature of design information used in the traditional design event method. 

(iv) Monte Carlo simulation of flood events 

The model is run N times where at each simulation step a set of n inputs are stochastically 

generated and the results recorded. Only those inputs that have a significant influence on the 

results need to be stochastically generated, and other inputs can be treated as fixed (usually 

average or median) values. Generally many thousands of simulations are required to adequately 

sample the inherent variability in the system, and thus for most practical problems some thought 

is required to minimise disc storage space and simulation times. 
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Figure 1  Flow chart of generic Monte Carlo simulation process.. 

 

(v) Construction of derived flood frequency curve 

Once the required number of runs have been undertaken, it is necessary to analyse the results 

to derive the required exceedance probabilities. Where very simple models are used or the 

probabilities of interest are not extreme – more frequent than, say, annual exceedance 

probabilities (AEPs) of 1 in 100 – the results can be analysed directly by construction of a 

derived frequency curve (Section 4.2). Alternatively, in order to estimate rarer exceedance 

probabilities (or use more complex models with slow execution speeds) it will be necessary to 

adopt a stratified sampling approach, as described in Section 4.3. 

 

Simple problems such as those involving the sizing of storage ponds or flood storage of tailings 

dams (Section 7.6, Book VI) can usually be solved using commercially available spreadsheet 

software. A number of proprietary “add-ins” that provide Monte-Carlo functionality are available 

Define probability distributions for the n inputs (and 

parameters) that are to be stochastically sampled

Generate n random numbers consistent with selected 

rainfall depth and governing probability distributions, 

and derive required stochastic inputs

Run model with generated inputs and record result(s) 

of interest (e.g. flood peak)

Has

required number

of runs (N) been

undertaken?

Rank results and determine exceedance probability (or 

quantile) of interest by constructing probability plot or 

by application of the Total Probability Theorem

No

Yes

Generate rainfall depth from cumulative distribution of 

design rainfalls

Select appropriate flood model

Identify those (n) inputs (and parameters) to be 

stochastically sampled and those to be treated as fixed
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for use with some spreadsheet programs, but while this added functionality certainly makes it 

easier to develop a solution, they are by no means necessary. Simple problems can often be 

solved by merely invoking cell formulae, but for more complex problems it is usually desirable to 

write customised “macro” functions to more easily describe the hydrological processes being 

simulated. 

 

Direct sampling schemes (Section 4.2) can be developed with a minimum of programming skill 

by coupling command batch-file routines that run any flood event model with pre-prepared input 

files. Those with more advanced programming skills can develop schemes that invoke flood 

event models without the need for reading and writing computer disc files; the attraction of this is 

that simulation times are greatly reduced, which is a great benefit when undertaking more 

numerically-intensive simulations. 

 

Section 5 provides more details on some of these steps in the context of design flood 

estimation, and Section 7 gives worked examples for a number of typical applications. 
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3. Stochastic Sampling 

3.1. Inverse Transformation Approach 

The method used to stochastically sample from the input distributions is the core algorithm used 

in Monte Carlo simulation. Once a suitable framework has been established additional model 

inputs and/or parameter values can be added to the sampling procedure as required. 

 

The following two sections describe the inverse transformation approach that can be applied to 

either formally defined probability density functions, or else empirical “data-driven” distributions. 

The inverse transform approach is a simple and efficient technique for generating stochastic 

samples though other approaches (suited to the use of probability density functions that cannot 

be inverted) are described by Saucier (2000). 

 

The basis of the inverse transformation approach is to generate the required probability density 

function f(x) through uniform sampling of the inverse of the cumulative distribution function F(x)1. 

The two-step process for doing this is illustrated in Figure 2, and the algorithm can be 

summarised as follows: 

1. Generate a random number (U) uniformly distributed between 0 and 1 

2. Calculate the value (x) of the inverse of the cumulative density function F-1(U) 

This process is illustrated in Figure 2 for three random numbers. The first random number 

generates a value near the tail of the distribution, and the next two yield values that are more 

centrally tended. For illustration purposes the input random numbers (U) in Figure 2 are shown 

as being equally spaced, but on exit the transformed numbers are unequally spaced, in 

conformance with the adopted distribution. Inverse functions of a number of useful distributions 

(Normal, log-Normal, Beta, Gamma) are provided in standard spreadsheet software (see 

example in Section 7.1), and source codes for these and others (in Fortran, C++, and Pascal) 

are freely available (Saucier, 2000; Griffiths et al, 1985; Press et al, 1989, 1993; and Vetterling 

et al, 1993). If an empirical distribution is used then values can be interpolated from a look-up 

table comprised of values of the cumulative density function (Section 3.3d). 

 

                                                
1
 F(x) gives the probability P of x being less than a specified value, while the inverse of the cumulative density 

function F
-1

(P) allows direct determination of the value of x that corresponds to a given cumulative probability P. 
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Figure 2  Illustration of the inverse transform method. 

 

3.2. Random Number Generation 

Any application of Monte Carlo analysis requires the generation of random numbers. Random 

numbers are required as the first step in application of the inverse transformation approach (as 

described in the preceding section), and in any scheme in which discrete inputs are sampled in 

random manner. Many algorithms have been developed for the generation of random numbers 

(or rather, pseudo-random numbers, as all algorithms exhibit non-randomness to varying levels 

of acceptability). Many software compilers provide random number generators as intrinsic 

functions, and a variety of source codes is available in the public domain (Press et al, 1993; 

Saucier, 2000; Griffiths et al, 1985). Non-programmers can generate a suitable sample of 

random numbers using commonly available spreadsheet programs, and if necessary these can 

be exported as a text file for use in another application.  

 

3.3. Probability Density Functions 

There is a large number of statistical distributions that can be used to represent variability in 

different types of hydrological processes and input uncertainty. The characteristics of a few 

distributions found to be useful in hydrology are presented below, but information on other 

distributions of potential use can be found in Saucier (2000), Vose (2000), and Maidment 

(1993).  

(a) Uniform Distribution 

This is the most simple of distributions but, as discussed in the preceding section, it is used to 

generate random numbers between 0 and 1 in the first step of the inverse transformation 

approach. In its discrete form it is also useful for randomly selecting inputs such as temporal and 

spatial patterns of rainfall. 

 

The algorithm to generate a uniform random number between the limits xmin and xmax is: 

1. Generate U = U(0,1) 

2. Return X = xmin + (xmax-xmin)U 

F(x)

x x

f(x)

U: 1 2 3

01
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where U(0,1) denotes a random number uniformly distributed between 0 and 1. 

 

If a random discrete integer is required between the integer limits imin and imax, the algorithm is 

slightly modified as follows: 

1. Generate U = U(0,1) 

2. Return X = imin + ROUND{(imax-imin)U} 

where ROUND{} is a function that rounds a rational number to the nearest integer.  

 (b) Normal Distribution 

The normal distribution is often used to describe the distribution of stochastic processes and 

thus it is extensively incorporated into Monte Carlo simulation schemes.  Many stochastic 

processes in hydrology conform to the log-Normal distribution (that is they only 

take positive values and are skewed towards higher values), and transforming the 

data beforehand into the logarithmic domain is a simple means of taking direct advantage of the 

Normal distribution. Another common use (described in Section 3.5 and provided as a worked 

example in Section 7.1) is to use the Normal distribution to generate errors associated with 

unexplained variance in regression-based generation of data. The sum of many random 

processes generally conforms to the Normal distribution (regardless of the distribution of 

individual processes) whereas the product of many random processes conforms to the log-

Normal distribution. Details of the Normal distribution are provided in all statistics textbooks and 

thus will not be presented here. Source code for estimation of the cumulative Normal distribution 

is freely available (e.g. Press et al, 1993) and is available in spreadsheet software. 

 

It is worth noting that, while few hydrologic variables conform to the normal distribution, many 

data sets can be transformed into the Normal domain by the Box-Cox transformation (Box-Cox, 

1964); with this approach, a variate X can be transformed into the normal domain (Z) by the 

following equation: 

 
λ

λ 1−
=

X
Z   Equation 1 

where λ is a parameter determined by trial and error to ensure that the skewness of the 

transformed distribution is zero. A noteworthy special case of this transformation arises when λ 

is set to zero, then the transformation is equivalent to taking logarithms of the data. Fitting the 

parameter λ is most easily achieved by optimisation or the use of “solver” routines that are 

commonly available in spreadsheet programs. 

 

Illustration of the efficacy of the Box-Cox transformation is provided in Figure 3. Panel (a) of this 

figure is a “quantile-quantile” (Q-Q) plot that shows the distribution of annual streamflows with a 

skew coefficient of 1.1. A Q-Q plot is constructed by plotting the expected cumulative distribution 

(in this case the Normal) versus the observed distribution of data points, and the closer the 

points lie along the one-to-one line the more defensible the assumption of normality. After 

application of the Box-Cox transform (using a λ value of 0.21) the resulting distribution is found 

to be normally distributed, as illustrated in Figure 3(b). Thus, if it was desired to stochastically 

generate the annual streamflows, then this could be achieved by first applying the Box-Cox 

transform, then stochastically generating values using the Normal distribution, and finally 

applying the inverse transform to the results. 
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Figure 3  Illustration of application of the Box-Cox transform to achieve normality. 

 

(c) Triangular Distribution 

The triangular distribution has lower and upper limits (xmin, xmax), and a mode (c) that can be 

specified to yield either a symmetric or skewed distribution. It has no theoretical basis but easily 

accommodates speculative judgement involving estimation of the upper and lower bounds and 

the most likely value of a distribution. While its simplicity makes it a popular choice, its 

distributional properties may not be well suited many practical situations. It is a “thick-tailed” 

distribution which provides a moderately high chance that values will be generated from a region 

near the maximum and minimum limits. In addition, if a skewed distribution is selected, then the 

mean may be quite different from the mode; this is because the mean, which is determined 

simply as the arithmetic average of the three parameters (={xmin+xmax+c}/3) is heavily influenced 

by the limiting value of the longest tail (either xmin or xmax), and this may be quite distant from the 

value of the mode (c).  

 

The algorithm to generate a triangular random variate between the limits xmin and xmax (with a 

mode of c) is: 

1. Generate U = U(0,1) 

2. Return 






−−>−−−−

−−≤−−+
=

)xx/()xc(Uif)U)(cx)(xx(x

)xx/()xc(UifU)xc)(xx(x
X

minmaxminmaxminmaxmax

minmaxminminminmaxmin

1
 

(c) Beta Distribution 

The Beta distribution has the same pragmatic advantages of the triangular distribution but is 

similarly devoid of theoretical justification. In addition to capturing information about the 

minimum and maximum limits and the mode, the Beta distribution is able to accommodate a 

wide variety of shapes. The distribution has four parameters: two positive shape parameters 

(α and β) and an upper and lower bound (xmin and xmax). If the two shape parameters have the 

same value then the distribution is symmetric. Adoption of different values of the shape 

parameters yields a skewed distribution, where the greater the difference between them the 

more skewed the distribution. Higher values of shape parameters induces thinner tails and a 
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greater central tendency; lower values yields thicker tails, to the point where adoption of α=β=1 

results in a uniform distribution. (In the extreme the distribution can yield a bimodal distribution 

where all the weight is in the tails – similar to the flattened letter “U” – but this has no known 

practical application in hydrology and thus is not shown). An illustration of the range of shapes 

achievable with different combinations of shape factors is presented in Figure 4.  

 

The Beta distribution is most easily incorporated into Monte Carlo simulation using the inverse 

transformation approach (Section 3.1), and source code for estimation of the cumulative 

distribution is freely available (e.g. Press et al, 1993). The function can also be accessed using 

commonly available spreadsheet software and, if desired, this can be used to generate a look-

up table and treated as an empirical distribution, as discussed below. 

 

 

Figure 4  Illustration of various forms of the Beta distribution for the case where xmin and 

xmax are 0.0 and 1.0, respectively (figures in brackets indicate parameters αααα and ββββ). 

(d) Empirical Distributions 

One very practical way of undertaking a Monte Carlo simulation is to sample from a given set of 

data. This is a fast and simple technique that can be used to take advantage of empirical data 

sets (such as losses and reservoir drawdown) in a more defensible manner than simple 

adoption of a single best estimate or representative value. It is also useful for sampling from 

“pragmatic” distributions, such as rainfall frequency curves based on application of the shape 

factor approach (Section 3.6.2, Book VI), which are not based on a theoretical distribution 

function. 

 

The algorithm to construct and sample from an empirical distribution is as follows: 

1. Sort empirical data into either ascending or descending order as appropriate, and assign a 

cumulative probability value to each. If there are n data values, then the largest data value 

(x1) is assigned an exceedance probability F(x1), the second largest (x2) is assigned an 

exceedance probability F(x2), and so on till the last value, represented by xn and F(xn).  

 

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

0.0050

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
x

f(
x
)

(15,15)

(1,4)

(3,9)

(5,5)

(1.7,1.7)

(1,1)



Monte Carlo Simulation Techniques 

 
ARR Report Number : 6 May 2013 12 

2. Generate U = U(0,1) 

3. Locate interval i such that  F(xi) ≤ U < F(xi+1) 

4. Return X = xi + )xx(
)x(F)x(F

)x(FU
ii

ii

i −
−

−
+

+
1

1

 

5. Generate additional points by returning to step 2. 

While simple to implement, the use of empirical distributions in Monte Carlo simulation does 

require care. Most importantly, it is necessary to ensure that the data sample being used is 

relevant to the whole range of conditions being simulated. For example if the data set is 

comprised of initial reservoir levels recorded over a short historic period, then these may not be 

relevant to the assessment of extreme flood risks under a different set of operating rules. 

 

It is seen in step 4 of the above algorithm that values within each interval are obtained by linear 

interpolation. This is normally quite acceptable, though obviously the less linear the relationship 

between the data values and their corresponding exceedance probabilities the less defensible is 

such an approach. Accordingly, in some cases it is best to first transform the data and/or the 

exceedance probabilities assembled for step 1 of the algorithm. Many hydrological variables are 

approximately log-Normally distributed, and thus it is often desirable to undertake the 

interpolation in the log-Normal domain. To this end, the ranked data values are transformed into 

logarithms (it does not matter what base is used) and the exceedance probabilities are 

converted to a standard normal deviate (that is, the inverse of the standard normal cumulative 

distribution). Step 2 of the above algorithm would thus need to be replaced with U = U(zmin,zmax) 

where zmin and zmax represent the standard normal deviates corresponding to F(x1) and F(xn), ie 

the adopted limits of exceedance probability range.  

 

Care is also required when sampling from the tails of the distribution. Empirical data sets are of 

finite size and, if the generated data are to fall between the upper and lower limits of the 

observed data, the cumulative exceedance probability of the first ranked value F(x1) should be 

zero, and that of the last ranked value F(x1) should be 1.0. Thus use of empirical data sets is 

appropriate for those inputs whose extremes of behaviour are not of great relevance to the 

output. Losses, for example, are zero bounded, and thus the difference in flood peak between a 

loss exceeded 95% of the time and that exceeded 99.999% of the time may well be of no 

practical significance. However, if an empirical approach is being used for the generation of 

rainfalls that are defined for exceedance probabilities ranging between 1 in 2 and 1 in 100, then 

it is inevitable that more than half the random numbers generated in step 2 of the above 

algorithm can be expected to lie outside the specified range of rainfalls. As long as the 

probability range of interest lies well within the limits specified, then rainfall values can be 

obtained by some form of appropriate extrapolation; however, if this approach is used then 

checks should be undertaken to ensure that the extrapolated values do not influence the results 

of interest. 

 

3.4. Generating correlated variates 

Many hydrologic variables are correlated and thus it is sometimes necessary to ensure that the 

adopted sampling scheme preserves the correlation structure of the inputs. A simple means of 

generating correlated variables is described by Saucier (2000). The approach is based on 
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rotational transformation and the steps involved in generation of uniformly distributed variates 

can be stated as follows: 

1. Independently generate two uniform random variates, X = U(-1,1) and Z = U(-1,1) 

2. Set 21 ρρ −+= ZXY  where   is the required correlation between X and Z 

3. Return: x = (xmin+xmax)/2 + X(xmax-xmin)/2 

  y = (ymin+ymax)/2 + Y(ymax-ymin)/2 

 where xmin and xmax are the lower and upper bounds of the first variate and ymin and ymax are 

the corresponding bounds of the other. 

 

Application of the above algorithm is illustrated in Figure 5(a). The bounds along the x-axis are 5 

and 130, and those along the y-axis (for the mid-point of the x distribution) are 30 and 75. The 

figure illustrates the results for the generation of 2000 correlated variates where the correlation 

coefficient (ρ) adopted is -0.7. 

 

The above algorithm can easily be adapted to the generation of correlated variates that conform 

to some specified distribution. For the Normal distribution, the required algorithm is: 

1. Independently generate two normal random variates with a mean of zero and a standard 

deviation of 1: X = N(0,1) and Z = N(0,1) 

2. Set 21 ρρ −+= ZXY  where ρ  is the required correlation between X and Z 

3. Return: x = µx + X.σx 

y = µy + Y.σy 

 where µx  and µy are the means of the two distributions and σx and σy are the required 

standard deviations. 

 

Application of the above algorithm is illustrated in Figure 5(b). The input parameters to this 

example are ρ=−0.7, µx=70 and σx=10, and µy=50 and σy=10, and as before a total of 2000 

correlated variates are generated. Any distribution could be used in lieu of the Normal 

distribution, or else the variates of interest could be transformed into the normal domain. 

 

 
Figure 5  Illustration of generation of variables with a correlation of -0.7 based on (a) 
uniform and (b) normal distributions. 
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3.5. Use of Fitted Functions 

Often the best means of capturing dependency between two variables is to fit a function 

between the two, and then to stochastically sample about the fitted relationship. The steps 

involved in this approach are summarised as follows: 

1. Prepare a scatter plot with the primary (independent) variable of interest (x) plotted on the 

x-axis, and the dependent variable (y) on the y-axis. 

2. Fit a suitable function that adequately captures the variation in the dependent variable as 

a function of the independent variable, ŷ = f(x). It is easiest if the function is fitted in such 

a way that the residuals (r = ŷ-y) are normally distributed, which is a standard 

requirement of least squares regression.  

3. Generate values of the independent variable by the most appropriate means, and for 

each value calculate the “best estimate” of the dependent variable (ŷ) from the fitted 

function. 

4. Add to the “best estimate” a stochastic component (ε) which is generated from the 

distribution of residuals obtained from Step 2; that is, estimate y’ = ŷ + ε. If the residuals 

obtained from Step 2 are found to be normally distributed then ε = Xσ, where σ is the 

standard deviation of the residuals (r) and X is a random normal deviate, N(0,1). If the 

residuals are not normally distributed then an alternative function must be used to ensure 

that the nature of scatter about the line of best fit is adequately preserved. 

 

An example application of the above steps to the generation of two correlated variables is 

illustrated in Figure 6. The scatter plot of the variables is shown in panel (a). As is common with 

correlated hydrologic variables, the degree of scatter increases with magnitude, and thus in 

order to ensure that the residuals of the fitted function are normally distributed, the variables are 

both first transformed into the log domain, as shown in Figure 6(b). A non-linear function is fitted 

to the data, and a “quantile-quantile” plot (see 3.3b) is constructed to check that the residuals 

are normally distributed (Figure 6c). Figure 6(d) shows a stochastic sample of 2000 values. This 

sample is obtained by use of the fitted function shown in Figure 6(b) with the added “noise” 

obtained from the stochastic generation of normal residuals as summarised in Steps 3 and 4, 

above; the resulting values are than transformed back into the arithmetic domain. It is seen that 

the stochastic sample in Figure 6(d) exhibits the same correlation as the observed data in panel 

(a), with both the degree of non-linearity and non-constant variance adequately preserved.  

 

 
Figure 6  Illustration of the steps involved in the generation of a dependent variable from 
a fitted function. 
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3.6. Conditional Sampling  

The preceding two sections provide a means for generating “well-behaved” variables that can be 

fitted to a suitable function or distribution. However, many correlated hydrologic variables are 

awkwardly distributed and their variability is dependent on some (often non-linear) function of 

their magnitude. A typical example of this type of correlation is the manner in which the level in 

an upstream reservoir is weakly dependent on the level in a downstream reservoir. The nature 

of one such dependence is shown by the large solid symbols in Figure 7, which is derived from 

the behaviour of two reservoirs located in south-eastern Australia. Such data is difficult to 

normalise or fit to probability distributions, and thus an empirical sampling approach can be 

used. 

 

The approach that can be followed to stochastically sample from such a data set can be 

described as follows: 

1. Identify the “primary” variable that is most important to the problem of interest, and 

prepare a scatter plot of the two variables with the primary variable plotted on the x-axis 

(as shown in Figure 7). 

2. Divide the primary variable into a number of ranges such that variation of the dependent 

variable (plotted on the y-axis) within each range is reasonably similar; in the example 

shown in Figure 7 a total of seven intervals has been adopted as being adequate. This 

provides samples of the secondary variable that are conditional on the value of the 

primary variable. 

3. Stochastically generate data for the primary variable using the empirical approach as 

described in Section 3.3(d). 

4. Derive an empirical distribution of the dependent data for each of the conditional samples 

identified in Step 2 above (that is, undertake Step 1 of the empirical approach as 

described in Section 3.3(d) for each of the intervals); thus, for the example shown in 

Figure 7 a total of seven separate empirical distributions of upstream storage levels are 

prepared;  

5. For each generated value of the primary variable, stochastically sample from the 

conditional distribution corresponding to the interval that it falls within; for example, if a 

downstream storage level of 1500 ML was generated in Step 3 above, then the empirical 

approach described in Section 3.3(d) is applied to the conditional distribution obtained 

from data occurring within the third lowest interval shown in Figure 7. 

The results from application of the above procedure are illustrated in Figure 7 for 2000 

stochastic samples (shown by the small “+” symbols). It is seen that the correlation structure in 

the observed data set is preserved reasonably well by this procedure. 
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Figure 7  Illustration of conditional empirical sampling in which the storage volume in an 
upstream dam is correlated with the volume in a downstream dam (2000 correlated 
values are stochastically generated based on information contained in 500 observations). 
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4. Estimation of the Derived Frequency Distribution 

4.1. Selection of Method 

There are broadly two approaches to constructing a derived frequency distribution from the 

Monte Carlo simulation results: either the simulation employs direct sampling and the results are 

analysed using non-parametric frequency analysis methods, or else a stratified sampling 

scheme can be employed and the results analysed by application of the Total Probability 

Theorem. The decision regarding which approach to use is largely a practical one. It is always 

necessary to experiment with many different model parameters, model configurations, and 

design scenarios, and simulation times of more than an hour or so soon become impractical. 

 

The first approach – where the results are derived by direct sampling and analysed using 

traditional frequency analysis – is the most straightforward to implement. It is well suited to the 

analysis of problems that can be computed quickly, or else to more complex problems in which 

the probability range of interest is limited to reasonably frequent events. As a rule of thumb, the 

number of simulations required is around 10 to 100 times the largest average recurrence interval 

of interest. That is, if the rarest event of interest is the “thousand year” event (more correctly 

speaking an event with an annual exceedance probability of 0.001), then it will be necessary to 

generate between 10000 to 100000 stochastic samples in order to derive a stable result. This 

approach requires little programming skill, and an adequate scheme can be formulated by 

developing a command “batch” file that runs your standard model of choice many times with the 

required range of design inputs.  

 

The second approach does require more effort to implement and, although it is ideally 

implemented using customised software, it can still be formulated using a “batch” file approach. 

The benefit of this additional programming effort is that the number of runs required to estimate 

the exceedance probability of rare events is considerably fewer; indeed the algorithm can be 

designed so that a similar number of runs is required regardless of the range of probabilities of 

interest. 

 

Both schemes can be implemented using standard spreadsheet programs; for example the 

analysis of long-term behaviour of tailings dams can be easily implemented in a spreadsheet. 

However, for most design applications it is preferable to develop a scheme that takes advantage 

of existing flood estimation models. There are two reasons for this: first, the model adopted can 

be selected from the range of proven and accepted flood models, and second the nature of the 

design inputs (such as losses and temporal patterns) are similar to that used in traditional 

design event approaches. Rahman et al (2002a) provide an example of the first approach 

described above in which the URBS model is run as a batch process and the results analysed 

using frequency analysis methods; other examples applied to flood estimation are also available 

(Wark, 1982; Grayson et al, 1996; Nazarov, 1999; Rahman et al, 2002b). The stratified sampling 

scheme described below was first developed for the estimation of AEP-neutral extreme floods 

(Nathan et al 2002, 2003) and is implemented in version 5 of the RORB model (Laurenson et al, 

2005). 

 

Further information on these two approaches is provided in the next two sections. 
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4.2. Direct Sampling 

The general framework to be used here is that illustrated in Figure 1. The number of model 

simulations (N) should be selected so that the design objective of interest is largely unaffected 

by the undertaking of additional runs; in general this is around 10 to 100 times the reciprocal of 

the exceedance probability of interest. The results from each run retained for further analysis are 

dependent on the design objective of interest, but in the context of flood estimation these are 

usually related to flood peak, flood volume, or maximum water level estimated at one or more 

locations. 

 

4.2.1. Sampling of Design Rainfall Depth 

For flood applications the primary variable to be generated is the rainfall depth for a given 

duration. For rainfall depths up to an annual exceedance probability of 1 in 500 the algebraic 

procedures presented in Section 1.3 of Book II can be implemented. For rarer rainfalls the 

simplest approach is to sample directly from the cumulative distribution of design rainfalls. The 

steps involved in this are as follows: 

1. Prepare a function that relates rainfall depth to its annual exceedance probability. This is 

most easily achieved by interpolating between pairs of rainfall depths and corresponding 

exceedance probabilities, or else by adopting a suitable function. The former approach is 

applicable to estimating Rare rainfalls if the “shape-factor” approach is adopted (as 

described in Section 3.6.2 of Book VI), where interpolation is best undertaken in the 

arithmetic-normal probability domain. The latter approach is applicable if the parabolic 

interpolation function of Siriwardena and Weinmann (1998) is used (Section 3.6.3, Book 

VI). 

2. Generate a random number that is uniformly distributed between 0 and 1; this number 

represents the annual exceedance probability of the rainfall event being simulated. 

3. Use the relationship developed in step 1 to find the rainfall depth associated with the 

exceedance probability generated in step 2.  

This sample value of design rainfall depth is then used with stochastically sampled values of 

other inputs/parameters for a simulation model run, and the procedure repeated N times. 

 

4.2.2. Frequency analysis of simulated flood characteristics 

The results output from the Monte Carlo simulation are most easily analysed by non-parametric 

frequency analysis. Using flood peaks as an illustration, the steps involved can be summarised 

as follows: 

1. Sort the N simulated peaks in order of decreasing magnitude. 

2. Assign a rank (i) to each peak value; 1 to the highest value, 2 to the next highest, and so 

on, down to rank N. 

3. Calculate the plotting position (p) of each ranked value using either the Weibull (Equation 

1) or the Cunnane (Equation 2) formulae: 
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4. If the design focus is on estimating the probability of a given flood magnitude then the 

Weibull formula (Equation 1) should be used as this provides an unbiased estimate of the 

exceedance probability of any distribution. Alternatively, if the focus is on the magnitude 

associated with a given exceedance probability then the Cunnane formula (Equation 2) is 

preferred as this provides approximately unbiased quantiles for a range of distributions. 

5. Construct a probability plot of the ranked peaks against their corresponding plotting 

positions. The plot scales should be chosen so that the frequency curve defined by the 

plotted values is as linear as possible. In many hydrological applications the ranked 

values are plotted on an arithmetic or log scale and the estimated exceedance 

probabilities (the plotting positions) are plotted on a suitable probability scale. Most 

popular spreadsheet programs do not include probability scales and thus, for probability 

plots conforming approximately to the Normal or log-Normal distribution, it is necessary to 

convert the probabilities to their corresponding standard normal cumulative distribution 

values. Alternatively, for probability plots conforming approximately to the exponential 

distribution, the reciprocal of the exceedance probabilities (the average recurrence 

interval) can be plotted on a logarithmic scale. 

6. The magnitude associated with a given exceedance probability (if the Cunnane plotting 

position is used) or else the exceedance probability associated with a given magnitude (if 

the Weibull plotting position is used) can be read directly from the probability plot. For 

convenience, a suitable smoothing function can be fitted to the plotted values in the 

region of interest to simplify the estimation of design values. The function is used merely 

to interpolate within the body of the plotted points and thus, as long as there is no bias in 

the fit, it matters little what function is used (polynomial functions are quite suitable). 

 

An application of this approach to simulate water levels in a simple storage is illustrated in 

Figure 8. Each point on the graph represents the maximum water level reached in one year of 

simulation, and a Weibull plotting position has been used to estimate the individual exceedance 

probabilities. The derived frequency curve is based on 5000 simulations and it is seen that the 

average recurrence interval of the storage reaching a level of 160 is estimated as about 70 

years, corresponding to an annual exceedance probability of 0.014. 
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Figure 8  Illustration of derived frequency curve of peak water levels obtained using 
direct simulation. 

 

4.3. Stratified Sampling  

While the above approach is straightforward, it is computationally inefficient. For the example 

illustrated in Figure 8 only around 500 of the 5000 simulations provide any information about 

events with exceedance probabilities rarer than 1 in 10. That is, the vast majority of 

computational effort is expended on deriving results for the range of exceedance probabilities 

that is of least interest. This inefficiency is of little concern when using simple models with 

parsimonious outputs and fast simulation speeds. However, as the data processing becomes 

more complicated and execution speeds increase, simulation times and data storage 

requirements quickly pose significant practical problems. 

 

Adoption of a stratified sampling approach ensures that the computational effort is always 

focused on the region of interest and, if the simulation scheme is configured carefully, then it will 

usually be possible to apply Monte Carlo simulation to most practical problems. 

 

The approach follows the same logic as represented in the flow chart of Figure 1, however an 

additional step is introduced into the generation of design rainfalls, and the results are analysed 

in a different fashion. The conceptual steps in this approach are illustrated in Figure 9. The 

following description is based on that developed by Nathan et al (2002, 2003) to analyse the 

conversion of extreme rainfalls to floods, though the same approach could be applied to any 

stochastic-deterministic system.  
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standardised normal probability domain (Detail A in Figure 9). Typically 50 intervals should 

suffice, though care is required to ensure that there is adequate sampling over the region of 

most interest. (Non-uniform intervals could be adopted in which finer resolution is adopted for 

critical areas of interest and, if desired, the divisions could be based on an appropriate 

discretisation of the rainfall depth distribution, or whatever the primary variable of interest is). 

Within each interval M rainfall depths are stochastically sampled and for each rainfall depth a 

model simulation is undertaken using an appropriate set of stochastic inputs (Detail B in Figure 

9). The number of simulations specified in each interval (M) is dependent on the number of 

inputs being stochastically generated and their degree of variability, but in general it would be 

expected that between 50 and 200 simulations should be sufficient to adequately sample from 

the range of associated inputs.  

 

The model results are recorded for all simulations taken in each interval (Detail C in Figure 9). 

These results are aggregated using the Total Probability Theorem (see below) to yield expected 

probability estimates of the flood frequency curve. In all, if the rainfall frequency curve is divided 

into 50 intervals and 200 simulations are undertaken in each interval, a total of 10000 runs is 

required. The same number of simulations could be used whether the upper limit of exceedance 

probability is 1 in 1000 or 1 in 106, and it is merely necessary to ensure that a representative 

number of combinations is sampled within each rainfall range of interest.  

 

For the scheme illustrated in Figure 9, the expected probability that a flood peak (Q) exceeds a 

particular value q can be calculated from: 

 ∑ >=>
i

ii ]R[p]R|qQ[p)qQ(p  Equation 4 

where the term p[Ri] represents the probability that rainfall occurs within the interval i, and the 

term p[Q>q|Ri] denotes the conditional probability that the flood peak Q generated using a 

rainfall depth from within this interval Ri exceeds q. The term p[Ri] is simply the width of the 

probability interval under consideration (this will be different for each of the N intervals 

considered), and p[Q>q|Ri] can be calculated merely as the proportion of exceedances, n, in the 

sample of M simulations within interval i (ie as n/M). A representative value of R can be used for 

all M simulations within the interval, though a smoother frequency curve can be obtained if R is 

sampled with the interval using a uniform distribution. 

 

In order to ensure that the total probability domain is sampled, it is necessary to treat the first 

and last intervals differently from the intermediate ones. The issue here is that the full extent of 

the end intervals is not being adequately sampled, and on the assumption that these boundary 

intervals are distant from the probability region of interest, we can estimate their contribution to 

the total probability in a pragmatic fashion. For the last interval p[R1] is evaluated as the 

exceedance probability of its lower bound, and for the first interval it is evaluated as the non-

exceedance probability of its upper bound. Also, for the first interval p[Q>q|R1] is replaced by the 

geometric mean of p[Q>q|R1*] and, say, 0.1 x p[Q>q|R1*], where R1* is the rainfall value at the 

upper bound of the interval. Similarly, for the last interval the term p[Q>q|RN] is replaced by the 

geometric mean of p[Q>q|RN*] and 1.0, where RN* is the rainfall value at the lower bound of the 

interval. Thus, we are assuming for the lowest interval that as the frequency of the rainfall event 

becomes very high the likelihood that the flow threshold is exceeded trends towards a very low 

value, in this case taken as one tenth the probability of p[Q>q|R1*]; and for the uppermost 
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interval we assume that the likelihood of the threshold being exceeded trends towards a value of 

1.0 (ie a certainty). The geometric mean is used in place of the arithmetic mean as here we are 

assuming a highly non-linear variation over the interval. 

 

 
Figure 9  Illustration of manner in which stratified sampling is applied to rainfall 
frequency curve. 
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The procedures described in the previous two sections can be applied to any type of rainfall 

input for which the necessary distributional information is available. The simplest approach – 

and one that is most consistent with the available design information – is to undertake the 

simulations for a range of storm durations and then adopt the envelope of the results; that is, the 

envelope curve is constructed by extracting the maximum value at each exceedance probability 

of interest. This is the same approach that is used with the traditional design event method. 

However the use of Monte-Carlo simulation provides a major benefit in that each frequency 

curve is derived from a wide range of flood producing factors. Accordingly, the irregularities 

between storm duration, event magnitude, and catchment area that can occur due to specific 
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Of course, the rigorous solution to this problem is to stochastically sample the duration of the 

storm event. Hoang et al (1999) have successfully explored this approach, and while 

conceptually attractive, it does require the use of design inputs which are not currently available. 

There is good evidence that the inputs required for this approach are strongly linked to existing 

design information, but the manner in which these dependencies vary with location have not 

been quantified. 
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4.5. Validation of Modelling Process 

It is essential that any Monte-Carlo scheme be assessed by the inspection of suitable diagnostic 

checks. Use of a sound conceptual basis does not guarantee that the adopted parameterisation 

adequately minimises bias and produces results that are consistent with either historical 

observations or physical reasoning. 

 

A necessary but not always sufficient check is to ensure that the generated output distributions 

conform to the required input distributions. To this end plots of exceedance percentiles or 

cumulative distributions should be compared to check that the input and output distributions are 

consistent, particularly over the range of probabilities near the design objective of interest. 

Examples of some suitable diagnostic checks are provided in a worked example presented in 

Section 7.1. Any correlated variables should also be inspected to ensure that the nature and 

degree of dependence is adequately represented (as illustrated in Figure 7).  

 

If at all possible, the performance of the simulation scheme should be tested against other 

independent evidence. The most suitable checks are to compare results with flood frequency 

estimates derived using (usually) the statistical analysis of annual maxima (as described in Book 

IV), or else other regional estimates of the required flood quantiles. Figure 10 provides an 

example of a useful check on the application of a Monte-Carlo scheme to simulate the effects of 

seasonal flood producing factors and a varying initial reservoir storage. Given that the simulation 

results fall well within the confidence limits of the fitted flood frequency distribution, it can be 

concluded that they are consistent with the observed flood data and may provide a suitable 

basis to extrapolate the flood frequency curve to more extreme events.  

 

 
Figure 10  Comparison of flood frequency curve fitted to historical maxima with Monte-
Carlo simulation results (assuming all gates operating under current conditions). 
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5. Flood Estimation Applications  

The foregoing sampling methods can be applied to a wide variety of practical design problems. 

Worked examples of some typical sampling schemes are provided in Section 5; the following 

provides a few generic examples of applications relating to flood estimation. 

 

5.1. Sampling temporal patterns 

Flood estimation is traditionally undertaken using a single temporal pattern of “average 

variability” as provided in Section 2 of Book II. These single design temporal patterns have been 

derived from historical samples of temporal patterns; rather than averaging these patterns to 

provide a single design input (and thereby risk the introduction of bias, particularly with non-

linear models) Monte Carlo analysis provides the means to use all patterns in the historical 

sample. Thus, in concept, the same temporal patterns used to construct the single design 

temporal patterns can be used as a sample for Monte-Carlo simulation. 

 

A set of historical temporal patterns can be sampled using the discrete form of the uniform 

distribution (Section 3.3a). Suitable data sets of temporal patterns are provided for extreme long 

duration storms in the south-east and tropical regions of Australia by Meighen and Minty (1998) 

and Walland et al (2003), and Jordan et al (2005) provide a suitable set of patterns for use with 

short duration storms. The RORB model (Laurenson et al, 2005) provides a facility for extracting 

suitable sets of temporal patterns from pluviograph data. An illustration of the variability in an 

historical sample of temporal patterns compared to a fixed design pattern is shown in Figure 11. 

In this particular example it is seen that the fixed design pattern is more rear-loaded than the 

majority of the historical patterns, and it is also not representative of the sample’s central 

tendency. 

 

There is some evidence that temporal patterns become more uniform as the severity of the 

event increases (Pilgrim et al, 1969; Nathan, 1993; Jordan et al, 1995), and thus it may be 

appropriate to conditionally sample the temporal patterns based on the magnitude of the rainfall 

depth. This is best achieved by applying the uniform discrete sampling scheme described in 

Section 3.2 to samples of temporal patterns censored by an appropriate range of rainfall depths. 

A practical example of this conditional sampling approach has been incorporated into the Monte-

Carlo simulation scheme in RORB (Laurenson et al, 2005). 
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Figure 11  Cumulative plot of 24 hour temporal patterns from 30 largest storms extracted 
from Melbourne Regional Office pluviograph station with an ARI less than 25 years), and 
corresponding Zone 1 pattern for ARI < 25 year from Section 2, Book II). 

 

5.2. Sampling losses 

Losses used to estimate rainfall excess are also traditionally treated as fixed values in the 

design event approach. A substantial amount of information is available on the distribution of 

initial and continuing losses (Hill et al, 1997; Ilahee, 2005), and this can be pooled to derive 

distributions that can be used directly in Monte-Carlo simulation. The concepts involved in this 

approach are described by Nathan et al. (2003) and are illustrated for initial loss in Figure 12. 

Empirical data and analyses presented by Hill et al (in prep) clearly support the assumption that 

while the magnitude of losses may vary between different catchments, the shape of the 

distribution does not. In other words, while it may be expected that typical (mean or median) loss 

rates vary significantly from one catchment to another, the degree of variation around this typical 

value is similar, and thus the likelihood of a catchment being in a relatively dry or wet state is 

similar for all catchments.  

 

The concept of how the location of the loss distribution changes but not its shape is 

schematically illustrated in Figure 12. This approach is easily implemented using an empirical 

sampling scheme (comprised of pairs of exceedance probabilities and design values, Section 

3.3d). The mean or median loss value applied in the traditional approach would generally be 

expected to provide a suitable estimate of the location parameter of the loss distribution. If there 

is evidence to suggest that this loss distribution may introduce bias into the flood estimates, the 

location parameter of the loss distribution could be adjusted.. 
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Figure 12  Schematic illustration of variation in location but not shape of initial loss distribution. 

 

5.3. Antecedent Conditions 

Antecedent conditions are often an important consideration in flood hydrology. Examples of this 

include selection of an initial starting condition in a reservoir, the rainfall that occurs prior to a 

design burst, initial snowpack conditions, and downstream tailwater controls caused by tidal 

influences. In some cases the antecedent conditions can be considered to be largely 

independent of the associated storm event, and thus they can be handled by any of the 

distributional or empirical approaches described in Section 3.3. However, it is not uncommon for 

these antecedent conditions to be correlated with storm events (Hill et al 2005 provide an 

example of an initial reservoir level that is conditional upon rainfall depth), in which case the 

dependence must be explicitly handled by one of the approaches described in Section 3.4, 3.5, 

or 3.6. 

 

5.4. Concurrent Tributary Flows 

The contribution of tributary flows is generally best handled by inclusion of the tributary 

catchment as a sub-area in the flood estimation model. However, there are occasions where it is 

either impractical or not desirable to do this, for example in those cases where the availability of 

data obviates the need for rainfall-based modelling, or a hydraulic model is being used to 

estimate flood levels some point downstream of the hydrologic model. 

 

Where information on flood maxima is available on both the mainstream and the tributary, the 

most attractive approach is to separately fit flood frequency distributions to the individual sites, 

and then to combine them using correlated distributions, as described in Section 3.4. If floods 

are being estimated using regional information, then it may be preferable to adopt a more 

empirical approach, as described in Section 3.6. 
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5.5. Operational Factors 

There are occasions where flood magnitude is dependent on stochastic operational factors, and 

there are a variety of approaches that can be considered. 

 

One common example is the likelihood of spillway blockage or gate failure at a dam, or culvert 

blockage in a drainage system, during flood conditions (Nathan et al, 2003). The likelihood of 

such partial failure can be incorporated by assigning likelihoods to the different possible 

outcomes, and then undertaking the simulation by discrete sampling. For example, if a dam has 

three spillway gates, then the probability of one, two, or three gates failing can be computed 

using combinatorial statistics, or by development of a fault-tree. These conditions can be 

simulated by adoption of separate rating curves corresponding to the different failure conditions, 

where the likelihood of a given scenario is sampled using a discrete form of the empirical 

distribution (Section 3.6).  

 

Another common example is the operation of power stations or some other anthropogenic 

process. Such processes can be handled stochastically by the use of operating rules combined 

with an error term (as described in Section 3.5), or else by the selection of a range of possible 

outcomes by discrete (possibly correlated) empirical sampling as described in Sections 3.3 and 

3.6. 
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6. Characterising Uncertainty 

The preceding discussion has focused on the use of Monte Carlo simulation to derive frequency 

distributions of a selected flood characteristic, allowing for natural variability in inputs. In addition 

to deriving best estimates, the simulation methods can also be used to assess the impact of 

uncertainty in inputs or model parameters on the derived frequency distributions. The steps 

involved in doing this may be summarised as follows: 

1. Separate uncertainty in the description of model inputs from the natural variability of 

these inputs reflected in the Monte Carlo simulation procedures outlined previously. 

2. Characterise the distribution of uncertainty in the salient model inputs (or model 

parameters) by use of an appropriate distribution and selection of its parameters. 

3. Select one set of model inputs and model parameters that has been perturbed in 

accordance with the distributions determined in step 2, and undertake Monte Carlo 

simulation by direct or stratified sampling (Sections 4.2 or 4.3) to yield a single derived 

frequency distribution. 

4. Repeat step 3 a sufficient number of times to adequately sample from the ‘uncertainty’ 

distribution of inputs and parameters (say, one hundred times), saving the results of each 

simulation run. 

5. Rank all the results derived for each exceedance probability of interest (e.g. the 1:100 

AEP flood event), and extract the required uncertainty limits; that is, if 100 sets of results 

are available, extract the 1:100 AEP flood event from each set of results, rank them, and 

the 5th largest and 5th lowest estimates represent the 90% confidence limits surrounding 

the 1:100 AEP result. 

 

While the mechanics of the above method are straightforward to apply, separating uncertainty in 

input characteristics from natural variability and deriving the distributions used to characterise 

uncertainty in the inputs (Step 1) is a most difficult task. Not only are the limits and the nature of 

the distribution often difficult to ascertain, but the inputs may well be correlated and this also 

must be taken into account. In some cases (such as the adopted median of the loss distribution) 

the uncertainty distribution can be based on empirical data, but in other cases – such as the 

degree of non-linearity of flood response – such uncertainty must be based on pragmatic 

assumptions and the results must be regarded as speculative, or at best indicative, of the true 

uncertainty. In such cases the uncertainty analysis reduces to a sensitivity analysis, useful to 

answer ‘what-if’ questions. 

 

One example of the pragmatic application of the above is presented in Figure 13. These results 

are based on 100 sets of Monte-Carlo simulations where the uncertainty associated with the 

following factors was considered: 
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� Design rainfalls: the uncertainty associated with the 1:2000 AEP event (derived using CRC-

FORGE procedures, Section 3.5, Book VI) was assessed to be around ±10%, and the 

uncertainty in the AEP of the Probable Maximum Precipitation was assessed using the 

judgemental distribution proposed by Laurenson and Kuczera (1999; Section 3.6, Book VI); 

for convenience this was well reproduced by the Beta distribution using parameter values of 

α=β=2.6, xmin=-2 and xmax=2. 

� RORB Routing parameter kc (Laurenson et al, 2005): uncertainty in the routing parameter kc 

was characterised using a skewed Beta distribution to match the uncertainty in the spread 

of estimates obtained from reconciliation with flood frequency quantiles (as discussed in 

Section 6.4.2 of Book VI) 

  

The uncertainty associated with the degree of non-linearity in flood response was not assessed 

due to its high dependence on the selected value of the catchment routing parameter. 

Uncertainty in other flood producing factors was not assessed as this was considered to be 

small relative to the two sources of uncertainty allowed for in the assessment. 

 

 

Figure 13  Illustration of the assessment of uncertainty in the derivation of inflow and outflow 

frequency curves for a dam with a fixed crest spillway. 
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7. Worked Examples 

7.1. Generation of Correlated Time Series 

This example illustrates the stochastic generation of a dependent time series in a manner that 

preserves its serial correlation. This type of problem commonly arises when using stochastic 

techniques to estimate overtopping floods for a tailings dam or some other system that involves 

simulation of a time series. It also illustrates generation of a correlated variable as would be 

required in application of Monte Carlo techniques to event-based flood estimation. 

 

For the purpose of this example only 50 data items are considered, however in practice it would 

be expected that such an analysis would be based on a larger sample (containing many 

thousands of items, or multiple sets of many thousands). Tabulated values involved in the main 

computational steps are presented in Table 1. The nature of the relationship between the 

independent (X) and dependent (Y) variables of interest is shown by the solid symbols in the 

scatter plot of Figure 14. It is seen that there is a slight negative correlation between the two 

variables, and that there is a considerable degree of scatter about the fitted relationship. 

 

The first step in this example is to generate deterministic estimates of the dependent variable 

(Y’) using the simple fitted relationship: 

 

 Y’ = 0.02528.X + 189.93 

 

This relationship is obtained as a simple least-squares regression fit to the data and is easily 

undertaken using a spreadsheet. The regression estimates for each value of the independent 

variable is provided in the fourth column of Table 1. The degree of scatter about the line is best 

characterised as the standard deviation of the residuals, that is the standard deviation of the 

difference between the observed and fitted values of the independent variable (Y’-Y). The 

calculation of the residuals is shown in the 5th column of Table 1, and the standard deviation is 

calculated to be 30.5 (as shown in the second last line of the table).  
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Table 1  Computational steps for generation of correlated time series.. 

Time 

Increment 

(T) 

Independent 

Variable 

(X) 

Dependent 

Variable 

(Y) 

Regression 

Estimate 

(Y’) 

Regression 

Residual 

(Y’-Y) 

Random 

Normal 

Deviate 

N(0,1) 

Stochastic 

sample of 

dependent 

variable 

1 93 182 187.6 5.9 -0.430 174 

2 17 189 189.5 0.1 0.729 201 

3 41 215 188.9 -26.3 -0.686 183 

4 39 204 188.9 -15.4 -0.396 167 

5 29 184 189.2 5.0 0.628 199 

6 98 191 187.5 -3.9 1.924 247 

7 110 199 187.2 -11.5 0.803 240 

8 18 261 189.5 -71.5 -1.116 174 

9 27 275 189.3 -85.2 -2.169 115 

10 29 241 189.2 -52.0 -1.417 117 

11 4 229 189.8 -38.9 0.386 176 

12 72 183 188.1 4.8 -1.211 163 

13 291 167 182.6 15.5 0.024 163 

14 75 158 188.0 30.0 -1.081 161 

15 147 180 186.2 6.7 0.233 174 

16 112 208 187.1 -20.5 -0.815 170 

17 124 150 186.8 36.5 -0.036 172 

18 111 192 187.1 -5.2 -1.473 149 

19 197 197 185.0 -11.6 0.202 166 

20 113 218 187.1 -31.1 2.221 248 

21 182 227 185.3 -41.6 -0.170 218 

22 45 194 188.8 -4.7 0.290 193 

23 85 200 187.8 -11.9 -0.515 179 

24 162 131 185.8 54.7 1.458 215 

25 40 150 188.9 38.8 0.115 216 

26 21 139 189.4 50.3 0.929 215 

27 209 169 184.7 15.5 1.115 229 

28 178 172 185.4 13.6 -0.918 180 

29 90 174 187.7 13.7 1.638 215 

30 177 175 185.5 10.4 0.833 234 

31 145 184 186.3 2.7 -2.592 133 

32 132 203 186.6 -16.4 -1.250 112 

33 147 208 186.2 -21.8 -2.172 110 

34 82 175 187.9 12.5 -0.691 134 

35 20 164 189.4 25.4 0.675 195 

36 53 224 188.6 -35.1 1.341 234 

37 35 126 189.0 63.3 1.767 257 

38 48 159 188.7 29.3 -0.401 208 

39 19 177 189.5 12.6 -0.073 181 

40 171 179 185.6 6.4 0.711 203 

41 21 189 189.4 0.9 -0.193 196 

42 119 194 186.9 -7.1 -1.022 157 

43 191 204 185.1 -18.7 0.081 170 

44 156 220 186.0 -34.0 -0.952 163 

45 252 197 183.6 -13.1 0.443 179 

46 54 192 188.6 -3.4 -0.164 192 

47 202 171 184.8 13.9 -0.369 173 

48 40 164 188.9 25.1 0.236 189 

49 34 142 189.1 46.8 -2.451 130 

50 16 149 189.5 40.3 -1.348 114 

Average 97 187 187.5 0.0 -0.147 182 

Std Dev 71 31 1.8 30.5 1.127 37 

Ser Corr 0.15 0.54 0.153 0.538 0.207 0.57 
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Figure 14  Scatter and time series plot of observed data and one stochastic sample. 
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normally distributed about the fitted regression line (which is a necessary assumption of using 
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degree of deviation. To this end, the residuals of the regression equation are ranked from lowest 
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which provides an unbiased estimate of the exceedance probability of reach rank. The expected 
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cumulative normal distribution is 5.28 (using a mean and standard deviation of 0.0 and 30.9, as 

computed in the 2nd and 3rd last rows of the 5th column); the first (x,y) pair of the quantile-quantile 

plot is thus 5.28 and 5.90. Similar calculations are undertaken for each data point, and the 

completed plot is shown in Figure 15. It is seen that the residuals fall neatly along the 1:1 line 

except for the largest negative residual (represented as the lowest point in the lower left hand 

corner of the figure), and thus it is reasonable to assume that the residuals follow a normal 

distribution. If the deviation from the 1:1 line was marked then it would be necessary to apply 

some form of transformation to normalise the data (e.g. the Box-Cox power transform). 

 
Figure 15  Quantile-quantile plot of regression residuals. 

 

Having satisfied ourselves that the residuals are normally distributed, we can generate as many 

samples as we need. The process of doing this for a single sample of 50 values is shown in the 

last two columns of Table 1. First, a standard normal deviate is generated with a mean of zero 

and a standard deviation of one; this is easily done using standard functions found in proprietary 

spreadsheet programs whereby a random number is generated between 0 and 1, and then the 

inverse of the standard normal cumulative distribution (which has a mean of zero and a standard 

deviation of one) is then calculated using the random number as its input exceedance 

probability. By way of example, the first row of the 6th column of Table 1 is the result of first 

generating a random number of 0.3336 (not shown), and then calculating the corresponding 

inverse of the standard normal cumulative distribution, which is -0.430. The subsequent rows in 

the 6th column are merely the result of generating a further 49 random numbers and converting 

them to standard normal deviates in a similar fashion. 

 

The very first stochastic estimate of the dependent variable (S1) is calculated from: 

 S1 = Y1’ + s.z1 

  = (-0.0252(93)+189.9)+ 30.5(-0.430) 

  = 174 

 

Where Y1’ is the regression estimate (the expected mean for the first independent variable, from 

Equation 1.6.1), s is the standard deviation of the residuals (30.5), and z1 is the first standard 

-80

-60

-40

-20

0

20

40

60

80

-80 -60 -40 -20 0 20 40 60 80

Expected Quantile

O
b

s
e
rv

e
d

 Q
u

a
n

ti
le



Monte Carlo Simulation Techniques 

 
ARR Report Number : 6 May 2013 34 

normal deviate generated (in this case -0.430).  

 

In order to preserve the observed serial correlation (r) from one estimate (Si) to the next (Si+1), 

the required dependency is introduced using Equation (XXX) where, for example, the second 

stochastic estimate is computed as follows: 

 

 S2 = Y2’ + s(r.z1 + z2√(1-r2)) 

  = (-0.0252(17)+189.9)+ 30.5(0.54(-0.430) + 0.729√(1-0.542)) 

  = 201 

 

The calculations proceed in this fashion for as many stochastic estimates as required, and 

values for the first 50 such steps are shown in the last column of Table 1. A comparison of this 

first stochastic sample compared to the historic is shown as hollow symbols in the top panel of 

Figure 14, and a time series plot showing the required degree of serial correlation is shown in 

the lower panel. 

 

 

Figure 16  Distributional check on 100 generated replicates of 50 items. 

 

When generating multiple replicates for design purposes it is important to check that the 

statistics of the samples are consistent with the original data. It is generally a trivial matter to 

ensure that the statistics of central tendency are preserved, but usually in hydrology it is the 

whole distribution of the sample (often particularly the tails) that is of importance. An appropriate 

check is illustrated in Figure 16 where the cumulative exceedance distribution of the observed 

dependent variable is shown as solid points (for convenience the probability scale is 

represented as a standard normal deviate). The confidence limits represent the 5% and 95% 

limits obtained from 100 samples each of 50 items, ie a total of 5000 values were generated. It 

is clear that the samples conform reasonably well to the distribution of the observed data, 

though it would be expected that additional checks (such as flood volume over different 

successive periods) would need to be undertaken relevant to the design objective of interest. 
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7.2. Sampling from an empirical distribution 

In order to illustrate sampling from an empirical distribution we will use a cumulative distribution 

of rainfall depth, but the approach is applicable to any empirical distribution. The relationship 

between exceedance probability (expressed for convenience here as average recurrence 

interval) and rainfall depth is shown in the first and last columns of Table 2. The standard normal 

deviates (the inverse of the standard normal cumulative distribution) corresponding to the 

tabulated exceedance probabilities are shown in the second column of the table (a function to 

calculate these is commonly found in commercially available spreadsheet programs). The 

exceedance probabilities are first converted to standard normal deviates to help linearise the 

function, so that the use of linear interpolation (as explained below) does not introduce 

unnecessary errors. 

 

Let us assume that we need to generate rainfalls to undertake a Monte Carlo simulation. At 

each step we generate a random number between 0 and 1, which represents the exceedance 

probability of the event. If at one step the random number generated is 0.0232, then the 

corresponding standard normal deviate is calculated to be 1.9917. From simple linear 

interpolation between the second and third columns of Table 2 the rainfall depth, R,  

corresponding to this exceedance probability is calculated to be: 

)(x
..

..
R 89100

6449105382

6449199171
89 −

−
−

+=   

  = 98.3 mm 

 

A similar process is used at each step of the simulation, though checks should be made to 

ensure that random numbers generated outside the probability limits of the supplied distribution 

table are appropriately handled. 

 

Table 2  Example of empirical cumulative distribution. 

Average 

Recurrence 

Interval 

(year) 

Annual 

exceedance 

probability 

Standard 

normal 

deviate 

Rainfall 

depth 

(mm) 

2 0.5 0.0000 63 

5 0.2 0.8416 73 

10 0.1 1.2816 79 

20 0.05 1.6449 89 

50 0.02 2.0538 100 

100 0.01 2.3264 113 

200 0.005 2.5758 127 
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7.3. Construction of a Frequency Plot 

To illustrate application of a simple Monte Carlo analysis, let us assume that the stochastic 

sample of dependent variables listed in the last column of Table 1 are generated flood peaks (in 

m3/s), and that we wish to find the probability that a peak of 210 m3/s is exceeded. It should be 

stressed that in practice this approach would normally involve running many thousands of 

simulations, but for simplicity it is assumed here that only 50 simulations have been undertaken. 

 

To construct a derived frequency distribution the values in the last column of Table 1 need only 

be ranked from largest to smallest and assigned a plotting position. Since the objective of our 

design is to estimate the exceedance probability of a given flood peak, we use the Weibull 

plotting position (Equation 1). The rank one event is 257 m3/s, and this is assigned an 

exceedance probability of (1/51=) 0.01961. The second highest value (248 m3/s) is assigned an 

exceedance probability of (2/51=) 0.0392, and so on for all values in the sample. 

 

The complete plot is shown in Figure 17, where for convenience the exceedance probabilities 

are shown as average recurrence intervals. Inspection of this plot shows that a flood with a peak 

of 210 m3/s has an average recurrence interval of around 4 years. A more accurate estimate 

could be obtained by fitting a smoothing function (e.g. a polynomial) to the data points closest to 

the flood magnitude of interest. Use of 1000 rather than 50 simulations would be expected to 

result in a smoother derived frequency curve, and linear interpolation between adjacent data 

points would then generally be sufficient.  

 

 
Figure 17  Example construction of a derived frequency curve. 
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7.4. Analysis of a Stratified Sample 

The following provides an illustration of how to calculate expected probability estimates for a 

stratified Monte-Carlo simulation scheme. In this simplistic example it is assumed that the 

primary variable of interest (in this case rainfall) has been divided into ten intervals, and a flood 

model has been run 200 times within each interval (thus the total number of simulations 

undertaken is 2000). With reference to Figure 9, the number of intervals (N) is set to 10, and the 

number of simulations within each interval (M) is 200. Within a given interval a representative 

rainfall depth is selected, and the flood model is run using a stochastic sample of inputs (losses, 

temporal patterns, reservoir drawdown, etc) that are appropriate to the rainfall range under 

consideration. The results are collated, and the objective is now to estimate the probability that a 

flood event of a given magnitude (say, 50 m3/s) is exceeded. 

 

The calculations used are summarised in Table 3. The first column of this table lists the average 

recurrence interval (T) of the 11 bounds of the ten selected rainfall intervals, and the second 

column converts these to exceedance probabilities (Y), where Y = 1/T. The third column 

represents the probability that a rainfall occurs within the given interval, and these are simply 

calculated as the difference between the exceedance probabilities of the interval bounds; thus, 

for example, the probability that a rainfall occurs in the first interval is 0.9901-0.500=0.4901. 

 

The fourth column of Table 3 summarises the number of times (n) out of the sample (M) of 200 

that the flood model yields a flood peak greater than 50 m3/s. As expected, it is seen that the 

number of times that this flood threshold is exceeded increases with rainfall depth, and the 

probability of this occurring in each rainfall interval is computed simply as n/M (as shown in the 

fifth column). 

 

The flood exceedance probabilities shown in the fifth column of Table 3 are conditional upon the 

rainfall event occurring within the given interval, and thus estimates of the unconditional 

probabilities are derived by the product of the two probabilities, that is by the product of 

probabilities shown in columns three and five. For example, the likelihood that a rainfall with an 

average recurrence interval of between 2 and 5 years yields a flood peak in excess of 50 m3/s is 

calculated as 0.30 x 0.01 = 0.001. The first and last intervals require special consideration as 

discussed in Section 4.3. Using the last interval as an illustration, the probability of the rainfall 

occurring within the last interval is replaced by the total exceedance probability of its lower 

bound, which is 0.0133. In addition, the conditional probability of 50 m3/s being exceeded is 

replaced by the geometric mean of the conditional probability for the interval and 1.0; thus, the 

unconditional probability that a flood greater than 50 m3/s is caused by a rainfall rarer than the 

“75-year” event is 0.0133x√(1.0x1.0)= 0.0133. The total probability that a flood in excess of 50 

m3/s occurs (from a rainfall depth of any magnitude) is calculated as the sum of all interval 

probabilities, and this is 0.0572, which is equivalent to an event with an average recurrence 

interval of around 17 years. 
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Table 3  Computational steps for calculation of expected probabilities. 

Average 

Recurrence 

Interval of 

interval 

bound 

(T) 

Cumulative 

exceedance 

probability of 

interval 

bound (Y) 

Probability 

of interval 

width 

p[Ri] 

Number of 

times in 

sample of 

200 that 

event 

is exceeded 

(n) 

Conditional 

probability 

that event is 

exceeded 

within given 

interval 

p[Q>q|Ri] 

Probability 

that event is 

exceeded 

within given 

interval 

p[Q>q|Ri]p[Ri] 

1.01 0.9901     
  0.5000* 0 0.00 0.0000 

2.00 0.5000     
  0.3000 2 0.01 0.0030 

5.00 0.2000     
  0.1000 10 0.05 0.0050 

10.00 0.1000     
  0.0333 24 0.12 0.0040 

15.00 0.0667     
  0.0167 48 0.24 0.0040 

20.00 0.0500     
  0.0167 112 0.56 0.0093 

30.00 0.0333     
  0.0083 170 0.85 0.0071 

40.00 0.0250     
  0.0050 190 0.95 0.0048 

50.00 0.0200     
  0.0067 200 1.00 0.0067 

75.00 0.0133     
  0.0133* 200 1.00 0.0133 

100.00 0.0100     

Expected probability that event is exceeded, p(Q>q): 0.0572 

* Probability of first and last intervals represents full interval width to lower or upper bound 
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