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FOREWORD 

AR&R Revision Process 

Since its first publication in 1958, Australian Rainfall and Runoff (ARR) has remained one of the 

most influential and widely used guidelines published by Engineers Australia (EA).  The current 

edition, published in 1987, retained the same level of national and international acclaim as its 

predecessors.  

With nationwide applicability, balancing the varied climates of Australia, the information and the 

approaches presented in Australian Rainfall and Runoff are essential for policy decisions and 

projects involving: 

• infrastructure such as roads, rail, airports, bridges, dams, stormwater and sewer 

systems; 

• town planning; 

• mining; 

• developing flood management plans for urban and rural communities; 

• flood warnings and flood emergency management; 

• operation of regulated river systems; and 

• prediction of extreme flood levels. 

 

However, many of the practices recommended in the 1987 edition of AR&R now are becoming 

outdated, and no longer represent the accepted views of professionals, both in terms of 

technique and approach to water management.  This fact, coupled with greater understanding of 

climate and climatic influences makes the securing of current and complete rainfall and 

streamflow data and expansion of focus from flood events to the full spectrum of flows and 

rainfall events, crucial to maintaining an adequate knowledge of the processes that govern 

Australian rainfall and streamflow in the broadest sense, allowing better management, policy 

and planning decisions to be made. 

One of the major responsibilities of the National Committee on Water Engineering of Engineers 

Australia is the periodic revision of ARR.  A recent and significant development has been that 

the revision of ARR has been identified as a priority in the Council of Australian Governments 

endorsed National Adaptation Framework for Climate Change.   

The update will be completed in three stages.  Twenty one revision projects have been identified 

and will be undertaken with the aim of filling knowledge gaps.  Of these 21 projects, ten projects 

commenced in Stage 1 and an additional 9 projects commenced in Stage 2.  The remaining two 

projects will commence in Stage 3.  The outcomes of the projects will assist the ARR Editorial 

Team with the compiling and writing of chapters in the revised  ARR. 

Steering and Technical Committees have been established to assist the ARR Editorial Team in 

guiding the projects to achieve desired outcomes.  Funding for Stages 1 and 2 of the ARR 

revision projects has been provided by the Federal Department of Climate Change and Energy 
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Efficiency.  Funding for Stages 2 and 3 of Project 1 (Development of Intensity-Frequency-

Duration information across Australia) has been provided by the Bureau of Meteorology.  

 

Project 4: Continuous Rainfall Sequences at a Point  

Continuous simulation of rainfall sequences are becoming increasingly important in design flood 

estimation as they represent, arguably, the most rigorous technique available to represent the 

joint behaviour of flood-producing extreme rainfall events, the preceding antecedent rainfall 

conditions, and the influence of non-stationary catchment conditions.  This report describes the 

outcomes from the second stage of ARR research project 4. The objectives of this stage are to: 

(1) finalise the development of the regionalised state-based method of fragments approach as 

well as the development of a regionalised daily rainfall generation model; and 

(2) assess the performance of the method of fragments model using the same statistics and 

locations that were used in Frost et al [2004]. 

  

Arising from this project, methods were developed to allow for the generation of sequences of 

point-rainfall at the resolution of the pluviograph data (in this study taken to be in increments of 

6-minutes) at any location in Australia.  The testing conducted in this phase of work focused on 

statistics relevant for using continuous simulation in flood frequency estimation. Specifically, the 

method was tested in the context of the capacity to reproduce both extreme rainfall and the 

antecedent rainfall leading up to the annual maxima event, with the suite of methods generally 

performing well against these metrics.   

 

 

Mark Babister    Assoc Prof James Ball 
Chair Technical Committee for  ARR Editor 
ARR Research Projects 
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EXECUTIVE SUMMARY 

Continuous simulation of rainfall sequences is becoming an increasingly important tool in 

design flood estimation, as it represents arguably the most rigorous technique available to 

represent the joint behaviour of flood-producing extreme rainfall events and the preceding 

antecedent rainfall conditions. To inform the forthcoming revision of Australian Rainfall and 

Runoff (ARR), the aims of this project are to develop, test and validate the procedures for 

continuous rainfall simulation. 

This report describes the outcomes from the second stage of ARR research project 4. The 

objectives of this stage are to: (1) finalise the development of the regionalised state-based 

method of fragments approach as well as the development of a regionalised daily rainfall 

generation model; and (2) assess the performance of the method of fragments model using 

the same statistics and locations that were used in Frost et al [2004], to enable direct 

comparison with the Disaggregated Rectangular Intensity Pulse (DRIP) model of Heneker et 

al (2001), and the Neyman-Scott Rectangular Pulse (NSRP)  described by Cowpertwait et al 

[2002]. 

Regionalised state-based method of fragments disaggregation and daily 

Markov model 

In this report we describe two regionalised methods which in combination enable the use of 

nearby rainfall records for cases where at-site records are unavailable or insufficiently long. 

The first of these methods is a regionalised version of the state-based method of fragments 

disaggregation model first described in Westra and Sharma [2010], where conditional to at-

site daily rainfall, sub-daily rainfall fragments are drawn from nearby pluviograph gauges. 

The second method is a regionalised version of a Markov daily rainfall generation model, 

which enables generation of extended at-site daily rainfall sequences using information from 

a set of nearby daily rainfall gauges.  

The regionalised state-based method of fragments logic uses the assumption of constant 

scaling between daily and sub-daily rainfall over some geographic region to combine at-site 

daily rainfall data with nearby sub-daily records. The scaling assumption was tested using a 

two-sample two-dimensional Kolmogorov-Smirnov test on a range of sub-daily rainfall 

attributes, with the results showing a high probability that the daily/sub-daily rainfall scaling 

at any two stations will be statistically similar provided that the distance between them is 

small. A logistic regression was then formulated to identify the main covariates that 

determine whether the daily to sub-daily scaling at two stations are similar, with the outcome 

that the scaling relationship is influenced by a combination of difference in latitude, longitude, 

elevation and distance to coast.  

This approach allows for the generation of extended sequences of sub-daily rainfall at any 

location provided sufficient daily data is available, and thus makes use of the abundance of 

extended daily rainfall records across Australia relative to pluviograph records. Nevertheless 
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there are many regions in which extended daily data is not available. Furthermore, even if 

this data is available, the observational record only represents a single realisation of how 

daily rainfall might evolve in the future, and thus may result in undersimulation of the total 

variability in future daily rainfall.  

As a result of these issues, a regionalised version of a Markov daily rainfall generation model 

also was developed, which allows extended realisations of daily rainfall to be generated at 

any location, regardless of whether or not sufficient daily data is available at that location. 

Similar to the regionalised state-based method of fragments model, this approach starts by 

identifying nearby daily-read gauges based on the scaling between annual and sub-annual 

rainfall. Unlike the regionalised method of fragments logic, however, this method does not 

directly draw daily rainfall fragments from nearby stations but rather uses the nearby stations 

to estimate the model parameters and then uses these parameters to generate daily rainfall 

at the location of interest. The method is based on an at-site version developed by Mehrotra 

and Sharma [2007a; b] and uses a Markov occurrence model conditional to both previous 

day’s rainfall occurrence to account for short-memory persistence as well as aggregate 

rainfall over the previous 365 days to simulate longer timescale persistence. Amounts are 

simulated using a kernel density estimation procedure with conditional dependence on 

previous day’s rainfall.  

In combination, these two methods allow for the generation of sequences of point-rainfall at 

the resolution of the pluviograph data (in this study taken to be in increments of 6-minutes) at 

any location in Australia. An adapted and shortened version of chapters 2 to 4 have been 

accepted for publication as a two-paper series in Water Resources Research. The testing 

conducted in this phase of work focused on statistics relevant for using continuous 

simulation in flood frequency estimation. Specifically, the method was tested in the context of 

the capacity to reproduce both extreme rainfall and the antecedent rainfall leading up to the 

annual maxima event, with the suite of methods generally performing well against these 

metrics. The daily model was also tested for the number of wet days and intensity per wet 

day, with mean rainfall being well reproduced at most locations, although standard 

deviations were generally undersimulated. This was also reflected in the total annual rainfall 

distribution plots, where the mean of the simulated data was generally similar to the 

observations but the variance was too low. Although on balance the performance was 

satisfactory for the fully regionalised model, some deterioration could be observed 

particularly when the daily model was also regionalised, and this deterioration was most 

notable for the locations such as Alice Springs where there are limited nearby daily and/or 

sub-daily rain gauges.  

Comparison with Frost et al [2004] 

Having developed the suite of regionalised methods and tested them against a set of 

statistics relevant for flood estimation, the method was then evaluated in more detail using 

identical statistics to those used in Frost et al [2004] to test the DRIP and NSRP models. As 

the models used in Frost et al [2004] were based on at-site parameter estimates rather than 
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on the regionalised version of these models, the continuous simulation approach adopted 

here was based on the daily rainfall generation model described by Mehrotra and Sharma 

[2007a; b] and the at-site state-based method of fragments logic described by Sharma and 

Srikanthan [2006].  

In evaluating the sub-daily rainfall statistics, the state-based method of fragments model 

performed similarly to the DRIP model, with both models on balance outperforming the 

NSRP model, with the exception of the autocorrelation statistics which were better 

reproduced in the NSRP model. Whereas the state-based method of fragments model 

outperformed DRIP in simulating annual maximum storm bursts for sub-daily durations, 

DRIP appeared superior in simulating the distribution of total annual rainfall. Nevertheless 

these differences were generally minor, and both models appear adequate for use in 

generating continuous rainfall data at the sub-daily timescale. 

In evaluating the daily rainfall statistics, the state-based method of fragments performance is 

generally good across most statistics, with similar or better performance to both DRIP and 

NSRP. A weakness of the NSRP was a major overestimation of dry spell means and 

standard deviations at most locations, as well as an overestimation of wetspell means. The 

longer dry and wet spells simulated by the NSRP suggest a greater clustering of wet spells, 

which can have an impact on whether this method properly simulates antecedent rainfall 

conditions prior to the storm event. The main weakness of the Markov model is a slight 

underestimation of annual variability, with the method underestimating the probability of the 

driest and wettest years. The inclusion of the previous 365 day’s rainfall as a predictor in the 

Markov model was designed to address this issue, however the results indicate that further 

work on this area is required. Although the issue appears to be systematic (occurring in most 

of the 10 locations studied), the magnitude of the underestimation is generally low, with the 

observations usually falling within the 90% confidence intervals. 

Finally, although several alternative regional methods are available for continuous 

simulation, such as a regionalised version of DRIP by Jennings et al [2009] and regionalised 

versions of the Poisson cluster models by Gyasi-Agyei [1999], Gyasi-Agyei and Parvez Bin 

Mahbub [2007] and Cowpertwait and O’Connell [1997], there is still a significant research 

requirement in evaluating the performance of differing classes of regionalised models. 

Testing conducted on the regionalised state-based method of fragments and modified 

Markov models described in this report show fairly limited deterioration in model 

performance as the model becomes increasingly regionalised. The principal exceptions are 

for regions where there are limited nearby daily rainfall or pluviograph gauges, or for regions 

that are very climatologically different from the nearby gauged locations (for example in 

mountainous areas). Unfortunately other regionalised approaches, which generally involve 

estimating model parameters based on nearby gauges, would be likely to suffer from similar 

limitations. This highlights that despite the rapid advance in approaches in regionalising 

rainfall generation, there remains a continued need for collecting high quality point rainfall 

data at all timescales.   
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1. Overview 

Continuous rainfall simulation represents an increasingly important tool in flood hydrology as 

it is capable of simulating the complete sequence of rainfall events which lead to flooding, 

including both the peak rainfall and the moisture conditions prior to the event. The benefits of 

such an approach were described in Kuczera et al. [2006], in which continuous simulation 

together with event joint probability methods based on Monte Carlo simulation were 

suggested as viable alternatives to the design storm approach, particularly for volume-

sensitive systems where the role of antecedent rainfall conditions is important. 

Although the field of continuous rainfall simulation has a long history with a wide range of 

modelling frameworks now available (see the Stage 1 report by Westra and Sharma [2010] 

for a detailed review of relevant literature), there are limited models which are able to use 

regionalised information to develop continuous rainfall sequences at the sub-daily timescale. 

The primary exceptions to this are a recently developed regionalised version of DRIP by 

Jennings et al [2009], regionalised versions of the Poisson cluster models by Gyasi-Agyei 

[1999], Gyasi-Agyei and Parvez Bin Mahbub [2007] and Cowpertwait and O’Connell [1997], 

and a regionalised k-nearest neighbour method first proposed in Westra and Sharma [2010] 

and described more fully herein. 

This report provides the first detailed description of a suite of regionalised models which are 

able to integrate information from both nearby daily-read and sub-daily rainfall stations for 

cases where at-site data is unavailable or limited. An important advantage of this modelling 

framework is that it is able to make use of all the data available in the vicinity of the location 

of interest, rather than just a subset of long high-quality records as is the case with 

parametric alternatives. For example, by separating the daily and sub-daily rainfall 

generation algorithms, the methods are not impacted by the asymmetry of data availability 

between daily and sub-daily records (with an order of magnitude fewer pluviograph records 

being available than daily records). Furthermore, as the disaggregation method is based on 

resampling, it is able to use a combination of short and long pluviograph stations; thus, a 

pluviograph station with only, say, three years of record still can be included in the analysis 

alongside longer records. This substantially expands the value of the pluviograph record in 

Australia, as in many cases the records at individual stations are too short for meaningful 

analysis by themselves.  

A second advantage is that a modelling framework, rather than a single model, is presented, 

providing significant flexibility in tailoring the model to intended applications, with examples 

of different model elements that have been developed at the University of NSW and the 

Australian Bureau of Meteorology provided in Table 1.1. Note that this list does not attempt 

to provide an exhaustive review of all possible combinations of models for stochastically 

generating precipitation, with a much more detailed review provided in [Westra and Sharma, 

2010].  
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As can be seen in the table, the daily model allows for the inclusion of covariates into the 

Markov model such as previous 365-day rainfall occurrence or climate information such as 

that captured by climate indices, thereby allowing for the simulation of inter-annual and 

longer time-scale variability [Mehrotra and Sharma, 2007a; b]. A modified version of this 

approach also has been used to incorporate atmospheric covariates, and thus can be used 

for downscaling to enable simulation of daily rainfall under a future climate [Mehrotra and 

Sharma, 2005; 2006b; 2010]. Finally, a multi-site extension of the daily rainfall model is 

available [Mehrotra and Sharma, 2007a; b; Srikanthan and Pegram, 2009] in which 

dependencies across multiple sites are preserved. In terms of the sub-daily model, there is 

flexibility in choosing the number of sub-daily stations from which to draw data, with a 

greater number of stations meaning the capacity to simulate more variability and thus a 

larger diversity of extreme storm events. This may be useful when attempting to simulate 

very low exceedance probability events, but with the penalty of inducing more potential bias 

(with stations becoming increasingly far away from the location of interest and thus being 

less representative of at-site rainfall). Furthermore, the framework proposed here can 

potentially be adapted to a sub-daily downscaling approach which will complement the daily 

downscaling approach, and address the limitation that the daily timescale is too coarse to 

account to account for the type and intensity of individual storm systems which will occur in a 

future climate.  

Table 1.1: Suite of continuous simulation models which have been developed at the 
University of New South Wales 

 Daily to sub-daily disaggregation Daily rainfall generation 

At-site point rainfall Sharma and Srikanthan [2006]; 

Chapter 2 of this report 

Harrold et al [2003a; b]; Mehrotra 

and Sharma [2007a; b] 

Regionalised point 

rainfall  

[Westra and Sharma, 2010]; 

Chapter 3 of this report 

Chapter 4 of this report 

Low-frequency natural 

climate variability 

Not applicable – assumes low-

frequency variability is represented 

in daily rainfall sequences  

Mehrotra and Sharma [2007a; b] 

Multi-site rainfall Not available Mehrotra and Sharma [2007a; b]; 

Srikanthan and Pegram [2009] 

Downscaling to account 

for future climate 

change 

Currently under development Mehrotra and Sharma [2005; 2006b; 

2010];  

 

In addition to this suite of continuous simulation models summarised above and described 

more fully in subsequent chapters, a range of other conceptual approaches to modelling 

sub-daily rainfall are available including: 

1. Event-based models such as the Disaggregated Rectangular Intensity Pulse (DRIP) 

model of Heneker et al (2001);  
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2. Possion cluster models, including the Bartlett-Lewis Rectangular Pulse and the 

Neyman-Scott Rectangular Pulse (NSRP)  family of models; and 

3. Multi-scaling models, such as the canonical and microcanonical family of models. 

Each of these models was described at length in Westra and Sharma [2010], and a detailed 

summary of two studies which compared these models was also provided. One of the main 

conclusions was that the multi-scaling models performed poorly across a range of statistics, 

including incorrect simulation of hourly variance (with the microcanonical cascades model 

oversimulating variance and the canonical model undersimulating variance), problematic 

representation of wet spells highlighting issues with correctly simulating rainfall persistence, 

and significant biases in the representation of rainfall extremes.  For this reason, this class of 

models was not considered further in the present study. 

Of the remaining models, DRIP represents an example of the event based family of models 

which has been found to perform well, is available for free from the eWater CRC Stochastic 

Climate Library toolkit (http://www.toolkit.net.au/Tools/SCL), and is well known amongst 

Australian hydrology practitioners. The NSRP model described by Cowpertwait et al [2002] 

is a recent implementation in the class of Poisson cluster models, and also has been found 

to perform well. Both these models were reviewed in a comprehensive report by Frost et al 

[2004], with a total of 20 validation statistics covering timescales from sub-daily through to 

annual considered at ten locations across all major climate zones in Australia. To avoid 

unnecessary duplication, the present work repeats the Frost et al [2004] analysis for the 

state-based method of fragments disaggregation model and Markov daily model. Code was 

kindly provided by Andrew Frost to allow the present analysis to be conducted as similarly as 

possible to the original study.   

The remainder of this report is structured as follows. The following three chapters describe 

the regionalised rainfall generation method. The next chapter provides a more detailed 

overview of the at-site state-based method of fragments model first developed in Sharma 

and Srikanthan [2006], with a particular emphasis on the resampling approach which 

considers both previous- and next-day wetness state. Chapter 3 then generalises this to a 

regionalised setting, by resampling sub-daily fragments from nearby pluviograph gauges 

conditional to at-site daily rainfall. Chapter 4 completes the regionalisation by also outlining a 

regionalised daily rainfall generation model. Part of the content of these chapters were also 

submitted as a two-paper series to Water Resources Research, which is presently under 

review. Having developed these methods, they are compared with both DRIP and NSRP in 

Chapter 5, with detailed results provided in Appendices A and B. Finally, discussion and 

conclusions are provided in Chapter 6.  
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2. Continuous Simulation Methodology Part I: A Non-parametric 

Approach to Rainfall Disaggregation 

2.1. Introduction 

The estimation of flood frequency statistics for ungauged catchments continues to be a 

problem of great practical interest. While the option used most is to simulate the flood 

hydrograph using a design rainfall storm based on a model whose parameters are 

regionalized as functions of catchment characteristics, interest is growing on estimating 

floods using continuous (uninterrupted) flow simulation, either through historical rainfall 

records, or via stochastic rainfall generation [Blazkova and Beven, 2002; Boughton and 

Droop, 2003; Cameron et al., 2000; Lamb and Kay, 2004]. Some of the arguments for 

continuous simulation are:  

1) its ease of use in catchments that have undergone or are planned to undergo 

anthropogenic changes while avoiding the need to make unrealistic assumptions 

related to antecedent conditions necessary in a design storm approach; 

2) the associated increase in reliability given the length of available rainfall records (it is 

unusual to find streamflow time series that are longer than the rainfall series for a 

catchment);  

3) the relative stationarity that can be associated with rainfall records compared with 

streamflow records; and 

4) the wealth of research on stochastic generation that serves as the platform for 

generating sequences at a fine temporal resolution (daily and sub-daily).  

However, as has been pointed out in many studies (see Beven [2002] and references 

therein), design flood estimates from the simulated continuous flow series exhibit high 

sensitivity to both rainfall-runoff model parameter uncertainty and the nature of the observed 

or generated rainfall sequences being used as inputs. The research presented here focuses 

on the latter of the above two issues – the stochastic generation of continuous rainfall 

sequences that offer a more realistic representation of observed rainfall records, especially 

the attributes in rainfall that lead to extreme flood events after the rainfall-runoff 

transformation. 

Stochastic generation of rainfall has an extensive history of research, with a range of 

methods available for simulation at single or multiple locations, and at sub-daily, daily and 

longer time scales. Comprehensive reviews of the state of the literature in this area are 

provided by [Sharma and Mehrotra, 2010; Srikanthan and McMahon, 2001; Westra and 

Sharma, 2010]. Generation of sub-daily rainfall is again a well-researched topic, with most 

approaches being formulated as variations of the Bartlett-Lewis [Onof et al., 2000] or 

Neyman-Scott [Cowpertwait et al., 2002] rectangular pulse models that parameterise rainfall 

generation through a representation of storm cells comprising a full storm and aggregates to 

form the complete rainfall time series. While these are useful alternatives especially in cases 

where model parameters can be regionalised for use at ungauged locations, they suffer from 
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the rigidity of the framework assumed, and the need for long, high-quality datasets for 

estimating the parameter values needed. 

Another way to simulate continuous rainfall involves first stochastically generating the daily 

rainfall, followed by its disaggregation to a sub-daily time-step. This disaggregation-based 

logic makes use of the significantly longer and denser daily rainfall records that exist, 

consequently ensuring that the continuous sequences when aggregated to a daily time step 

exhibit greater consistency with observations. The downside of the approach lies in the use 

of fewer and shorter sub-daily records that are needed to build the disaggregation model, 

along with the issue of generating a sub-daily rainfall event that does not naturally continue 

from the previous or into the next day. The availability of long daily observations coupled 

with an increasing density of shorter duration records has seen the development of a range 

of such disaggregation alternatives over time. 

Daily to sub-daily disaggregation models usually fall into one of two categories. The first set 

of models use a parameterised representation of the daily to sub-daily conversion process, a 

good example being the random cascades approach [Sivakumar and Sharma, 2008], or the 

Bartlett-Lewis model based recursive disaggregation procedure [Koutsoyiannis, 2003]. The 

second category involves use of a nonparametric resampling rationale where observed sub-

daily rainfall patterns are conditionally prescribed to suitably selected daily rainfall amounts, 

the earliest such approach being presented by [Snavidze, 1977] and termed as “Method of 

Fragments”. While the use of parametric alternatives has distinct advantages in allowing the 

possibility of regionalising parameters for use in ungauged locations, or enabling the 

development of spatio-temporal models as per [Bowler et al., 2006], such approaches often 

suffer from an inability to simulate the broad distributional and persistence attributes that real 

rainfall data exhibits. 

Simplistic nonparametric resampling strategies are often no better. For instance, Figure 2.1 

shows the difference between the probability of sampling a sequence of three continuous 

wet days in 166 locations having at least 82 years of daily records, versus the probability of 

sampling the three continuous wet days when the middle day corresponds to the annual 

maximum rainfall. It is clear that the annual maximum rainfall has a greater likelihood of 

being encompassed by wet days on either side, something that cannot be simulated using 

either the parametric or the simple nonparametric resampling alternative discussed above, 

nor by the conventional simulation procedures that assume independence between rainfall 

occurrences and amounts. Problems such as the ones above become all the more critical as 

we get closer towards using synthetically generated continuous rainfall sequences to 

generate continuous flow series that serve as the basis for estimating the design flood. 

There is a need for generation of alternatives that lead to rainfall sequences that do more 

than just match intensity-frequency-duration relationships to those derived from the observed 

record. One such approach, aimed specifically at imparting longer-term persistence in 

rainfall, leading to a more realistic representation of antecedent conditions prior to a flood 

causing burst, is presented here. 
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Figure 2.1. Differences in the probability of sampling a rainfall sequence (i1j), i,j=[0,1], 

as compared to the case where the middle day represents the annual maximum rain. 

The percentage of stations where the probability conditional to the middle day being 

the annual maximum rainfall is greater that the marginal probability over the full 

rainfall record, equal 2.5% (010), 10.2% (110), 66.2% (011) and 95.2% (111) 

respectively. While the above numbers may be impacted by spatial dependence 

between locations, they generally point to a remarkably different dependence 

structure for sampling the annual maximum rain in comparison to rain on a usual day. 

The rest of the chapter is organised as follows. The next sub-section presents the rationale 

behind the proposed disaggregation approach. This is followed by a description of the 

locations at which the approach was tested, along with the results obtained. Next, we 

present a discussion of the results, followed by conclusions and recommendations for future 

work. 

2.2. Methodology 

The rationale behind the continuous simulation approach proposed here is to ensure the 

representation of rainfall attributes that lead to an adequate representation of design flood 

010 110

011 111

Red indicates higher probability for annual maximum rainfall case

Sydney

Perth

Alice Springs

Cairns

Hobart
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values. As has been demonstrated in Figure 2.1, this means ensuring an appropriate 

representation of the rainfall before and after the annual maximum events. In the context of 

sub-daily rainfall, this also implies an accurate representation of the antecedent conditions 

preceding the sub-daily annual maximum event, these antecedent conditions often being a 

result of the sub-daily rainfall on the day being disaggregated, along with the rain on 

preceding days. For continuous rainfall to lead to flows that result in a flood frequency 

relationship compatible with the one derived using observed flows, the following rainfall 

attributes must be represented well: 

(a) Within-day dependence and distributional representation - Generated sequences 

should be able to represent diurnal patterns such as increased probability of showers 

in morning or late afternoon and the dependence associated with differences in 

causative factors (convective versus frontal rainfall), while maintaining statistical 

correspondence with daily rainfall. 

(b) Representation of daily attributes - When sub-daily sequences are aggregated to a 

daily time scale, it is important that they maintain important attributes that impact on 

flow simulation. Some of these attributes are (i) seasonal representation, (ii) 

representation of spell characteristics (related to representation of dependence from 

one day to the next), and (iii) representation of low-frequency characteristics in 

rainfall that result in monthly or yearly rainfall being substantially different from one 

year to the next. While low frequency variability in rainfall is of less importance in the 

more extreme design rainfall events, our experience with arid and semi-arid 

catchments in Australia indicates an improper representation can lead to significant 

bias in the derived low-to-mid average recurrence interval (ARI) flood events 

[Weinmann et al., 2002]. The usual approach to generating rainfall assumes a 

dependence structure that is incapable of simulating antecedent conditions prior to 

extreme events that are any different to those that occur the rest of the year. Figure 

2.2 illustrates the probability distribution of the antecedent rainfall over a range of 

aggregation periods and design storm durations using long continuous rainfall data 

from Sydney. As can be inferred from the figure, the antecedent conditions prior to 

the annual maximum rain are markedly different to those that occur before more 

common rainfall events. Similar conclusions have been derived in earlier studies [Pui 

et al., 2010a] and can also be inferred from Figure 2.1.  
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Figure 2.2: Antecedent rainfall distribution associated with design rainfall events 

using Observatory Hill (Sydney) continuous rainfall data. Note the difference in 

antecedent characteristics in comparison to the marginal distribution of rainfall, and 

the likely impact on the design flood if antecedent characteristics were assumed to 

represent “average” rainfall. 

We present here a nonparametric alternative to generate continuous rainfall sequences that 

addresses the issues raised above. The proposed procedure resamples observed fractions 

of sub-daily rainfall with respect to the corresponding daily rainfall, through conditioning on a 

rainfall state that is defined based on the rainfall occurrence of the day before and after the 

day being disaggregated. The generation procedure can be expressed as follows: 

Step 1: Form daily rainfall ( ∑=
m

mii XR , ) and sub-daily fragment ( imimi RXf /,, = ) time series 

where Ri represents the daily rainfall amount on day i, Xi,m represents the sub-daily 

rainfall intensity on day i and sub-daily timestep m (with m=1,...,240 for the 6-minute 

data used here), and fi,m represents the subdaily ‘fragment’. 
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Step 2: To disaggregate daily rainfall Rt for a particular day of the year t, form a moving 

window of length l days centred around day t. Segregate historical daily data into 

the following four rainfall classes:  

 

( )
( )
( )
( )0,0|0:4

0,0|0:3

0,0|0:2

0,0|0:1

11

11

11

11

≥≥≥

≥=≥

=≥≥

==≥

+−

+−

+−

+−

jjj

jjj

jjj

jjj

RRRCLASS

RRRCLASS

RRRCLASS

RRRCLASS

   (2.1) 

 where time j represents a day falling within the moving window centred on the 

current day t. 

Step 3: Identify the class corresponding to the daily rainfall Rt that is to be disaggregated. 

Denote the class ct where ct∈[1-4]. 

Step 4:  Identify the k nearest neighbours of the conditioning vector [Rt] as the days 

corresponding to the k lowest absolute departures |Rj – Rt| where cj≡ct. Specify 

nk =  [Upmanu Lall and Sharma, 1996] where n represents the sample size of the 

class members falling within the moving window. The ranked daily rainfall from 

lowest absolute departure is then given as R(j), j=1,...,k, where the use of 

parentheses indicates use of ranked data. Sample neighbour j from the following 

conditional probability distribution [Upmanu Lall and Sharma, 1996; Mehrotra and 

Sharma, 2006a]: 

 

∑ =

=
k

i
i

j
jp

1
/1

)/(1
)(     (2.2) 

 where p(j) represents the probability of selecting neighbour (j), with (j)=1 denoting 

the neighbour having the smallest absolute departure. Using a uniformly distributed 

random number (0,1), select a neighbour (Ro
(j)) using the probabilities in Equation 2. 

The fragments used to disaggregate can be specified as fo(j),m = Xo
(j),m / Ro

(j). 

Step 5:  Increment t and repeat steps 2 to 4 until disaggregation is completed. 

In the results reported in the next section, the above algorithm uses a moving window length 

of 15 days if the historical record is 40 years or longer, and 30 days if 20 years and shorter, 

with interpolated values in between. This data-dependent window length is chosen to ensure 

a sample size that is adequate for use in formulating the sub-daily time series, keeping in 

mind the typically few rainy days that span Australian rainfall records. 

While the above disaggregation approach is reasonably simple, its applicability rests on a 

number of assumptions. The first assumption is that the daily rainfall record to be 

disaggregated represents the observed daily rainfall with respect to both its distributional and 

its dependence attributes. For instance, the disaggregation assumes that the sub-daily 

rainfall fractions depend on the rainfall class along with the daily amount, which requires that 

the relationship of the daily rainfall and the various classes is similar to that in the historical 

record. A second assumption is that the relationship between the sub-daily rainfall fractions 
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and the corresponding daily rainfall can be characterised sufficiently well based on the 

sample within the moving window. A third assumption is that the relationship between the 

sub-daily rainfall on one day and the sub-daily rainfall on adjacent days can be expressed 

with reference to the relationships between the corresponding daily totals. While all of these 

assumptions can become questionable depending on the nature of the rainfall being 

modelled, these were found to be acceptable in the context of the Australian rainfall records 

we have analysed for deriving design flood estimates. It should, however, be noted that the 

approach may result in a biased representation of long spells that stretch across days, as 

would be the case for the sustained frontal or cyclonic events that form the basis for design 

in large catchments in the northern regions of Australia. Having said that, the proposed 

approach is likely to serve as a reasonable basis for deriving design estimates for the faster 

responding urban catchments for which the method has been developed. 

2.3. Application 

The continuous rainfall generation rationale described in the previous section was tested 

using sub-daily rainfall data from five climatologically different locations in Australia (listed in 

Table 2.1 with locations indicated on Figure 2.1). It is worth pointing that all locations except 

Alice Springs fall on the coast and are impacted by shorter duration convective rainfall 

events, with a more marked seasonal behaviour as one progresses to the north (stronger 

summer rainfall) or the south (stronger winter rain) of the country. The aim of our exercise 

was to evaluate whether the use of the above logic enabled an improved representation of 

antecedent rainfall characteristics of the type illustrated in Figure 2.2. On average there was 

<1% missing data across the five stations used for model evaluation, and these have been 

infilled using the data from the same day at nearby stations, after adjusting for differences in 

total annual rainfall. 

Table 2.1: Locations of the continuous rainfall stations used. Actual locations of each 

of the stations are indicated in Figure 2.1. 

Number Station Name Gauge 
number 

Start 
year 

Number 
of years 
of record 

Köppen climate classification  

1 Sydney airport 066037 1961 45 Temperate (warm summer) 

2 Perth airport 009021 1960 46 Sub-tropical (dry summer) 

3 Alice Springs 
airport 

015590 1950 57 Desert/Grassland (hot, persistently 
dry) 

4 Cairns airport 031011 1941 66 Tropical (monsoonal) 

5 Hobart airport 094008 1959 47 Temperate (mild summer) 
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As the aim of the work described in this section was to assess the suitability of the class-based 

disaggregation logic, observed daily rainfall (formed by aggregating the sub-daily rainfall 

records) were used as the basis of performing the disaggregation. Hence, the daily rainfall Rt in 

the above algorithm was specified equal to the observed daily rainfall for day t. To ensure that 

the simulation procedure did not resample the sub-daily rainfall for the same day (t), the sub-

daily data corresponding to the day in question was discarded from the moving window 

associated with day t. Hence, the procedure effectively forced selection of a sub-daily rainfall 

pattern that did not correspond to that which was observed, analogous to the leave-one-out 

cross-validation approach used as a substitute for split-sample validation in many applications. 

One hundred replicates of sub-daily rainfall each of length equal to that of the observed record 

were simulated using the observed daily record for the five locations. 

2.4. Results 

Figure 2.3 presents the intensity-frequency relationship ascertained using the disaggregated 

sequences for rainfall duration of 6 minutes for each of the locations considered. Figure 2.4 then 

presents the exceedance probability associated with the antecedent conditions prior to the 

annual maximum events reported in Figure 2.3. While the nonparametric nature of the 

disaggregation scheme can be expected to lead to greater concurrency between the simulated 

and observed design intensities as illustrated in Figure 2.3, the similarity between the 

antecedent conditions observed and simulated prior to the annual maximum events reflects the 

importance of the class-based approach to deriving the disaggregated rainfall. What is important 

to note is the marked difference that would have been observed in these results without using 

the four rainfall classes, as was visible in the two exceedance curves in Figure 2.2. 

Table 2.2 presents design intensities and corresponding antecedent rainfall for longer durations 

than the 6 minute duration considered in Figures 2.3 and 2.4. As can be noted from the results, 

there appears to be a broad concurrence between the observed and simulated results, most 

importantly for the antecedent rainfalls prior to the annual maximum events. 

It is emphasised that the above results use the actual daily rainfall as the basis for 

disaggregation, hence while adopting a leave-one-out cross-validation rationale, it is not 

possible to fully represent the uncertainty that is introduced when a stochastically generated 

daily rainfall sequence is used. Chapter 4 explores the change in the disaggregated rainfall 

properties when this additional uncertainty is introduced. 

Equally importantly, the above rationale uses the observed sub-daily rainfall record to perform 

the disaggregation. It is to be expected that the disaggregated sequence represents the 

observed sequence well, given the availability of the historical record the procedure works off. 

The real challenge in the disaggregation is the situation where the sub-daily rainfall is not 

available, which is when the utility of the disaggregation will be best felt. This problem (or 

disaggregating daily rainfall to continuous in the absence of a sub-daily observed record), is 

addressed in Chapter 3 of this report.   
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Figure 2.3: 6-minute annual maximum rainfall against exceedance probability for (a) 

Sydney, (b) Perth, (c) Alice Springs, (d) Cairns, and (e) Hobart. Black dots represents 

observed data, black solid line represents the median of 100 simulations, and black 

dotted lines represent the 5 and 95 percentile simulated values. Figure extracted from 

[Westra et al., 2012]. 
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Figure 2.4: 6-hour antecedent rainfall prior to the 6-minute annual maximum storm burst 

plotted against exceedance probability for (a) Sydney, (b) Perth, (c) Alice Springs, (d) 

Cairns, and (e) Hobart. Black dots represents observed data, black solid line represents 

the median of 100 simulations, and black dotted lines represent the 5 and 95 percentile 

simulated values. Figure extracted from [Westra et al., 2012]. 
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Table 2.2: Comparison of observed and simulated results for median annual maxima for different storm burst durations, and the antecedent 

rainfall prior to the 1 hour storm burst. The simulated median annual maxima represent the median of all 100 simulations.  

 Sydney Perth Alice Springs Cairns Hobart 

 Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) 

Annual maxima  

6 min 8.87 
9.06 
(8.85-9.45) 6.18 

6.57  
(6.42-6.84) 5.50 

6.68  
(6.37-6.96) 11.6 

12.1 
(11.5-12.7) 4.51 

5.64 
(4.92-6.38) 

30 min 25.7 
23.3 
(22.5-24.3) 14.7 

15.3  
(14.7-15.9) 16.7 

18.3 
(17.5-19.1) 34.9 

35.3 
(34.1-36.3) 11.3 

12.5 
(11.7-13.4) 

1 hr 35.4 
33.6 
(33.3-34.9) 18.8 

18.9  
(18.1-19.6) 22.1 

23.1  
(22.2-24.0) 51.7 

51.3 
(49.7-53.4) 14.6 

15.6 
(14.9-16.3) 

3 hr 55.4 
52.1 
(51.4-53.4) 29.0 

28.2  
(27.4-28.9) 32.6 

32.4 
(31.7-33.4) 83.5 

86.8 
(84.4-89.5) 22.9 

23.2  
(22.9-23.8) 

6 hr 72.3 
67.1 
(65.5-69.8) 36.3 

35.6 
(34.8-36.4) 39.6 

39.5  
(38.8-40.0) 113 

118 
(115-123) 30.3 

30.4  
(29.9-30.9) 

12 hr 91.8 
84.9 
(83.6-85.8) 45.4 

44.3 
(43.6-45.0) 48.2 

47.3  
(46.6-47.8) 147 

155 
(151-158) 39.6 

39.1  
(38.6-39.5) 

Antecedent rainfall prior to 1-hr burst (mm) 

6 hr 15.4 13.5  
(11.7-15.0) 

6.76 5.73  
(4.98-6.36) 

6.10 5.20 
(4.26-6.06) 

25.4 27.2 
(21.9-32.1) 

6.31 5.31  
(4.48-6.13) 

12 hr 22.7 19.5 
(16.8-23.4) 

9.63 8.50 
(7.60-9.22) 

7.98 7.01  
(6.06-8.46) 

32.2 35.3 
(28.7-40.4) 

9.10 7.43  
(6.29-8.47) 

24 hr 31.4 28.6 
(24.6-32.5) 

11.9 12.4 
(11.4-13.8) 

10.6 11.0  
(9.02-13.0) 

40.3 51.4 
(44.3-57.1) 

9.09 11.1  
(9.55-12.5) 

48 hr 38.4 38.5 
(35.2-43.8) 

12.5 16.5 
(14.7-18.5) 

15.5 16.3 
(13.2-19.1) 

54.9 79.0 
(72.3-89.8) 

10.2 13.5 
(11.6-15.3) 
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2.5. Discussion 

This chapter presented a rationale for generating a near-continuous rainfall time series that aims 

to ensure that rainfall patterns prior to major storms events are represented in a realistic 

manner. The approach presented was nonparametric – it made no major assumptions about the 

nature of the relationship between continuous and aggregated rainfall – but was data-based and 

a sensible alternative to use as long as the daily and continuous rainfall data used in formulating 

the approach were representative of what can be expected for the location under study. 

 

As mentioned before, the suitability of the proposed approach is linked strongly to the quality of 

daily and sub-daily rainfall data used. While daily data has a fairly broad coverage across 

Australia (and the world in general), allowing users to generate multiple realisations of daily 

rainfall for suitable record lengths, continuous rainfall records are available at fewer locations 

and for shorter lengths of time. In situations where these records are limited or not available, it is 

important that the approach described here be modified to use representative sub-daily records 

from other locations that are selected using a judicious and carefully designed procedure. The 

criteria that ought to be used in developing these representative sub-daily records, along with 

the issue of representing the increased uncertainty in the disaggregated rainfall through such a 

procedure, is discussed in the next chapter.  
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3. Continuous Simulation Methodology Part II: A Regionalised Sub-

daily Disaggregation Approach  

3.1. Introduction 

In the previous chapter, a non-parametric k-nearest neighbour disaggregation model was 

presented in which sub-daily fragments of rainfall are re-sampled from the historical sub-daily 

pluviograph record conditional on the daily rainfall intensity and the previous and next day 

wetness state. This allows for the stochastic generation of continuous (uninterrupted) rainfall of 

any desired length, provided that daily data either is available or can be generated synthetically.  

Although testing shows good performance across a range of statistics, the method suffers from 

two important limitations: firstly it is necessary to have long sub-daily records available at the 

location of interest, constraining the model to only a comparatively small number of locations 

where such long pluviograph records are available; and secondly that by re-sampling from the 

historical record, it is not possible to generate sequences that are more intense than the largest 

observed storm burst, which becomes important in flood frequency estimation when it is 

necessary to extrapolate beyond the largest observation. 

Here we present a generalisation of the above approach by enabling the re-sampling of sub-

daily fragments from pluviograph stations within some neighbourhood of the location of interest 

(henceforth referred to as the ‘target’ location), conditional on daily rainfall at that target location. 

This approach substantially expands the domain of applicability of the disaggregation logic to 

any location where sufficient daily data is available, with daily data generally being much more 

abundant than pluviograph data. To be able to perform this re-sampling, it is necessary to 

assume similar daily to sub-daily scaling at both the target location and the neighbouring 

locations from which the sub-daily fragments are to be sampled. The logic behind identifying the 

station ‘neighbourhood’ where such re-sampling is valid is the main contribution of this chapter.  

The majority of work on regionalised disaggregation approaches described in the literature has 

thus far been based on the Poisson cluster family of models. For example, Cowpertwait et al 

[1996] and Cowpertwait and O’Connell [1997] developed a regionalised Neyman-Scott 

Rectangular Pulse (NSRP) model for generating sequences of hourly rainfall data across the 

UK, by regressing the NSRP parameters on site variables obtained from a relief map of the UK 

(namely: elevation, north-south distance, east-west effect and distance to coast). Cowpertwait et 

al [1996] also developed a disaggregation model that allows historical or generated hourly data 

to be disaggregated into totals for shorter time intervals. An alternative approach was proposed 

by Gyasi-Agyei [1999], who developed a regionalised version of the Gyasi-Agyei and Willgoose 

hybrid model based on the nonrandomised Bertlett-Lewis rectangular pulse and an 

autoregressive jitter [Gyasi-Agyei and Willgoose, 1997; 1999]. This approach uses observed 

daily statistics (namely dry probability, mean and variance) and two regionalised sub-daily 

parameter estimates, with promising results found in simulating sub-daily rainfall in central 

Queensland, Australia. This model was extended to Australia-wide data by Gyasi-Agyei and 

Parvez Bin Hahbub [2007], and found to be successful in simulating a range of statistics 

including extreme rainfall.  
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To our knowledge the approach presented here represents the first regionalised version of a 

resampling approach to continuous rainfall simulation, in which rather than identifying 

regionalised estimates of model parameters, we directly sample sub-daily fragments from 

nearby pluviograph stations. The benefits of such a re-sampling logic described in the previous 

chapter are also expected to be applicable here, particularly with respect to the manner in which 

the joint probability between extreme rainfall and antecedent rainfall conditions can be 

preserved.  

The remainder of this chapter is structured as follows. In section 3.2 we provide an overview of 

Australia’s continuous rainfall record. This is followed by a description of the proposed 

methodology, including the statistics used to determine the similarity between daily/sub-daily 

rainfall relationships at any two locations. Results are then presented in Section 3.4, including a 

preliminary analysis of the viability of the method at Sydney Airport, Australia, as well as more 

detailed results for five case study locations distributed throughout Australia. Finally, a brief 

summary is provided in Section 3.5.  

3.2. Data  

Continuous (sub-daily) rainfall data were obtained from the Australian Bureau of Meteorology at 

1397 continuous pluviograph stations, in increments of 6 minutes. The location of each gauging 

station is shown in Figure 3.1, together with an indication of the length of record. Of the 1397 

available gauging stations, 101 locations having length greater than 40 years, and a further 331 

locations having length of between 20 and 40 years. In contrast, there are 17451 daily-read 

gauging stations in Australia, of which 2708 locations have records greater than 25 years and 

1768 stations have more than 40 years of record, highlighting the potential benefits of 

developing a regionalised disaggregation approach which uses the conditional relationship 

between daily and sub-daily rainfall to generate sub-daily sequences at locations where only 

daily data is available or can be synthetically generated. As can be seen in Figure 3.1, the 

spatial distribution of the gauging stations is not homogeneous, with a high density of gauges in 

the populated regions particularly along the eastern coastal fringe of Australia, and lower density 

elsewhere.  

The number of gauging stations with continuous rainfall records is plotted against the year of 

record in Figure 3.2. As can be seen, only a small number of gauging stations were available in 

the early 20th century (the longest available record being from Melbourne Regional Office, gauge 

number 086071, with data from 1873 to 2008), with significant increases in recording density 

apparent in the 1960s. To limit the effects of possible temporal variability in the daily/sub-daily 

characteristics, the remainder of the analysis only considers records between 1970 and 2005 

with less than 20% of the record classified as ‘missing’, with a total of 232 stations meeting this 

criterion. ‘Missing’ data was defined as data which was flagged as either missing or presented 

as an accumulation over previous time steps, and in these cases the full day of record was 

removed from the analysis. As will be discussed further below, the proposed method is relatively 

insensitive to missing data.  
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3.3. Methodology  

3.3.1. Regionalised state

The daily to sub-daily rainfall class based disaggregation approach using at

data was described at length in

amount on day t, Ro
t, (t = 1,...,365/6 representing the calendar day of the year) together with 

previous and next day wetness state I(

(I(R)=1 for a wet day and 0 for a dry day). The disaggregation involves firstly ident

wet days within a defined moving window of 

seasonal effects are correctly preserved), with the same previous and next day wetness state 

(i.e. I(Ro
i-1) = I(Ro

t-1) and I(Ro
i

record whereas t represents the day for which the sub

Ro
j with subscript j as the rain days which meet these criteria. We then sort these stations by 

absolute deviation in rainfall amount (|

Ro
(k) with the use of parentheses in R

daily fragments then can be computed as 

neighbours. During re-sampling, any single fragment 

number of nearest neighbours given as 

represents the sample size of the class members falling within the moving window, and equatio

2.2 of Chapter 2 to calculate 

rainfall series for day t can be calculated as  

superscript o to the above notation to emphasise that all fragments are derived from the same 

station. 

We now describe a regionalised version of this disaggregation logic, in which we assume that 

we have daily data Ro
t available at the t

either unavailable or insufficiently long for continuous simulation purposes. The extension is 

based on sampling sub-daily rainfall fragments 

S, where S represents the total number of pluviograph stations within the ‘neighbourhood’ of the 

target station. The methodology is identical to the disaggregation model described above using 

only at-site data, with the exception of substituting the nearby pluvi

records. The regionalised methodology is summarised in the following algorithm:

Algorithm 3.1 

(1) For each rain day Ro
t at the target location, identify a moving window about 

rain days in each of the S ‘nearest’ locati

and next day wetness state (I(

(2) Rank each Rs
j by the absolute deviation from R

days with the lowest ranked deviations, we form the sequence 

compute the associate sub
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state-based method of fragments algorithm

rainfall class based disaggregation approach using at

data was described at length in Chapter 2. In this approach, we start by considering daily rainfall

= 1,...,365/6 representing the calendar day of the year) together with 

previous and next day wetness state I(Ro
t-1), I(R

o
t+1), with I representing the indicator function 

)=1 for a wet day and 0 for a dry day). The disaggregation involves firstly ident

wet days within a defined moving window of t (we use a moving window of 

seasonal effects are correctly preserved), with the same previous and next day wetness state 

i+1) = I(Ro
t+1)), with subscript i representing an arbitrary day of the 

represents the day for which the sub-daily fragment is sought.

as the rain days which meet these criteria. We then sort these stations by 

absolute deviation in rainfall amount (|Ro
j – Ro

t|) and select the k lowest ranked rain days 

with the use of parentheses in Ro
(j) , j = 1,..., k indicating the data has been sorted. 

daily fragments then can be computed as fo(j),m = Xo
(j),m / Ro

(j) for each of these 

sampling, any single fragment fo(j),m  is selected with probability

number of nearest neighbours given as nk =  [Upmanu Lall and Sharma

represents the sample size of the class members falling within the moving window, and equatio

to calculate p(j) for a given k), and then the stochastically generated sub

can be calculated as  Xo
t,m  = Ro

t x fo(j),m. Here

superscript o to the above notation to emphasise that all fragments are derived from the same 

describe a regionalised version of this disaggregation logic, in which we assume that 

available at the target location, but where sub-daily pluviograph data is 

either unavailable or insufficiently long for continuous simulation purposes. The extension is 

daily rainfall fragments Xs
(j),m at neighbouring sites indexed by

re S represents the total number of pluviograph stations within the ‘neighbourhood’ of the 

target station. The methodology is identical to the disaggregation model described above using 

site data, with the exception of substituting the nearby pluviograph records for at

records. The regionalised methodology is summarised in the following algorithm:

at the target location, identify a moving window about 

rain days in each of the S ‘nearest’ locations to the target station with the same previous 

and next day wetness state (I(Rs
i-1) = I(Ro

t-1) and I(Rs
i+1) = I(Ro

t+1)). 

by the absolute deviation from Ro
t, given by |Rs

j – Ro

days with the lowest ranked deviations, we form the sequence Rs
(1

compute the associate sub-daily rainfall fragment fs(j),m = Xs
(j),m / Rs

(j
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method of fragments algorithm 

rainfall class based disaggregation approach using at-site pluviograph 

. In this approach, we start by considering daily rainfall 

= 1,...,365/6 representing the calendar day of the year) together with 

), with I representing the indicator function 

)=1 for a wet day and 0 for a dry day). The disaggregation involves firstly identifying all the 

(we use a moving window of  15 days to ensure 

seasonal effects are correctly preserved), with the same previous and next day wetness state 

representing an arbitrary day of the 

daily fragment is sought. We now refer to 

as the rain days which meet these criteria. We then sort these stations by 

lowest ranked rain days Ro
(1),..., 

has been sorted. Sub-

for each of these k nearest 

with probability  p(j), (with 

Upmanu Lall and Sharma, 1996] where n 

represents the sample size of the class members falling within the moving window, and equation 

), and then the stochastically generated sub-daily 

. Here we have added the 

superscript o to the above notation to emphasise that all fragments are derived from the same 

describe a regionalised version of this disaggregation logic, in which we assume that 

daily pluviograph data is 

either unavailable or insufficiently long for continuous simulation purposes. The extension is 

at neighbouring sites indexed by s = 1,..., 

re S represents the total number of pluviograph stations within the ‘neighbourhood’ of the 

target station. The methodology is identical to the disaggregation model described above using 

ograph records for at-site 

records. The regionalised methodology is summarised in the following algorithm: 

at the target location, identify a moving window about t and find all 

ons to the target station with the same previous 

.  

o
t|. Selecting the k rain 

), ...,  R
s
(k).  For each Rs

(j) 

j). 
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(3) Select a fragment, fs(j),m, from the fragments at neighbouring locations selected with 

probability p(j) as described in Chapter 2 and compute the sub-daily rainfall via the 

relationship Xo
t,m  = Ro

t * f
s
(j),m .  

Although this approach is conceptually simple, the challenge is to identify the neighbourhood 

from which to sample the S pluviograph records. To achieve this, it is necessary to assume that 

the scaling between daily rainfall amount and the sub-daily rainfall fragments is consistent 

across the neighbourhood and thus the nearby sub-daily fragments can become substitutable 

for at-site sub-daily fragments. The basis for identifying whether the daily- to sub-daily scaling at 

two locations is similar and thus substitutable is described below.  

3.3.2. Daily to sub-daily scaling 

To enable substitution of sub-daily fragments, one needs to assume that for any day t, the 

conditional relationship between the daily rainfall amount Rt and the full sequence of sub-daily 

rainfall Xt,m (with m = 1,...,240 for six-minute duration rainfall) are statistically similar at both the 

target station and the nearby stations. This can be expressed as: 

 f(Xs
t,m|Rs

t) = f(Xo
t,m|Ro

t)       (3.1) 

for all m and t, where f(.|.) is used to express a conditional probability distribution. Given the 

difficulty of constructing separate conditional density functions for 240 separate increments of 

sub-daily rainfall, as well as the fact that for any wet day Rt there is a high probability that any 

sub-daily rainfall increment Xt,m has no rainfall, we modify Equation 3.1 as follows: 

 f(Ys
t |R

s
t) = f(Yo

t |R
o
t)       (3.2) 

where Ys
 t and Y0

 t represent scalar attributes of Xs
t,m  and X0

t,m  for each day of record, 

respectively. The attributes to be considered include: 

• Maximum intensity attributes: for each wet day, what is the maximum 6, 12, 30, 60, 120, 

180 and 360-minute duration storm burst expressed as a fraction of the total rainfall 

amount for that day?  

• Fraction zeros: for each day, what is the fraction of 6-minute time steps with no rainfall?  

• Maximum intensity timing: for each wet day, what is the time of day when the maximum 

6, 12, 30, 60, 120, 180 and 360-minute duration storm burst occurs?  

In combination, these scalar attributes are expected to cover most of the information on the 

scaling and timing behaviour between daily rainfall and the fragments.  

To illustrate these concepts, we present in Figure 3.3 the joint probability plot of daily rainfall and 

the maximum 12-minute storm burst at three locations in Australia: Hobart, Sydney and Darwin. 

These locations were selected as they have distinctly different climatology, with Hobart located 

in the south of Tasmania representing one of the most southerly pluviograph records, Darwin in 

the Northern Territory representing one of the most northerly pluviograph records, and Sydney 
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representing intermediate latitudes.  

As can be seen in the daily rainfall histogram (lower panel), the marginal probabilities of daily 

rainfall at each station are distinctly different, with Darwin having a high probability of high daily 

rainfall amounts (the majority of rain days having well over 10mm rainfall) whereas Hobart has a 

large number of rain days with relatively little rainfall, with most days having significantly less 

than 10mm over the entire day. It should be emphasised, however, that our interest here is not 

on this marginal distribution; rather, we wish to know, conditional to some daily rainfall amount, 

whether the sub-daily rainfall properties are the same at any two locations. To determine 

whether this is the case, we started by plotting a loess smoother (support of 0.25 of the sample) 

[Hastie et al., 2009] to represent the average value of the maximum 12-minute storm burst as a 

function of daily rainfall.  

 

Figure 3.3: Scatter plot with daily rainfall and an attribute of sub-daily rainfall (the 

maximum 12-minute storm burst expressed as a fraction of the total daily rainfall) at three 

locations in Australia: Hobart (blue), Sydney (green) and Darwin (red). Histograms of 

daily rainfall and the maximum 12-minute storm burst are provided in the bottom and left 

figure panels, respectively, for each of the three locations. Figure extracted from [Westra 

et al., 2012]. 

It is evident that the fraction of daily rainfall contained in the maximum 12-minute storm burst 

varies as a function of daily rainfall amount. This is unsurprising, as intuitively one would expect 

that for small daily rainfall amounts a smaller percentage of the day would be wet, and therefore 

there is a greater chance that the maximum 12-minute storm burst contains a large portion of 
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the daily rainfall.  Interestingly, however, the loess smoother highlights that the relationship 

between daily rainfall and sub-daily rainfall is on average very different at the three locations, 

with Darwin typically having a greater fraction of the daily rainfall contained within the maximum 

12-minute storm burst than Hobart. This suggests that even if both stations have the same daily 

rainfall amount, Darwin is more likely to have a larger number of short-duration, high-intensity 

rainfall events compared with Hobart, which appears sensible given the tropical nature of the 

Darwin climate. Although figures are not provided here, consistent conclusions can be drawn 

from considering other durations, as well as the fraction of each wet day that does not 

experience rainfall.  

3.3.3. Defining similarity 

We now wish to devise a metric to determine whether the conditional distributions in Equation 

3.2 and illustrated in Figure 3.3 are in fact statistically equivalent.  To simplify the analysis, 

rather than focus on the conditional distribution we consider whether the joint distribution of Y 

and R at any two stations is equivalent, given by:   

 f(Ys,Rs) = f(Yo,Ro)       (3.3) 

This is a stricter criterion compared to the conditional distribution in Equation 3.2, since two 

locations having equivalent joint distributions imply that the conditional distribution must also be 

equivalent, although the opposite is not necessarily true (one can easily imagine two samples 

having an equivalent distribution of sub-daily rainfall conditional to daily rainfall amount, but 

different marginal distribution for the daily rainfall amount, and therefore different joint 

distributions).  

To test the hypothesis that the joint distribution between daily rainfall and some attribute of sub-

daily rainfall at any two locations are statistically similar, we use a two dimensional, two sample 

Kolmogorov-Smirnov (K-S) test. This represents a generalisation of the better known one-

dimensional K-S test [Press et al., 1992], and was developed by Fasano and Franceschini 

[1987]. The basis of the two-dimensional generalisation is that although a cumulative distribution 

function is not well defined over more than one dimension, the integrated probability in each of 

four quadrants around some point (xi,yi) in some arbitrary x and y dimensions provides a 

reasonable approximation. The two-dimensional K-S statistic D is the maximum difference 

(ranging over both data points and quadrants) of the integrated probabilities, and is given by 

[Press et al., 1992]: 

 ����������	
� � ��
������ � ��� � √��
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with N1 and N2 representing the size of samples 1 and 2, respectively

probability that the K-S statistic is above 

two samples are from the same population, it is necessary to evaluate the function:

 

As an alternative to the K-S test, we also used a chi

probability that two different binned distributions are statistically similar. In many ways this 

approach is less attractive to the K

information, and the selection of optimal bin sizes

simplest situations [e.g. Scott

whether two samples are similar to the methodology developed 

approach adds confidence to the conclusions. In summary, the chi

samples is given as: 

  

where Ri and Si are the number of occurrences in bin 

rainfall data at any two stations). 

An important parameter to be determined in the application of the chi

histogram bin width, h, with small 

‘bumpy’ histograms that follow the individual data points too closely), whereas high values of 

result in high bias and miss importan

this reason, bin width is often referred to as a smoothing parameter, since it determines the 

amount of smoothing which is applied to the resulting histogram. To identify an optimal bin 

width, denoted as h*, an approach presented in Scott 

case in which there is potentially some correlation between

as: 

 

where the subscript j represents the dimension (in our case one dimension being daily rainfall 

and the other being one of the sub

represents the sample size and 

is used to compare two bivariate distributions, we calculate optimal bin width for the smallest 

sample and use this bin placement for both samples. 

3.3.4. Predictive model for statistical similarity

In the previous sections we have developed a metric for determining whether the joint 

distribution between daily rainfall amounts and attributes of sub

discussed earlier, to use this information to extend the continuous simu

locations where pluviograph data is unavailable, it is necessary to draw sub

from nearby stations conditional to daily rainfall at the target location. As such, we now wish to 
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representing the size of samples 1 and 2, respectively

S statistic is above some defined level under the null hypothesis that the 

two samples are from the same population, it is necessary to evaluate the function:

     

S test, we also used a chi-square test which involv

probability that two different binned distributions are statistically similar. In many ways this 

approach is less attractive to the K-S test, as binning continuous data involves loss of 

information, and the selection of optimal bin sizes is generally a difficult problem for all but the 

Scott, 1992]. Nevertheless, given the importance of the evaluation of 

whether two samples are similar to the methodology developed here, the use of an alternative 

approach adds confidence to the conclusions. In summary, the chi-square statistic fo

are the number of occurrences in bin i for the first and second samples (i.e. 

rainfall data at any two stations).  

An important parameter to be determined in the application of the chi-

, with small h resulting in histograms with high variance (i.e. very rough or 

‘bumpy’ histograms that follow the individual data points too closely), whereas high values of 

result in high bias and miss important underlying features of the probability density function. For 

this reason, bin width is often referred to as a smoothing parameter, since it determines the 

amount of smoothing which is applied to the resulting histogram. To identify an optimal bin 

*, an approach presented in Scott [1992] for the two dimensional (bivariate) 

tentially some correlation between the individual dimensions is given 

 

represents the dimension (in our case one dimension being daily rainfall 

and the other being one of the sub-daily rainfall attributes), σ represents sample variance, 

represents the sample size and  represents the correlation coefficient. As the chi

is used to compare two bivariate distributions, we calculate optimal bin width for the smallest 

sample and use this bin placement for both samples.  

Predictive model for statistical similarity 

In the previous sections we have developed a metric for determining whether the joint 

distribution between daily rainfall amounts and attributes of sub-daily rainfall are similar. As 

discussed earlier, to use this information to extend the continuous simu

locations where pluviograph data is unavailable, it is necessary to draw sub

from nearby stations conditional to daily rainfall at the target location. As such, we now wish to 

Project 4: Continuous Rainfall Sequences at a Point 

 23 

representing the size of samples 1 and 2, respectively. In calculating the 

some defined level under the null hypothesis that the 

two samples are from the same population, it is necessary to evaluate the function: 

  

square test which involves determining the 

probability that two different binned distributions are statistically similar. In many ways this 

S test, as binning continuous data involves loss of 

is generally a difficult problem for all but the 

. Nevertheless, given the importance of the evaluation of 

, the use of an alternative 

square statistic for two 

for the first and second samples (i.e. 

-square method is the 

resulting in histograms with high variance (i.e. very rough or 

‘bumpy’ histograms that follow the individual data points too closely), whereas high values of h 

t underlying features of the probability density function. For 

this reason, bin width is often referred to as a smoothing parameter, since it determines the 

amount of smoothing which is applied to the resulting histogram. To identify an optimal bin 

for the two dimensional (bivariate) 

the individual dimensions is given 

represents the dimension (in our case one dimension being daily rainfall 

 represents sample variance, n 

represents the correlation coefficient. As the chi-square test 

is used to compare two bivariate distributions, we calculate optimal bin width for the smallest 

In the previous sections we have developed a metric for determining whether the joint 

daily rainfall are similar. As 

discussed earlier, to use this information to extend the continuous simulation approach to 

locations where pluviograph data is unavailable, it is necessary to draw sub-daily fragments 

from nearby stations conditional to daily rainfall at the target location. As such, we now wish to 
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determine: what factors influence whether the daily to sub-daily scaling at two stations will be 

similar?  

To answer this, we consider each possible bivariate combination of the 232 pluviograph stations 

with at least 30 years of data, totalling 26796 station pairs, and calculate the two sample, two 

dimensional K-S statistic as well as the chi-squared statistic for each pair of stations and for 

each of the sub-daily rainfall attributes. We use a 5% significance level to evaluate whether two 

stations are similar, and then consider how the probability that any two stations are similar 

varies as a function of a range of possible covariates, including difference in latitude, longitude, 

distance to coast and elevation between each station pair. These predictors, summarised in 

Table 3.1, comprise a range of easily measurable physiographic characteristics which might be 

expected to determine the similarity between two stations. Seasonal variations in the daily to 

sub-daily rainfall relationship are accommodated by formulating the basis for identifying similar 

sub-daily stations with reference to the season of the year. 

Table 3.1: Predictors used for the logistic regression model described in equation 1. The 

prefix ‘Diff_’ emphasises that it is the difference in each of the predictors between 

stations that is considered, rather than the absolute value.  

Predictor Units Description / comments 

Diff_lat Degrees (expressed as 

a decimal) 

Difference in latitude between each station pair, 

calculated as abs(Lat1 – Lat2) 

Diff_lon Degrees (expressed as 

a decimal) 

Difference in longitude between each station 

pair, calculated as abs(Lon1 – Lon2) 

Diff_lat * 

Diff_lon 

Degrees  (expressed as 

a decimal) 

Interaction term, which would be greater than 

zero if it is the distance between stations, rather 

than the sum of the latitude and longitude, 

which is the dominant predictor. 

Diff_dist_coast 

(normalised) 

Dimensionless  Difference in distance to coast between each 

station pair, normalised by the average 

distance to coast for the station pair, calculated 

as abs(dist1 – dist2) / mean(dist1, dist2).  

Diff_elev Metres Difference in elevation between each station 

pair, calculated as abs(Elev1 – Elev2) 

 

Thus we have a set of continuous predictors represented by V (dimension 26796 x 5) which we 

wish to model against a binomial response represented by u of length 26796 (where u  {0, 1} 

represents the cases where the scaling between daily- and sub-daily rainfall at two stations are 

statistically different and similar, respectively, as calculated by the Kolmogorov-Smirnov test 

described in the previous section). This relationship can be modelled using a logistic regression, 
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in which: 

 Pr
/ � 0� � ��1��
2� � 32
32��      (3.4) 

transforms the continuous predictor variables to the range [0,1] as required when modelling a 

binomial response. In this equation, z is defined as: 

 2 � 4! 5 4!6� 5 7 5  4$69      (3.5) 

with 4 representing the regression coefficients. 

The results of the logistic regression model of Equation 3.4 are shown in Figure 3.4, plotted 

against the difference in latitude covariate. The results are presented for four attributes of sub-

daily rainfall: 6 minute maximum storm burst, 1 hr maximum storm burst, fraction of day with no 

rainfall and time of day with the maximum 6-minute storm burst. A range of other attributes, 

listed in Section 3.3.2 were also examined, however the four attributes shown in Figure 3.4 were 

found to be representative of those other variables and are therefore the focus of subsequent 

analysis. The results are presented using both the K-S statistic (solid lines), and the chi-square 

statistic (dashed lines). Note that for the time attribute, we are only considering the marginal 

distribution of the time of day when the maximum 6-minute storm burst occurs, rather than a 

joint density.  

 

Figure 3.4: Logistic regression results against a single predictor – difference in latitude, 
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and four responses representing different sub-daily attributes. The responses have been 

calculated using both the Kolmogorov-Smirnov (solid lines) and Chi squared test 

statistics (dashed lines). The upper and lower part of the plot presents a scatter of the 

individual outcomes of the K-S statistics (with the upper part representing an outcome of 

‘1’ – i.e. the two stations are similar – while the lower part represents an outcome of ‘0’), 

and shows that a larger number of instances of ‘1’ can be found for smaller difference in 

latitudes compared to instances of ‘0’. Figure extracted from [Westra et al., 2012]. 

Some interesting conclusions can be derived from Figure 3.4. Firstly, with the exception of the 

fraction zeros measured by the K-S statistic, there is a chance between 40% and 60% that the 

joint distribution of daily rainfall and each of the attributes are statistically similar provided the 

difference in latitude is small, with the probability decreasing rapidly as difference in latitude 

increases. This is interesting, as no account is made of any other physiographic information, 

such that longitude, elevation and distance to coast, such that stations may be located in 

opposite sides of the continent, or at very different elevations, and yet still have close to a 50% 

chance of having the same scaling between daily and sub-daily rainfall provided the latitude is 

the same. Secondly, the K-S statistic and chi-square statistic appear to be showing similar 

results, although the K-S statistic shows a slightly lower probability of two stations being equal. 

In the remainder of the section we will focus on the K-S statistic as this represents the more 

conservative metric. Finally, of all the metrics considered, the fraction of the day with no rainfall 

appears to vary most significantly between stations. 

Consideration of just a single covariate – difference in latitude – as the only factor influencing 

similarity between station ignores other physiographic information which may be important. As 

such we develop a multivariate logistic regression model to consider the influence each of the 

plausible predictors mentioned above. The conceptual basis for this approach is illustrated in 

Figure 3.5. Given a target location of interest, we wish to define a zone for which the probability 

that daily to sub-daily scaling at two stations are statistically similar is greater than a pre-defined 

threshold. This zone is described by contours of equal probability, with the probability 

decreasing linearly (in the logistic transformed space) in each of the dimensions of the 

regression model.  The shape of the contours is defined by the logistic regression coefficients. In 

the idealised example in Figure 3.5, we represent the case where the probability of two stations 

being statistically similar decreases at a faster rate in the latitude dimension compared to the 

longitude dimension. The ellipsoid shape of the contours are governed by the interaction term 

(latitude*longitude). Furthermore, the location of the target station is slightly offset from the 

centre of the contours, with this being governed by the influence of the relative difference in 

distance to coast.  
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The results of this multivariate regression are presented in Table 3.2, and once again plotted for 

the summer months against latitude in Figure 3.6, with the remaining predictors held at zero. As 

can be seen, the results in Figure 3.6 show notable improvements in the probability that two 

stations are equal compared to Figure 3.4, since now we are plotting the influence of latitude 

assuming that difference in longitude, elevation and relative distance to coast are all zero. In 

fact, with the exception of the fraction of zeros, the results show that for small values of each of 

the predictors there is between a 60 and 70% probability that the daily to sub-daily joint 

probability distributions are statistically similar. 

Table 3.2: Logistic regression coefficients. All predictors were found to be statistically 

significant (usually with a p-value < 0.001 level), with the exception of several predictors 

labelled as ‘NS’ (not significant) 

Season Sub-daily rainfall 

attribute 

Logistic regression coefficients 

  Intercept Lat Lon Lat*lon Dist_coast Elev 

DJF 6 minute intensity 0.426 -0.345 -0.0377 0.0064 -0.186 -0.00089 

DJF 1 hour intensity 0.823 -0.333 -0.0425 0.0093 -0.231 -0.00075 

DJF Fraction zeros -0.375 -0.253 -0.0318 0.0075 -0.242 -0.00065 

Longitude (°) 
Latitude (°) 

 
Elevation (m) 

Target station 

Contours describing 
region with equal 
probability of stations 
being statistically 
‘similar’ to target 
station 

Relative distance to 
coast  
(dimensionless) 

Figure 3.5: Diagrammatic representation of logistic regression results. The response 

is the probability that the joint distribution of daily rainfall amount and some attribute 

of sub-daily rainfall at a ‘nearby’ station is statistically similar to the target station. 

The predictors are the difference in latitude, longitude, latitude*longitude, elevation 

and a normalised distance to coast, with the logistic regression coefficients 

determining the relative decrease in the probability that two stations are similar in 

each of these dimensions. Figure extracted from [Westra et al., 2012]. 
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DJF 6 minute time 0.979 -0.137 -0.0099 0.0022 -0.453 -0.00141 

MAM 6 minute intensity -0.067 -0.192 -0.0065 NS -0.218 -0.00130 

MAM 1 hour intensity 0.308 -0.178 -0.0074 NS -0.107 -0.00098 

MAM Fraction zeros -0.806 -0.157 -0.0105 0.0025 -0.165 -0.00060 

MAM 6 minute time 1.256 -0.140 -0.0226 -0.0034 -0.227 -0.00092 

JJA 6 minute intensity -0.197 -0.097 -0.0110 0.0034 -0.096 -0.00198 

JJA 1 hour intensity 0.471 -0.102 -0.0204 0.0033 NS -0.00335 

JJA Fraction zeros -0.365 -0.073 -0.0171 0.0031 -0.101 -0.00116 

JJA 6 minute time 2.078 -0.098 -0.0321 0.0037 -0.156 -0.00069 

SON 6 minute intensity 0.474 -0.387 -0.0722 0.0129 NS -0.00146 

SON 1 hour intensity 0.824 -0.325 -0.0835 0.0135 NS -0.00132 

SON Fraction zeros -0.382 -0.239 -0.0623 0.0104 -0.087 -0.00095 

SON 6 minute time 1.028 -0.162 -0.0287 0.0042 -0.317 NS 

 

It should be re-emphasised that this is in many ways a conservative estimate, as we have 

chosen to display the test statistic (the K-S statistic) which applies the harshest criterion to the 

data, and we consider the sub-daily attributes (e.g. fraction of zeros, 6 minute rainfall intensity) 

which are the most challenging to capture from daily data alone. Even more importantly, as can 

be seen in Figure 3.3, the number of samples in each bivariate distribution is large (30 years of 

data, 90 days per season, and about 30% of days being ‘wet days’ yields approximately 800 wet 

days) such that the 95% confidence intervals are very narrow (as the width of the confidence 

intervals is to a large degree governed by sample size).  

 



Project 4: Continuous Rainfall Sequences at a Point 

 

P4/S2/014: 26 June 2012   29 

 

Figure 3.6: As per Figure 3.4, except the results represent the outcomes of the full 

multivariate regression. The probability that daily to sub-daily scaling is statistically 

similar is once again plotted against difference in latitude, however now all the remaining 

predictors are held at zero. Figure extracted from [Westra et al., 2012]. 
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3.4. Results  

3.4.1. Identifying ‘nearby’ stations - application to Sydney Airport 

We start by demonstrating a single application of the approach at one location: Sydney Airport 

(gauge number 066037). This location represents a relatively long-record pluviograph station, 

and therefore provides a useful record for verification of the method.  

The approach to identifying ‘nearby’ stations is as follows: 

(1) For all the 1396 pluviograph stations in Australia (excluding the Sydney Airport gauge), 

calculate each of the regression predictors identified in Table 3.1; namely, difference in 

latitude, longitude, latitude*longitude, elevation and normalised distance to coast, relative 

to the Sydney Airport station; 

(2) Having developed the 1396 x 5 predictor matrix, apply the regression model presented in 

Equation 3.4 using the regression coefficients shown in Table 3.2 for each season and 

attribute to calculate the probability Pr(u=1); 

(3) Separately for each season and attribute, rank the probabilities from  lowest to highest; 

(4) For each season calculate the average rank for each station across all attributes; 

(5) Select the S lowest-ranked stations for inclusion in the disaggregation model. 

This algorithm yields different choices of stations for each season, as physiographic influences 

may vary depending on the dominant synoptic systems occurring and different times of the year. 

It is noted that the selection of the size of S represents a somewhat subjective decision, as 

larger values of S increase the probability of selecting stations which are statistically different to 

the target station, whereas smaller values of S will result in small sample sizes. For this case we 

selected S = 13, resulting in a total of 250 years of data distributed over the 13 stations.  

These lowest-ranked 13 stations for the summer season are shown in Figure 3.7. As expected, 

the lowest ranked stations (i.e. those with the greatest chance of being ‘similar’ to Sydney 

Airport) are those which are most proximate to this station. Investigation of the locations of the 

selected stations suggests that they are generally within a small distance to coast, and all are at 

low coastal elevations. In this case, therefore, the stations appear to be selected over a wide 

range of latitudes, which is probably due to the strong increases in elevation and distance to 

coast with changing longitude.  

3.4.2. Model validation 

We now repeat the process of identifying nearby stations for five locations across Australia that 

have more than 50 years of pluviograph data, and which represent a diversity of climate zones. 

These stations are shown in Table 3.3. Having identified the pool of nearby stations from which 

to draw the fragments, we apply the approach described in Algorithm 3.1 to draw sub-daily 

rainfall fragments from nearby stations conditional to at-site daily rainfall, and compare these 
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sequences to the at-site pluviograph records.  

 

Figure 3.7: Sydney Airport (large red dot) and nearby pluviograph stations (blue and 

brown dots). The highest ranked 13 pluviograph stations (totalling approximately 250 

years of pluviograph data) based the full logistic regression model are shown as brown 

dots, with the associated ranking. Figure extracted from [Westra et al., 2012]. 

Table 3.3: Data used to test continuous simulation model. All stations continue until 2007. 

Station Name Gauge 
number 

Start 
year 

Number of 
years of 
observed data 

Latitude / longitude Köppen climate classification  

Sydney airport 066037 1961 45 -33.9411 / 151.1725 Temperate (warm summer) 

Perth airport 009021 1960 46 -31.9275 / 115.9764 Sub-tropical (dry summer) 

Alice Springs 
airport 

015590 1950 57 -23.7951 / 133.8890 Desert/Grassland  
(hot, persistently dry) 

Cairns airport 031011 
 

1941 66 -16.8736 / 145.7458 Tropical (monsoonal) 

Hobart airport 094008 
 

1959 47 -42.8339 / 147.5033 Temperate (mild summer) 

 

As with the results presented in Chapter 2, the use of a disaggregation model derived based on 

observed daily rainfall sequences implies that the daily and longer time scale statistics will be 

identical to the observational dataset. As such, it is necessary to test the capacity of the model 

using a range of sub-daily rainfall characteristics. Reflecting the likely application of this model 

for flood estimation, the statistics considered here are based on: (a) whether the model is 

capable of reproducing the extreme rainfall intensity correctly; and (b) whether the model 

captures the antecedent rainfall prior to the flood-producing rainfall event.  
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Considering first the annual maxima statistics, we present in Figure 3.8 a plot of the annual 

maximum 6-minute rainfall against exceedance probability for both the observed data at the 

target location, as well as the results of 100 simulation runs with the same length of series as 

the original target pluviograph time series to make for easier comparison. As can be seen, the 

observed data is generally within the 90 percent confidence interval for most of the stations, with 

the exception of Alice Springs, for which the generated sequences tend to overestimate rainfall 

for all exceedance probabilities, and for Hobart in which the simulated sequences underestimate 

the low exceedance probability rainfall events. Possible reasons for this behaviour are provided 

in section 3.5 below. These results are also presented in the upper half of Table 3.4 for a range 

of storm burst durations from 6-minute through to 12-hour. Once again the observed and 

simulated sequences are generally similar, with no systematic under- or over-estimation biases.  

We next consider the antecedent rainfall prior to the design storm burst event, plotted in Figure 

3.9. The justification for focusing on the antecedent rainfall exceedance probability plot was 

described at length in Chapter 2. As can be seen, the simulated data appear to follow the 

observed data reasonably well, although there are several points outside the 90% confidence 

interval. Importantly, no systematic biases could be identified, with performance varying 

depending on the location. This is also shown in the lower half of Table 3.4 with the antecedent 

rainfall of different durations prior to the 1-hour storm burst. Once again the observed 

antecedent rainfall is within the 90% confidence interval, with the exception of Cairns in which 

antecedent rainfall is underestimated for 6-hour depth prior to the 1- hour storm burst, and 

overestimation for longer durations.  
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Figure 3.8: 6-minute annual maximum rainfall against exceedance probability for (a) Sydney, (b) Perth, (c) Alice Springs, (d) Cairns, and (e) 

Hobart. Black dots represents observed data, black solid line represents the median of 100 simulations, and black dotted lines represent the 5 
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and 95 percentile simulated values. Figure extracted from [Westra et al., 2012]. 

  

  

 

 

Figure 3.9: 6-hour antecedent rainfall prior to the 6-minute annual maximum storm burst plotted against exceedance probability for (a) Sydney, 
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(b) Perth, (c) Alice Springs, (d) Cairns, and (e) Hobart. Black dots represents observed data, black solid line represents the median of 100 

simulations, and black dotted lines represent the 5 and 95 percentile simulated values. Figure extracted from [Westra et al., 2012]. 
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Table 3.4: Comparison of observed and simulated results for median annual maxima for different storm burst durations, and the antecedent 

rainfall prior to the 1 hour storm burst. The simulated median annual maxima represent the median of all 100 simulations.  

 Sydney Perth Alice Springs Cairns Hobart 

 Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) 

Annual maxima  

6 min 8.87 
8.95  
(8.63-9.38) 6.18 

6.16  
(5.80-6.51) 5.50 

7.21  
(6.79-7.66) 11.6 

11.9  
(11.4-12.4) 4.51 

3.97  
(3.54-4.32) 

30 min 25.7 
23.6  
(22.5-24.8) 14.7 

13.7  
(13.2-14.4) 16.7 

18.9  
(18.1-19.9) 34.9 

36.6  
(35.2-38.0) 11.3 

9.15  
(8.57-9.70) 

1 hr 35.4 
31.7  
(30.3-33.7) 18.8 

18.4  
(17.6-19.2) 22.1 

24.4  
(23.0-25.8) 51.7 

54.8  
(52.2-57.5) 14.6 

12.3  
(11.6-13.0) 

3 hr 55.4 
49.0  
(47.0-51.6) 29.0 

27.8  
(26.7-28.7) 32.6 

32.6  
(31.2-34.2) 83.5 

88.3  
(85.4-91.5) 22.9 

20.4  
(19.6-21.3) 

6 hr 72.3 
63.2  
(61.6-65.8) 36.3 

34.7  
(33.9-35.8) 39.6 

39.0  
(37.5-40.7) 113 

118  
(114-121) 30.3 

28.1  
(27.1-29.3) 

12 hr 91.8 
82.0  
(80.3-84.4) 45.4 

44.1 
(43.2-45.1) 48.2 

47.6  
(47.0-48.2) 147 

151  
(147-153) 39.6 

36.8  
(36.0-37.7) 

Antecedent rainfall prior to 1-hr burst (mm) 

6 hr 15.4 13.1  
(10.4-16.6) 

6.76 7.53  
(6.57-8.74) 

6.10 6.09  
(5.05-7.21) 

25.4 20.4  
(16.5-24.3) 

6.31 5.91  
(4.84-7.05) 

12 hr 22.7 18.2  
(14.8-22.5) 

9.63 10.5  
(9.26-11.8) 

7.98 8.97  
(7.58-10.1) 

32.2 29.1  
(23.9-34.4) 

9.10 7.61  
(6.01-9.15) 

24 hr 31.4 26.8  
(22.0-32.5) 

11.9 14.0  
(12.1-15.8) 

10.6 13.1  
(10.9-15.4) 

40.3 49.8  
(42.5-58.4) 

9.09 10.1  
(8.09-12.1) 

48 hr 38.4 35.5  
(29.0-43.3) 

12.5 18.0  
(15.6-20.7) 

15.5 18.7  
(16.0-22.4) 

54.9 79.9  
(69.9-90.6) 

10.2 13.4  
(10.4-16.9) 
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3.5. Summary 

In this chapter, a framework was described where continuous (6-minute increment) rainfall can 

be generated at any location of interest provided that daily data is either available or can be 

synthetically generated. The basis of this approach is to randomly draw sub-daily fragments 

from ‘nearby’ pluviograph stations conditional to the daily rainfall amount and previous- and 

next-day wetness state at the target station. The identification of ‘nearby’ stations is based on a 

distance metric which considers latitude and longitude as well as elevation and distance to 

coast, with the relative importance of each variable determined by looking at the similarity in the 

daily to sub-daily scaling at 232 long pluviograph stations across Australia.  

This approach seeks to address several important limitations associated with the Australian 

pluviograph record. Firstly, compared to daily rainfall data, there is approximately one order of 

magnitude less pluviograph stations, and the records at each station are generally shorter than 

their daily-read counterparts. Thus, by combining longer, more abundant and more reliable daily 

data at the target location with the information contained in a number of pluviograph records in 

the neighbourhood of the target location, it is possible to make the best use of the both types of 

data. Secondly, by drawing records from multiple nearby pluviograph records rather than relying 

on a single record, it is possible to also consider information from records only several years 

long, which would usually be discarded as being too short for meaningful analysis. This provides 

a significant advantage over regionalised parametric models described in the introduction to this 

chapter, as the estimation of parameters generally requires many years of pluviograph data. 

Finally, pluviograph data flagged as missing or unreliable simply can be discarded from the 

analysis, even if there is a systematic bias in the missing data (e.g. pluviograph recording tends 

to fail during major storm events). This is because, provided the daily rainfall data is reliable, and 

there is sufficient data at other pluviograph stations to capture a diversity of rainfall events 

across a range of magnitudes, such possible systematic pluviograph recording biases are 

unlikely to be translated into the final synthetically generated sequences.  

The evaluation of the method on a range of statistics which are relevant for flood estimation, 

notably the annual maximum statistics and the antecedent rainfall prior to the flood-producing 

storm burst, suggests that the method compares reasonably well with at-site data for the five 

test locations considered. Nevertheless, the method does require the presence of representative 

pluviograph gauges in the vicinity of the target location, which may not be possible at every 

location. For example, poorer performance at Alice Springs compared to other stations is likely 

to be due to the low density of pluviograph records in the centre of Australia compared to other 

regions (see Figure 3.1), highlighting the importance of having sufficient pluviograph records 

within a close vicinity of the location of interest.  

A different situation was experienced for the Hobart Airport station. As shown in Figures 3.8 and 

3.9, the largest observed value for Hobart both for the annual maximum plots and the 

antecedent conditions was much greater than any of the values of the synthetically generated 

data.  In particular, the maximum recorded 6-minute storm burst was 23.14mm occurring on the 

24th April 1972, comprising a very intense storm burst for that latitude. Aggregating the 

pluviograph record for that full day showed 192.2mm falling on that day, which contrasted with 
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the daily-read station at the same location recording only 42.2mm for that day. We next 

examined the nearest pluviograph and daily-read station pairing, namely gauge number 94029 

located 15.6km from the Hobart Airport gauge, and found the aggregated daily rainfall from the 

pluviograph to be 27.94mm, compared with 27.9mm from the daily rain gauge at that same 

location. Furthermore, the maximum 6-minute increment rainfall intensity was found to be 

1.74mm, substantially smaller than that recorded at Hobart Airport. This therefore indicates that 

a recording error probably occurred at the pluviograph gauge at Hobart Airport, and that the 

synthetically generated sequence is more likely to capture the correct behaviour of sub-daily 

rainfall.  

Finally, we note that although daily data is much more abundant than pluviograph data across 

Australia, in many regions the length or reliability of daily rainfall may not be sufficient for 

stochastic generation of rainfall sequences. This is the subject of the next chapter, in which the 

approach presented herein is generalised to any location in Australia, regardless of the 

availability of daily or pluviograph data.  
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4. Continuous Simulation Methodology Part III: A Regionalised 

Approach to Daily Rainfall Generation 

4.1. Introduction 

Daily rainfall constitutes a basic meteorological input to hydrological, agricultural, ecological and 

other environmental systems. Stochastic generation of daily rainfall is necessary in these 

systems to augment or use in place of recorded rainfall data, particularly when observed daily 

records are short, contain missing records or are unavailable, or where multiple plausible 

realizations of rainfall are required. The generation of such rainfall sequences is typically 

achieved using a class of statistical models referred to as ‘weather generators’, which seek to 

generate a time series of daily (or other time-step) rainfall and other weather variables in a 

manner that represents statistical properties such as the mean, variance, day-to-day and longer-

term persistence and extreme behaviour as present in the instrumental rainfall record [Wilks and 

Wilby, 1999]. Although weather generators also can be used to characterize other weather 

variables, the approach presented here has been developed for generation of daily rainfall only. 

Generation of daily rainfall proceeds in two distinct stages: firstly the generation of rainfall 

occurrence to specify the sequencing of wet days, followed by generation of rainfall amounts on 

the generated “wet” days. One of the earliest – and still most widely used – rainfall occurrence 

models is the first-order Markov model developed by Gabriel and Neumann [1962], in which the 

probability of a wet or dry day is defined conditional only on the previous day’s rainfall state.  

Deficiencies of such ‘short memory’ process models (in which precipitation is only dependent on 

the past through the most recent day’s rainfall occurrence) include under-simulation of long dry 

spells and interannual variability, with these issues being addressed in more recent work using 

higher-order Markov models and Markov models that consider exogenous climate variables as 

additional predictors [Wilks and Wilby, 1999]. To generate precipitation amounts, Todorovic and 

Woolhiser [1975] used an exponential model to simulate the rainfall amount for each wet day, 

with two-parameter gamma distributions and mixed exponential distributions also commonly 

used.  An alternative that does not need to assume the probability distribution associated with 

the rainfall, is presented in the nonparametric weather generation literature [Brandsma and 

Buishand, 1998; Buishand and Brandsma, 2001; Harrold et al., 2003a; b; U. Lall et al., 1996; 

Mehrotra and Sharma, 2007a; b; Rajagopalan and Lall, 1999; Rajagopalan et al., 1996; Sharma 

and O'Neill, 2002; Sharma et al., 1997]. In addition to the above referenced papers, a more 

detailed review of stochastic generation of rainfall for current as well as climate change 

conditions is presented in [Sharma and Mehrotra, 2010].  

The aim of the methodology presented here is to extend the generation of daily rainfall to 

locations where daily rainfall records are not available. Traditionally such regionalised 

extensions have been achieved via the use of spatial interpolation or extrapolation of model 

parameters [Guennia and Hutchinson, 1998; Johnson et al., 2000; Kyriakidis et al., 2004; Wilks, 

2008]. This chapter describes an alternative approach in which sequences are developed using 

daily rainfall records at ‘similar’ locations which are meteorologically consistent with the rainfall 

record at the location of interest.  
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The regionalised procedure presented here uses the Modified Markov Model (MMM) for 

stochastic generation of daily rainfall as presented in Mehrotra and Sharma [2007b], in which 

the occurrence model comprises a Markov chain conditional on previous day’s rainfall 

occurrence as well as aggregate rainfall over a number of previous days (e.g. 365 day 

aggregate number of wet days) to account for low-frequency persistence, and the amounts 

model uses a nonparametric kernel density estimation procedure with conditional dependence 

on previous day’s rainfall. The daily rainfall sequences generated using the proposed 

regionalised model, are then disaggregated based on the approaches presented in chapters 2 

and 3. The resulting sub-daily rainfall is then compared to the sequences that are derived using 

observed daily and sub-daily rainfall as per chapter 2, and then using the observed daily rainfall 

without access to the historical sub-daily rain as per chapter 3. The regionalised procedure 

presented here is developed using 2708 daily rain gauge locations across Australia as 

discussed in Section 4.2. In Section 4.3 we summarise the proposed algorithm, and describe the 

basis for identifying meteorologically ‘similar’ stations. The results from detailed testing at both a 

daily and sub-daily time scale are presented in Section 4.4, followed by conclusions in Section 

4.5.  

4.2. Data  

Daily rainfall data are obtained from the Australian Bureau of Meteorology for 17,451 gauging 

stations, with a maximum of about 8000 daily rain gauges recording rainfall in any given year. 

The distribution of the daily rainfall network is illustrated in Figure 4.1, in which the number of 

recording rain gauges is plotted as a time series from 1850 until 2007, with low numbers of 

stations recording in the mid 1800s, and a build-up of rainfall gauges in the decades surrounding 

1900 to approximately present levels. This can be contrasted with the series of sub-daily rainfall 

presented as Figure 3.2, in which there are a maximum of only around 600-700 sub-daily rainfall 

stations recording at any time, and with very few recording prior to the 1960s. 

Of these daily gauging stations, we selected a subset of 2708 locations (Figure 4.2) that have 

longer than 25 years of continuous record and less than one percent missing values for 

developing the similarity metric. Of these stations, 940 have less than 40 years of record, 1437 

have between 40 and 100 years and a further 331 stations have records of more than 100 

years. In spite of large network of rain gauges, the spatial distribution of the gauging stations is 

not homogeneous, with a higher density of gauges in the populated regions particularly along 

the eastern part of Australia. For the remaining analysis we only focus on this set of 2708 

stations and fill in the small percentage of missing data using the records of same date from 

nearby stations.  
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Figure 4.1: Number of Australia-wide daily rainfall records against year of record, plotted 

from 1850, considering only stations with <1% data missing. Figure extracted from 

[Mehrotra et al., 2012]. 

 

Figure 4.2: Spatial coverage and record length of the Australian daily rainfall record. Only 

locations with < 1% data missing and length > 25 years are presented, totalling 2708 
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stations. Figure extracted from

 

4.3. Methodology 

Here we present a regionalised approach to generating daily rainfall data at any location of 

interest regardless of the presence of at

from a number of nearby rain gauges which are considered to be meteorologically ‘similar’. The 

methodology uses a scaling logic similar to that 

similarity, except that in this case the scalin

daily rainfall. Prior to describing the regionalisation approach, we will briefly summarise the daily 

rainfall generator which is based on the Modified Markov Model (MMM) of 

[2007b], and which was developed to preserve variability across multiple timescales. 

4.3.1. Regionalised daily r

4.3.1.1. Modified Markov Model for generation of daily rainfall sequences

As in Chapters 2 and 3, we de

= 1,..., 365 represents the calendar day), and a rainfall occurrence as I(

and I(Rt) = 0 otherwise with I() representing the indicator function. In a traditional Markov order 

one model, we can express the transition probabilities via 

probabilities for each day t estimat

side of t. 

The Markov order one model is limited in that it is only dependent on rainfall occurrence on the 

previous day, and thus cannot represent low

precipitation data [Buishand

maintained, Mehrotra and Sharma

representing long-term predictors, with the predictor matrix including either aggregated rainfall 

statistics over some number of previous time steps, exogenous predictors such as climate 

indices, or both. For the present study we focus on a single predictor, namely t

number of rainfall occurrences over the previous 365 days, defined as:

    

The transition probabilities of interest can thus be given by:

 P( I(Rt) | I(Rt-1), Zt)  

We use Equation 4.1 of Mehrotra and Sharma 

Equation 4.2 above based on a parametric multivariate normal 

estimation of 3 parameters, namely wet day transition probabilities and mean and variance of 

for each day t using the observed data within the moving window. 
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we present a regionalised approach to generating daily rainfall data at any location of 

regardless of the presence of at-site gauged rainfall data, by sampling 

from a number of nearby rain gauges which are considered to be meteorologically ‘similar’. The 

methodology uses a scaling logic similar to that described in Chapter 3

similarity, except that in this case the scaling relationship being investigated relates annual and 

daily rainfall. Prior to describing the regionalisation approach, we will briefly summarise the daily 

rainfall generator which is based on the Modified Markov Model (MMM) of 

, and which was developed to preserve variability across multiple timescales. 

Regionalised daily rainfall generation  

Modified Markov Model for generation of daily rainfall sequences

, we denote Rt as the rainfall amount at a given station

= 1,..., 365 represents the calendar day), and a rainfall occurrence as I(

) = 0 otherwise with I() representing the indicator function. In a traditional Markov order 

one model, we can express the transition probabilities via P( I(Rt) | I(

estimated separately over a sliding moving window of 15 days either 

The Markov order one model is limited in that it is only dependent on rainfall occurrence on the 

previous day, and thus cannot represent low-frequency variability which is known to exi

ishand, 1978]. To ensure such low-frequency variability is correctly 

Mehrotra and Sharma [2007b] showed that it is possible to include the vector 

term predictors, with the predictor matrix including either aggregated rainfall 

statistics over some number of previous time steps, exogenous predictors such as climate 

indices, or both. For the present study we focus on a single predictor, namely t

number of rainfall occurrences over the previous 365 days, defined as: 

     

The transition probabilities of interest can thus be given by: 

     

1 of Mehrotra and Sharma [2007b] to calculate the transition probabilities in 

2 above based on a parametric multivariate normal model

n of 3 parameters, namely wet day transition probabilities and mean and variance of 

using the observed data within the moving window.  
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we present a regionalised approach to generating daily rainfall data at any location of 

by sampling the daily rainfall 

from a number of nearby rain gauges which are considered to be meteorologically ‘similar’. The 

3 to identify and define 

g relationship being investigated relates annual and 

daily rainfall. Prior to describing the regionalisation approach, we will briefly summarise the daily 

rainfall generator which is based on the Modified Markov Model (MMM) of Mehrotra and Sharma 

, and which was developed to preserve variability across multiple timescales.  

Modified Markov Model for generation of daily rainfall sequences 

at a given station on day t (where t 

= 1,..., 365 represents the calendar day), and a rainfall occurrence as I(Rt) = 1 if Rt ≥ 0.3 mm 

) = 0 otherwise with I() representing the indicator function. In a traditional Markov order 

) | I(Rt-1) ), with transition 

ed separately over a sliding moving window of 15 days either 

The Markov order one model is limited in that it is only dependent on rainfall occurrence on the 

frequency variability which is known to exist in 

frequency variability is correctly 

showed that it is possible to include the vector Zt 

term predictors, with the predictor matrix including either aggregated rainfall 

statistics over some number of previous time steps, exogenous predictors such as climate 

indices, or both. For the present study we focus on a single predictor, namely the aggregate 

 (4.1)  

 (4.2) 

to calculate the transition probabilities in 

model. This model requires 

n of 3 parameters, namely wet day transition probabilities and mean and variance of Zt, 
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Having developed the sequence of wet and dry days, it is now necessary to generate rainfall 

amounts Rt for each wet day. In Mehrotra and Sharma [2007b] and Mehrotra and Sharma 

[2010], the rainfall amounts were generated by formulating the conditional probability f(Rt|Ct) 

where Ct is a vector of conditioning variables containing rainfall amounts on previous days as 

well as possibly exogenous climate indices. In this section we simplify the approach to only 

consider previous day’s rainfall depth, Rt-1, as the predictor of current-day rainfall depth, such 

that we only need to specify the conditional density f(Rt|Rt-1).  This simplification requires us to 

assume that low-frequency variability in rainfall can be fully accounted for by simulating low-

frequency variability in rainfall occurrences, with further evidence to support this assumption 

coming from a related study which finds that low frequency climate modes such as the El Niño-

Southern Oscillation tend to influence rainfall occurrences much more strongly than rainfall 

amounts on wet days [Pui et al., 2010b].  

A Gaussian kernel density estimate [Sharma and O'Neill, 2002; Sharma et al., 1997] is used to 

define f(Rt|Rt-1). Once again, the density is estimated for each day t using data in a moving 

window of 15 days on either side of t. This density estimation procedure is described in detail in 

earlier papers by [Harrold et al., 2003a; Mehrotra and Sharma, 2007b; Sharma, 2000; Sharma 

and O'Neill, 2002; Sharma et al., 1997].  

The full Modified Markov Model for generation of both rainfall occurrences and rainfall amounts 

as used in the current study is reproduced as Algorithm 4.2. 

4.3.1.2. Regionalised extension of daily rainfall generation model 

The regionalised extension of this model is somewhat different to the regionalised daily rainfall 

disaggregation model described in Chapter 3. In particular, rather than re-sampling sub-daily 

fragments from nearby stations, we use the information from these nearby daily stations to 

estimate the parameters for the Markov rainfall occurrence model and form the nonparametric 

kernel density estimate for the rainfall amounts model. The algorithm is described below: 

Algorithm 4.1 

1) Identify a total of S ‘nearby’ daily rainfall gauging stations with the greatest probability of 

exhibiting statistically ‘similar’ rainfall characteristics to the target location [see Section 

4.3.2 for the basis of defining these stations].  

2) Estimate the parameters of both the occurrence and amounts models at nearby stations 

using data at that location. At a given day, choose any one of these stations at random 

with probability p(j), and using the selected station parameters, generate the daily 

rainfall. 

3) Normalise the rainfall data by total annual rainfall and move on to the next day, using 

interpolated contour maps of total annual rainfall supplied by the Bureau of Meteorology. 

More details on the regionalised rainfall generation procedure are provided in Section 4.3.2.3 

and in Algorithm 4.2.   
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4.3.2. Identifying ‘nearby’ daily rainfall stations 

Similar to the methodology described in Chapter 3, the regionalised approach relies on using 

data from nearby rainfall stations (in this case daily-read stations) as a substitute for at-site data 

for cases where at-site data is either unavailable or too short. As such it is necessary to: (1) 

identify metrics by which we determine whether two stations are ‘similar’; and (2) predict the 

probability that stations within a ‘neighbourhood’ of the target location are similar by regressing 

against physiographic indicators such as latitude, longitude, elevation and distance to coast.  

4.3.2.1. Annual and within year daily rainfall characteristics   

To enable substitution of daily rainfall series from stations within a neighbourhood of the target 

location, one needs to consider the equivalence not only of the marginal distributions of annual 

and within-year rainfall but also the joint relationship between the annual and within-year rainfall 

at the target station as indicated by superscript ‘o’, and at nearby station indicated by superscript 

‘s’. This can be expressed as: 

 f(Rs
yt, Ay

s) = f(Ro
yt, Ay

o)        (4.3) 

with Ryt representing daily rainfall amount for year y, and Ay representing the total annual rainfall 

for that same year, and f() representing the joint probability density function relating the two 

variables. For this section we only consider data from the 2708 locations for which long daily 

rainfall records are available, and assume that such relationships will hold in other locations in 

Australia for which data is missing. For convenience the subscript y will be omitted from 

subsequent notation, however when referring to conditional or joint probabilities between annual 

and daily rainfall, it is implicit that the daily rainfall is sampled from the same year as the 

aggregate annual rainfall.  

A difficulty with this formulation is that Rs
t  and R

o
t represent a time series for each year of record 

(t = 1,..., 365/6) whereas As  and A0 represents the total rainfall amount for that year and is 

therefore a scalar.  We therefore modify Equation 4.3 as follows: 

 f(Ys, As) = f(Yo, Ao)       (4.4) 

where Ys
 and Y

o
 represent within-year scalar attributes of Rs

t  and R
o
t  for each year of record, 

respectively. The within-year rainfall behaviour is characterised by various daily, seasonal and 

spell related rainfall attributes. The attributes to be considered include: 

• Maximum daily intensity attributes: for each year, the maximum daily rainfall in each 

season.  

• Maximum wet spells: for each year, the maximum length of sequence of wet days in 

each season.  

• Maximum dry spells: for each year, the maximum length of sequence of dry days in each 

season.  
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• Rainfall in maximum wet spells: for each year, the total rainfall in the maximum length of 

sequence of wet days in each season. 

• Amount per wet day: for each year, the average rainfall amount per wet day for each 

season. 

• 7 days rainfall totals: for each year, the maximum 7 days rainfall amount for each 

season. 

• Seasonal rainfall: for each year, the total rainfall amount for each season. 

• Seasonal wet days: for each year, the total number of wet days for each season. 

• Annual wet days: for each year, the total number of wet days. 

In combination, these scalar attributes are expected to cover most of the information on the 

scaling and timing between annual and within-year rainfall distribution behaviour. 

To illustrate these concepts, we present in Figure 4.3 a bivariate scatter plot of annual and 

summer rainfall at five locations in Australia: Sydney, Perth, Alice Springs, Cairns and Hobart. 

These locations, which are the same as was used in Chapters 2 and 3, were selected as they 

have distinctly different climatology, with Hobart located in the south of Tasmania representing 

one of the southernmost records with temperate climate, Cairns in the north of Queensland 

representing a location having a moist tropical climate, Alice Springs in the centre of Australia 

with semi-arid climate, Perth in western Australia representing one of the westernmost records 

with a mixture of Californian and Mediterranean climates, and Sydney in eastern Australia 

representing intermediate latitudes.  
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Figure 4.3: Plot of annual rainfall amount and an attribute of with

summer rainfall amount) at five locations in Au

al., 2012]. 

 

As can be seen from this figure, the relationship between seasonal and annual rainfall at each 

station are distinctly different with Cairns having high annual and summer rainfall amounts 

whereas Hobart and Alice Springs have relatively little annual and summer rainfall, with summer 

rainfall being 25% of annual for Hobart and about 40% of annual for Alice springs.

Perth have intermediate values of annual rainfall, although a much lower fraction of annual 

rainfall occurs in summer in Perth compared to Sydney. It is this relationship between annual 

average rainfall and various sub

a range of climate regimes to be clearly distinguished. Although figures are not provided here, 

similar conclusions can be drawn from consideration of other within year rainfall attributes.

Another important consideration while dealing with rainfall regionalisation relates to the high 

spatial variability in rainfall. To highlight this aspect consider rainfall observations at Sydney 

Observatory Hill. The observed average annual rainfall at the station on the basis 

long record is 1216 mm, while the observed average annual rainfall at locations within a 20 km 

radius of Sydney Observatory Hill varies significantly (e.g. Sydney airport, 1087 mm (79 years); 

Concord golf club, 1135 mm (69 years) and Potts Hi

Project 4: Continuous Rainfall Sequences at a Point

 

Figure 4.3: Plot of annual rainfall amount and an attribute of with

summer rainfall amount) at five locations in Australia. Figure extracted from

As can be seen from this figure, the relationship between seasonal and annual rainfall at each 

stinctly different with Cairns having high annual and summer rainfall amounts 

whereas Hobart and Alice Springs have relatively little annual and summer rainfall, with summer 

rainfall being 25% of annual for Hobart and about 40% of annual for Alice springs.

Perth have intermediate values of annual rainfall, although a much lower fraction of annual 

rainfall occurs in summer in Perth compared to Sydney. It is this relationship between annual 

average rainfall and various sub-annual attributes which is of interest for this study, as it enables 

a range of climate regimes to be clearly distinguished. Although figures are not provided here, 

similar conclusions can be drawn from consideration of other within year rainfall attributes.

ideration while dealing with rainfall regionalisation relates to the high 

spatial variability in rainfall. To highlight this aspect consider rainfall observations at Sydney 

Observatory Hill. The observed average annual rainfall at the station on the basis 

long record is 1216 mm, while the observed average annual rainfall at locations within a 20 km 

radius of Sydney Observatory Hill varies significantly (e.g. Sydney airport, 1087 mm (79 years); 

Concord golf club, 1135 mm (69 years) and Potts Hill reservoir 917 mm (113 years)). The best 

Project 4: Continuous Rainfall Sequences at a Point 

 46 

 

Figure 4.3: Plot of annual rainfall amount and an attribute of with-in-year rainfall (the 

Figure extracted from [Mehrotra et 

As can be seen from this figure, the relationship between seasonal and annual rainfall at each 

stinctly different with Cairns having high annual and summer rainfall amounts 

whereas Hobart and Alice Springs have relatively little annual and summer rainfall, with summer 

rainfall being 25% of annual for Hobart and about 40% of annual for Alice springs. Sydney and 

Perth have intermediate values of annual rainfall, although a much lower fraction of annual 

rainfall occurs in summer in Perth compared to Sydney. It is this relationship between annual 

s of interest for this study, as it enables 

a range of climate regimes to be clearly distinguished. Although figures are not provided here, 

similar conclusions can be drawn from consideration of other within year rainfall attributes. 

ideration while dealing with rainfall regionalisation relates to the high 

spatial variability in rainfall. To highlight this aspect consider rainfall observations at Sydney 

Observatory Hill. The observed average annual rainfall at the station on the basis of a 150 year 

long record is 1216 mm, while the observed average annual rainfall at locations within a 20 km 

radius of Sydney Observatory Hill varies significantly (e.g. Sydney airport, 1087 mm (79 years); 

ll reservoir 917 mm (113 years)). The best 



Project 4: Continuous Rainfall Sequences at a Point 

 

P4/S2/014: 26 June 2012   47 

estimate of average annual rainfall from nine nearby stations is 1096 mm, which is 10% below 

the estimate of the Sydney Observatory Hill annual average rainfall. It is therefore quite likely 

that identified nearby stations, in spite of having similarity in other rainfall attributes such as 

seasonality and wet spell characteristics, might contain a bias in annual rainfall relative to the 

target location. In the following discussions we assume that a good estimate of long term 

average annual rainfall at the target location is known from some other reliable sources, for 

example, from the long-term relationships that have been developed by the Australian Bureau of 

Meteorology for annual rainfall across Australia 

(http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.jsp). This estimate is then used 

to scale the generated daily rainfall at nearby stations following a scaling procedure described in 

Algorithm 4.2. 

4.3.2.2. Defining the neighbourhood 

Having identified metrics by which to measure the annual and sub-annual rainfall characteristics 

at any station, we now need to define a neighbourhood over which the annual to sub-annual 

(seasonal/daily) rainfall scaling is equivalent. Given our assumption that an estimate of total 

annual rainfall is available and has sufficient accuracy at any target location in Australia, once 

we have identified the region with consistent annual to sub-annual scaling, we can use the sub-

annual (daily) data at nearby locations and finally correct for differences in the total annual 

rainfall.  

Consistent with the methodology described in Chapter 3, for all pairs of daily rainfall stations 

across Australia we first examine the bivariate distribution f(Ys, As) = f(Yo, Ao) for annual rainfall 

and each of the sub-annual rainfall attributes described in the previous section, and test whether 

they are statistically similar using the two-dimensional, two-sample Kolmogorov-Smirnov (K-S) 

test as described more fully in that chapter. This test was developed by [Fasano and 

Franceschini, 1987] and is summarised in Chapter 3. The chi-square test described in Chapter 3 

was not used here due to the much smaller sample sizes (between 25 and 150 samples at any 

location, with one sample for each year of record); the two dimensional two sample K-S test was 

specifically developed for such small sample sizes [Fasano and Franceschini, 1987] and 

therefore remains appropriate.  

In total, 2708 separate rain gauge stations with at least 25 years of data were used to formulate 

this relationship, totalling 3,665,278 station pairs. We classify a station pair to be statistically 

similar based on the K-S test using a 95% confidence threshold, and thus have a vector of 

length 3,665,278 with all the classifications of whether the stations are statistically similar or 

different.  

Figure 4.4 presents changes in the percentage of station pairs which are statistically ‘similar’, 

with increases in absolute difference in latitude and longitude between station pairs based on a 

frequency binning approach. The percentage of significant stations is calculated by counting the 

number of statistically similar station pairs in each bin (using a total of 50 bins), and are 

presented for seven attributes of within year rainfall: maximum wet spell summer, maximum dry 

spell winter, daily maximum rainfall summer, 7 days cumulative rainfall summer, rainfall in 
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maximum wet spell summer seasonal rainfall summer and number of wet days winter.  

Some interesting conclusions can be derived from this figure. Firstly, with the exception of the 

number of wet days in winter, there is between a 35% and 65% chance that the joint distribution 

of annual rainfall and each of the within year rainfall attributes are statistically similar provided 

the difference in latitude or longitude is small, with the probability decreasing rapidly as 

difference in latitude or longitude increases. This is interesting, as in Figure 4.4a, no account is 

made of any other physiographic information, such as longitude, elevation and distance to coast, 

such that stations may be located in opposite sides of the continent, or at very different 

elevations, and yet still have close to a 50% chance of having the same scaling between annual 

and with-in-year rainfall provided they are at similar latitudes. Secondly, while the probability that 

two stations are similar decreases with increasing difference in longitude for small differences, 

the probability increases again once the difference in longitude reaches about 20 to 25 degrees. 

This result is due to the clustering of stations as shown in Figure 4.2, with groups of stations in 

the south west and southern parts of the continent showing similar climatology. For subsequent 

analysis we only consider predictors for station pairs with a difference in latitude less than 15 

degrees, difference in longitude less than 10 degrees, and difference in elevation less than 350 

metres, with a total of 1,646,664 station pairs meeting these criteria. This ensures that the 

probability that two stations are similar can be represented as a smoothly varying function which 

decreases monotonically as the magnitude of each of the predictors increases.  

We now use a logistic regression model to find the probability that any two stations are similar 

conditional to a range of physiographic metrics, such as the difference in latitude, longitude, 

elevation and distance to coast between each station pair. This formulation is equivalent to the 

formulation specified in Equation 3.4 and will not be repeated here. This model is developed in a 

multivariate setting using all of the above physiographic metrics as predictors, with the 

conceptual basis shown in Figure 3.5. 

The results of this multivariate regression for all key rainfall attributes are presented in Table 4.1, 

and once again plotted for the selected rainfall attributes in Figure 4.5, against an amalgamated 

variable comprising the mean of all the predictors when expressed as a percentage of their 

maximum range. As can be seen, the results show notable improvements in the probability that 

two stations are similar compared to Figure 4.4, since now we are considering the influence of 

other predictors as well. In fact, with the exception of the number of wet days and maximum dry 

spells in winter season, the results show that for small values of each of the predictors there is 

more than 80% probability that the annual to within year joint probability distributions are 

statistically similar. This forms the basis for our assertion that, provided an adequate estimate of 

annual rainfall is available at the location of interest, it is possible to draw data from daily-read 

gauges within a neighbourhood of that location.  
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(a) Difference in latitude 

 

(b) Difference in longitude 

 

Figure 4.4: Percent of statistically similar stations against a single predictor – (a) 

difference in latitude and (b) difference longitude, and seven responses representing 

different with-in-year rainfall attributes. The responses have been calculated using the 

Kolmogorov-Smirnov test statistic. Vertical axis shows number of station pairs being 

statistically similar in terms of annual and with-in-year rainfall attributes at 95% 

confidence level out of total number of station pairs in a bin. Figure extracted from 

[Mehrotra et al., 2012]. 

 

Table 4.1: Logistic regression coefficients. All predictors were found to be statistically significant 
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(usually with a p-value < 0.001 level). 

Season With-in-year rainfall 
attribute 

Logistic regression coefficients 

Intercept Lat Lon Elev Dist_coast Lat*Lon 

DJF Maximum daily rainfall  1.94 -0.311 -0.217 -0.00006 -0.996 0.0292 

DJF Maximum wet spells 1.57 -0.124 -0.238 -0.00097 -1.84 0.0194 

DJF Maximum dry spells 1.27 -0.0815 -0.299 -0.00067 -1.99 0.0260 

DJF Maximum 7 days 
cumulative rainfall 2.10 -0.359 -0.233 0.00022 -0.528 0.0166 

DJF Rainfall in maximum wet 
spell 2.69 -0.331 -0.228 0.00061 -0.664 0.0149 

DJF Amount per wet day 0.715 -0.159 -0.142 -0.00092 -2.03 0.0240 

DJF Total rainfall 2.26 -0.421 -0.351 0.00035 -0.280 0.0146 

DJF Number of wet days 0.687 -0.102 -0.283 -0.00129 -1.78 0.0220 

MAM Maximum daily rainfall  1.81 -0.134 -0.175 0.00103 -1.22 0.0169 

MAM Maximum wet spells 1.41 -0.0949 -0.0953 -0.00044 -2.88 0.0124 

MAM Maximum dry spells 1.60 -0.0989 -0.136 -0.00087 -3.17 0.0183 

MAM Maximum 7 days 
cumulative rainfall 2.45 -0.173 -0.159 0.0006 -1.29 0.0168 

MAM Rainfall in maximum wet 
spell 3.13 -0.212 -0.194 0.00052 -1.29 0.0217 

MAM Amount per wet day 0.748 -0.142 -0.162 -0.0007 -1.93 0.0250 

MAM Total rainfall 3.43 -0.145 -0.109 -0.00028 -2.58 0.0077 

MAM Number of wet days 0.704 -0.168 -0.123 -0.00067 -2.47 0.0228 

JJA Maximum daily rainfall  1.82 -0.135 -0.227 0.00107 -1.71 0.0178 

JJA Maximum wet spells 0.655 -0.265 -0.120 -0.0001 -0.817 0.0183 

JJA Maximum dry spells 0.740 -0.326 -0.167 0.00036 -0.527 0.0111 

JJA Maximum 7 days 
cumulative rainfall 1.94 -0.226 -0.223 0.00047 -0.897 0.0115 

JJA Rainfall in maximum wet 
spell 2.15 -0.189 -0.181 0.00044 -0.993 0.0115 

JJA Amount per wet day 0.477 -0.165 -0.190 -0.00026 -1.44 0.0221 

JJA Total rainfall 1.53 -0.337 -0.277 0.00021 -0.231 0.0059 

JJA Number of wet days 0.0353 -0.318 -0.139 0.00015 -0.504 0.0136 

SON Maximum daily rainfall  2.15 -0.135 -0.175 -0.00038 -2.23 0.0197 

SON Maximum wet spells 1.14 -0.174 -0.154 0.00015 -1.75 0.022 

SON Maximum dry spells 1.17 -0.389 -0.170 0.00058 -1.00 0.0337 

SON Maximum 7 days 
cumulative rainfall 2.69 -0.157 -0.152 0.00052 -2.15 0.0124 

SON Rainfall in maximum wet 
spell 3.38 -0.197 -0.0942 0.00065 -1.63 0.0141 

SON Amount per wet day 0.602 -0.147 -0.116 -0.00085 -2.15 0.0216 

SON Total rainfall 2.559 -0.222 -0.138 0.00025 -1.62 0.0161 

SON Number of wet days 0.324 -0.212 -0.167 0.00014 -1.32 0.0266 

Annual Annual wet days -0.500 -0.147 -0.0981 -0.00039 -1.62 0.0199 
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Figure 4.5: As per Figure 4.4, except the results represent the outcomes of the full 

multivariate logistic regression. The probability that annual and with-in-year rainfall 

attributes are statistically similar is plotted against percent differences in latitude, 

longitude, elevation, normalised distance to coast and latitude*longitude with 100 percent 

representing 15 degree difference in latitude, 10 degree difference in longitude, 350 metre 

difference in elevation, 1 unit of scaled difference in distance to coast and 75 squared 

degree latitude*longitude. Figure extracted from [Mehrotra et al., 2012]. 

4.3.2.3. Model Implementation  

On the basis of the methodology described in the previous section, multivariate logistic relations 

are developed for all key rainfall attributes, with regression coefficients as shown in Table 4.1.  

Owing to a large pool of rainfall attributes, the developed relationships are examined closely and 

a few important rainfall attributes are selected encompassing the full distribution of relationships 

and also capturing the overall seasonal variations. The finally selected rainfall attributes include:  

(a) rainfall in maximum wet spells – winter; (b) rainfall in maximum wet spells – summer; (c) 

number of wet days – winter; (d) number of wet days – summer; (e) total rainfall amount – 

winter; (f) total rainfall amount – summer and; (g) maximum wet spells – summer, totalling seven 

rainfall attributes. 

The approach to identifying ‘nearby’ stations is as follows: 

1. For any location of interest (the ‘target’ location), identify the probability (u) that each of 

the 2708 daily rain gauge stations in Australia is statistically similar using the logistic 

regression coefficients provided in Table 4.1.  
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2. Rank the probabilities from lowest to highest for each rainfall attribute, and calculate the 

average rank, ri , for each of the 2708 stations across all rainfall attributes. 

3. The S lowest-ranked stations represent ‘statistically similar nearby stations’ for inclusion 

in the daily rainfall generation model.  

4. Calculate the weight associated with each nearby stations using the following: 

∑
=

=
S

k

k

i
i

r

r
w

1

/1

/1
        (4.5)

  

where the  wi represents the weight associated with the ith station. Lowest ranked 

stations with statistically similar rainfall attributes will have higher weight and therefore 

have a high probability of being selected in the rainfall generation algorithm. 

The selection of the size of S is somewhat subjective, as larger values of S increase the 

probability of selecting stations which are statistically different to the target station, whereas 

smaller values of S will result in small sample sizes. For this study we selected S = 5, resulting 

in an average of approximately 125 - 200 years of data distributed over the 5 stations. The 

stepwise procedure of rainfall generation at the target station using the daily records of S nearby 

stations is given in the algorithm below: 

Algorithm 4.2a – Identification of nearby stations and model parameter estimation 

1. Identify the S nearby stations following the procedure outlined in section 4.3.2.3. 

Calculate the weight ws associated with each nearby station s using equation 4.5. Low 

ranked stations with statistically similar rainfall attributes will have higher weights.  

Transform these weights to probabilities (Ps) and cumulative probabilities (Pws) using the 

following: 

 �: � ;<∑ ;>?>@,  and �;: � �;:�� 5 �;:  for s>1 ; �;� � ��      (4.6) 

2. Calculate the average annual rainfall, AB:, at these stations, and the average annual 

rainfall at the target station, oA , using a spatially interpolated map of total annual rainfall 

across Australia (can be obtained from the Bureau of Meteorology web site : 

http://www.bom.gov.au/jsp/ncc/climate_averages/rainfall/index.js). 

3. At each identified nearby location s, for all calendar days of the year, calculate the 

transition probabilities of the standard first order Markov model and, conditional means 

and variances of the higher time scale predictor variable Z (previous 365 days wetness 

state) using the observations falling within the sliding window of 15 days on either side of 

the current day. Denote these transition probabilities as P1,1(s) for current day being wet, 

previous day was also wet and P1,0(s) for current day being wet, previous day was dry 

and, conditional means and variances of predictor variable Z as µ and V (of dimension 

4), respectively for all four cases of current and previous days being wet or day. Also for 

each calendar day (t), look for wet days (I(Rj)=1)within the same sliding window and form 
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series of current day rainfall amount ( )(sR j )and associated previous days rainfall value (

)(1 sR j− ).For a given day t, let j index varies from 1 to N. Calculate variances and 

covariances (Σ ) of )(sR j  and )(1 sR j−  series.  

4. Before the start of simulation, select at random a nearby station. Pick a short segment 

(one year) of the historical sequence at this station to use for the initial specification of Zt. 

The first day in the generated sequence is the day immediately after the end of this start 

up sequence. 

Algorithm 4.2b – Generation of rainfall occurrences 

1. At a given day t, generate a uniformly distributed random number u and identify the 

position s* such that �;:C�� D E F �;:C
 
, thereby selecting a nearby station s. Assign 

appropriate transition probability to the day t based on previous day’s  rainfall state of the 

generated series at the target station. If previous day is wet, assign probability P as 

P11(s) otherwise assign P10(s).  

2. Calculate the value of the previous 365 days wetness state (number of wet days) prior to 

the day t using equation (1) and the available generated sequence I( ∗
R ) at target station, 

where ∗
R  defines the generated rainfall series. Modify the transition probability P of 

earlier step using equation (A2) and, conditional means and variances of higher time 

scale predictor for the generated day t at the nearby station s: 
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where the iµ ,1
 parameter represents the mean ( )iRRZE ttt == − )(I,1)(I|

1  and iV ,1
is the 

corresponding variance. Similarly, iµ ,0
 and iV ,0

represent, respectively, the mean and the 

variance of Z when ( iRt =− )(I
1 ) and ( 0)(I =tR ). The 

i
P

,1
 represents the baseline 

transition probability of the first order Markov model defined by ))(I1)(I( 1 iRRP tt == −

with i being either 0 or 1. 

3. Denote the modified transition probability as P
)

. Generate a uniformly distributed random 

number u and compare it withP
)

. If u is ≤P
)

, assign rainfall occurrence, I( ∗

tR ) for the day t 

as wet (1) otherwise dry (0). If day is simulated as dry, move on to the next day ignoring 

rainfall amount generation steps. 

Algorithm 4.2b – Generation of rainfall amount on wet days 

1. The conditional simulation of rainfall amount on a day t using a bivariate Gaussian kernel 

density estimate is given by the following [Sharma et al. 1997]: 
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here, )|(ˆ
1−tt

RRf  is the conditional probability density estimate, λ  is the bandwidth,  ib is 

the conditional mean associated with each kernel slice, iω  is the weight associated with 

each kernel slice that constitutes the conditional probability density and N is total number 

of data points falling within the sliding window and satisfying the condition (I(Rj)=1, 

j=1,N). 
11
Σ , 

12
Σ  etc. are the terms in the covariance matrix Σ , expressed as: 
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The bandwidth λ  is adopted here is the Gaussian reference bandwidth refλ following 

[Scott, 1992] and is expressed as: 
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λ  where, m equals 

number of conditioning variables which is one in our case here.  

2. Conditional rainfall simulation proceeds by estimating weights jω  for the kernel slices for 

all N data points that are associated with each data pair ( jR , 1−jR ) and *

1−tR using 

equation (A4). These weights represent the contribution that each kernel has in forming 

the conditional probability density. These weights are transferred to cumulative 

probability Pj using the following: 

 

∑
=

=
N

i

i

j

j
p

1

ω

ω
 and  �G � �G�� 5 HG    for j>1 ; �� � H�       (4.11) 

3. Generate a uniformly distributed random number u and identify the position j* such that 

*1* jj PuP ≤<− , thereby selecting an Rj(s) value from the R(s) series. Calculate bj as the 

conditional mean associated with the kernel Rj(s) using equation (4.9). 
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4. Sample ∗

tR as a random variate from the kernel centred on bj (the conditioned kernel slice 

being a Gaussian PDF with a mean bj and a variance equal to (I#ΣK),  
 LMC � �G 5 I
√ΣK�NM       (4.12) 

where Wt is a random variate from a normal distribution with mean of 0 and variance of 

1, OP is a measure of spread of the conditional density given by equation 4.9 and ∗

tR is 

the generated rainfall at a day t. If generated rainfall is less than rainfall threshold of 0.3 

mm, go back to step 3 else move on to the next step. 

5. Rescale the generated daily rainfall by multiplying it by the ratio AB°/AB: .  

6. Move to the next day in the generated sequence and repeat above steps (starting from 

rainfall occurrences) until the desired length of generated sequence is obtained. 

4.4. Results  

We tested the applicability of the logic outlined in Section 4.3 in this section. Specifically, we 

assessed the capability of the regionalised daily simulation model (formulated to not use the 

observed record for the location being modelled) in representing attributes derived from the 

observed daily record, followed by an assessment of the continuous rainfall sequences derived 

through disaggregation from the generated daily sequence. Our assessment is based on daily 

and sub-daily rainfall data at five climatologically different locations in Australia (Sydney, Perth, 

Alice Springs, Cairns and Hobart). It should be noted that the regionalised daily generation 

model reported here uses all available daily rain gauges in Australia (totalling to 2708 gauges 

with a minimum of 25 years of data), and not just the 1282 gauges that were used in the 

development of the logistic regression relationships (where only station pairs with a difference in 

latitude less than 15 degrees, difference in longitude less than 10 degrees, and difference in 

elevation less than 350 metres were used). The assessment results in the following sub-

sections are based on 100 realisations, each equalling the record length of the historical data 

available at each location. 

4.4.1. Annual and seasonal statistics 

The seasonal and annual means and standard deviations of wet days and rainfall amounts from 

the simulated and observed daily rainfall time series are presented in Table 4.2. The means of 

both number of wet days and rainfall amounts are reproduced reasonably well, with the 

simulated results generally within 10% of the observed data. The primary exception to this is for 

Alice Springs, in which the simulated mean number of wet days is between 17.1% and 50.0% 

below the observed number of wet days, with the rainfall amount also being underestimated by 

18.4% for the winter season. The reason for this discrepancy is likely to be the sparse sampling 

of rainfall in the vicinity of Alice Springs leading to the selection of ‘nearby’ gauges which are not 

reflective of at-site daily rainfall; furthermore the arid nature of the Alice Springs climate may 

also contribute to results, with much of the rainfall being contained in a small number of wet 

years potentially leading to less consistent results. In all cases the average annual observed and 



Project 4: Continuous Rainfall Sequences at a Point 

 

P4/S2/014: 26 June 2012   56 

simulated rainfall amounts correspond exactly, as each simulated series is scaled to the 

observed rainfall amounts. In a setting where observed data is not available such scaling will be 

achieved using a spatially interpolated total annual rainfall product, therefore inducing an 

additional source of uncertainty. Unlike the mean rainfall, the annual standard deviations are 

generally under-simulated, by an average of about 12% for number of wet days and by an 

average of 19% for rainfall amounts.  

Table 4.2: Observed and simulated rainfall statistics for five selected locations. 

Season/ 

Station 

Number of wet days Rainfall amounts (mm) 

Mean Standard deviation Mean Standard deviation 

Observed Simulated 
(5 and 95% 
confidence 

bounds) 

Observed Simulated 
(5 and 95% 
confidence 

bounds) 

Observed Simulated 
(5 and 95% 
confidence 

bounds) 

Observed Simulated 
(5 and 95% 
confidence 

bounds) 

Sydney   (066037) 

Autumn 33.1 33.9  
(32.7-35.6) 

8.4 7.1 
(6.3-8.1) 

320 336 
(319-357) 

159 123 
(105-141) 

Winter 28.4 27.4 
(26.3-28.7) 

8.3 6.7 
(5.8-7.7) 

267 255 
(238-272) 

147 107 
(93-123) 

Spring 30.0 30.1 
(28.9-31.6) 

7.9 6.4 
(5.6-7.3) 

214 217 
(204-232) 

110 83 
(71-96) 

Summer 31.9 32.8 
(31.6-34.1) 

8.4 6.5 
(5.6-7.3) 

285 280 
(263-297) 

158 102 
(87-118) 

Annual 123.3 124.3 
(121.6-
127.3) 

21.0 16.2 
(13.7-18.8) 

1086 1087 
(1087-1087) 

317 222 
(187-252) 

Perth (009021) 

Autumn 23.5 22.9 
(21.8-24.2) 

5.4 6.2 
(5.3-7.0) 

161 167 
(155-177) 

63 63 
(54-73) 

Winter 49.5 49.1 
(47.7-51.5) 

7.4 7.8 
(6.6-8.9) 

438 424 
(412-438) 

89 91 
(78-110) 

Spring 28.2 29.9 
(28.6-31.0) 

6.9 6.2 
(5.4-7.2) 

144 153 
(145-160) 

47 45 
(39-51) 

Summer 8.3 8.8 
(8.0-9.6) 

4.1 6.2 
(5.4-7.2) 

35 38 
(32-43) 

35 26 
(20-33) 

Annual 109.5 110.7 
(108.3-
114.0) 

15.8 12.9 
(11.0-14.9) 

776 781 
(781-782) 

143 125 
(109-145) 

Alice Springs (015590) 

Autumn 7.8 5.4 
(4.6-6.5) 

5.1 3.8 
(3.2-4.7) 

67 66 
(56-77) 

76 60 
(48-73) 

Winter 6.9 3.6 
(2.9-4.2) 

5.4 2.6 
(2.1-3.1) 

38 29 
(24-35) 

45 28 
(22-34) 

Spring 11.6 8.0 
(7.1-9.6) 

5.5 4.3 
(3.4-5.3) 

58 59 
(51-67) 

42 42 
(33-55) 

Summer 14.2 10.7 
(9.6-12.9) 

6.0 5.5 
(4.6-6.8) 

117 125 
(115-139) 

102 92 
(73-115) 

Annual 40.6 27.8 
(24.9-32.0) 

12.9 10.9 
(8.2-14.1) 

280 279 
(279-279) 

152 144 
(114-176) 

Cairns (031011) 

Autumn 49.2 48.4 
(46.7-50.5) 

8.2 7.7 
(6.5-9.2) 

722 730 
(701-765) 

327 222 
(181-267) 

Winter 25.0 26.2 
(24.8-27.5) 

8.3 6.9 
(5.8-8.0) 

105 140 
(129-151) 

51 56 
(46-69) 

Spring 24.3 24.7 
(23.4-25.9) 

8.9 6.6 
(5.8-7.5) 

165 187 
(172-205) 

110 83 
(71-100) 

Summer 49.4 47.7 
(46.3-49.1) 

9.0 7.3 
(6.2-8.6) 

1008 933 
(900-968) 

414 270 
(235-313) 

Annual 147.9 147.0 
(144.7-
149.9) 

17.8 14.2 
(12.1-16.3) 

2000 1991 
(1991-1991) 

555 366 
(306-421) 

Hobart (094008) 
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Autumn 29.4 28.1 
(26.0-30.7) 

6.7 6.5 
(5.1-8.4) 

115 109 
(101-118) 

53 38 
(31-46) 

Winter 34.7 33.0 
(31.1-35.3) 

8.2 6.4 
(5.2-7.6) 

119 121 
(112-129) 

42 35 
(29-41) 

Spring 35.9 35.6 
(33.2-39.5) 

7.2 7.4 
(6.2-8.6) 

131 139 
(130-148) 

46 43 
(35-51) 

Summer 26.2 26.0 
(23.2-29.7) 

5.8 6.8 
(5.0-8.6) 

131 128 
(116-139) 

60 48 
(40-58) 

Annual 126.2 122.7 
(114.8-
133.5) 

19.8 19.5 
(14.1-24.2) 

496 496 
(496-496) 

110 92 
(76-105) 

 

Figure 4.6 presents the year-to-year distribution of the annual rainfall amounts and annual 

number of wet days across a range of exceedance probabilities. As can be seen, for total annual 

rainfall amounts although the median is well simulated, the variability is low for most locations, 

with the upper and lower bounds of the extremes being underestimated. In contrast, the number 

of wet days is generally well reflected. The exception to this is once again Alice Springs, where 

the distribution of annual rainfall is accurately represented whereas the number of wet days is 

underestimated. This can be explained by the transition probability parameters provided in Table 

4.3, which are generally within 10% of the at-site parameters for all locations except for Alice 

Springs. 

The results show overall good agreement between the observed and simulated statistics at all 

stations. The underestimation of variability at annual time scale is attributable more to the 

structure and assumptions of the daily rainfall generation model adopted here than to the 

regionalisation procedure. The simplified structure of daily rainfall generation model (a single 

predictor as aggregate number of rainfall occurrences over the previous 365 days and use of 

global bandwidth in kernel density estimation procedure) and the assumption of normal 

distribution in equation 4.7 may result in these discrepancies in the results. To check whether 

the under estimation of variability is due to the regionalisation procedure adopted here, we used 

the same model for rainfall generation at these sites using the observed at site rainfall record 

and obtained the similar results (not included). Experimenting with a larger number of predictors 

(Mehrotra and Sharma, 2007a), using the local bandwidth in rainfall simulation procedure 

(Sharma et al, 1997)and using aggregated wet day predictor(s) in the rainfall amount simulation 

stage (Harrold et al, 2003b) might help further improve the representation of observed year to 

year variability in the simulations. 

 

 

 

 

 

Table 4.3: Observed and simulated rainfall transition probabilities for five selected 

locations. Also shown are the percent differences in the brackets. 
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Station/ 
Probabili
ty 

Sydney Perth Alice Springs Cairns Hobart 

Observe
d 

Simulate
d 

Observe
d 

Simulate
d 

Observe
d 

Simulate
d 

Observe
d 

Simulate
d 

Observe
d 

Simulate
d 

p10 0.153 0.155 
(1.3%) 

0.117 0.117 
(-0.1%) 

0.060 0.045 
(-25.0%) 

0.119 0.128 
(7.4%) 

0.178 0.178 
(-0.5%) 

p11 0.184 0.185 
(0.7%) 

0.184 0.186 
(1.3%) 

0.051 0.031 
(-39.5%) 

0.285 0.274 
(-3.7%) 

0.168 0.158 
(-6.0%) 

p111 0.103 0.102 
(-1.0%) 

0.116 0.120 
(3.8%) 

0.022 0.013 
(-41.8%) 

0.207 0.189 
(-8.7%) 

0.082 0.075 
(-7.9%) 

p110 0.081 0.084 
(2.9%) 

0.068 0.066 
(-2.8%) 

0.029 0.018 
(-37.8%) 

0.077 0.085 
(9.8%) 

0.086 0.082 
(-4.3%) 

p010 0.072 0.071 
(-0.4%) 

0.049 0.051 
(3.5%) 

0.032 0.027 
(-13.6%) 

0.042 0.044 
(2.9%) 

0.092 0.095 
(3.1%) 

P011 0.081 0.084 
(2.9%) 

0.068 0.066 
(-2.8%) 

0.029 0.018 
(-37.8%) 

0.077 0.085 
(9.8%) 

0.086 0.082 
(-4.3%) 

 

4.4.2. Sub-daily statistics  

Results based on the disaggregation of the generated daily rainfall to a sub-daily time step are 

presented in Table 4.4 and Figures 4.7 and 4.8. These results are analogous to Table 3.4 and 

Figures 3.8 and 3.9 in which at-site daily rainfall was used but sub-daily fragments were sourced 

from nearby pluviograph stations. Thus, the comparison of these results can be used to 

determine the impact on precipitation extremes and antecedent rainfall for the case when daily 

rainfall is also simulated using nearby station records.  

As can be seen, the results are very similar to those presented in Chapter 3 for all cases, 

although the confidence intervals are slightly wider suggesting that sourcing daily rainfall 

information from a greater range of stations increases variance in both extremes and the 

antecedent conditions leading up to the mean. Nevertheless, these changes are minor and 

suggest that the regionalisation of the daily rainfall model does not result in significant 

deterioration of simulated sub-daily rainfall statistics.  
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Figure 4.6: Distribution plots of observed and model simulated annual number of wet days and rainfall amount for five selected 

locations. Figure extracted from [Mehrotra et al.
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Figure 4.7: 6-minute annual maximum rainfall against exceedance probability for (a) Sydney, (b) Perth, (c) Alice Springs, (d) Cairns, and (e) 

Hobart. Black dots represents observed data, black solid line represents the median of 100 simulations, and black dotted lines represent the 5 
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and 95 percentile simulated values. Figure extracted from [Mehrotra et al., 2012]. 

  

  

 

 

Figure 4.8: 6-hour antecedent rainfall prior to the 6-minute annual maximum storm burst plotted against exceedance probability for (a) Sydney, 
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(b) Perth, (c) Alice Springs, (d) Cairns, and (e) Hobart. Black dots represents observed data, black solid line represents the median of 100 

simulations, and black dotted lines represent the 5 and 95 percentile simulated values. Figure extracted from [Mehrotra et al., 2012]. 
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Table 4.4: Comparison of observed and simulated results for median annual maxima for different storm burst durations, and the antecedent 

rainfall prior to the 1 hour storm burst. The simulated median annual maxima represent the median of all 100 simulations.  

 Sydney Perth Alice Springs Cairns Hobart 

 Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) Observed 

Simulated  
(5 and 95% 
confidence 
bounds) 

Annual maxima  

6 min 8.87 
9.70  
(8.97 – 10.3) 6.18 

6.36  
(5.87 – 6.83) 5.50 

8.02  
(7.24 – 8.60) 11.6 

12.5  
(11.9 – 13.6) 4.51 

4.10  
(3.70 – 4.73) 

30 min 25.7 
25.0  
(23.6-27.2) 14.7 

14.3  
(13.3-15.5) 16.7 

21.4  
(19.4 – 23.6) 34.9 

37.9  
(36.2 – 39.6) 11.3 

9.77  
(8.90 – 10.8) 

1 hr 35.4 
33.4   
(31.3-36.6) 18.8 

18.1  
(17.0 – 19.6) 22.1 

27.3 
(24.1 – 29.9) 51.7 

55.1 
(52.5 – 58.0) 14.6 

12.9  
(12.0 – 14.0) 

3 hr 55.4 
50.5  
(47.6-55.8) 29.0 

26.8  
(25.0 – 28.8) 32.6 

34.9 
(31.1 – 38.9) 83.5 

88.5  
(84.0 – 93.4) 22.9 

20.3  
(18.8 – 21.9) 

6 hr 72.3 
64.7  
(61.1-70.0) 36.3 

33.8 
(31.8-36.0) 39.6 

41.0  
(36.9 – 44.8) 113 

116  
(109 – 123) 30.3 

26.7 
(24.3 – 28.7) 

12 hr 91.8 
82.4  
(77.2-88.7) 45.4 

41.5 
(39.1 – 44.4) 48.2 

47.1  
(42.3 – 51.5) 147 

148  
(138 – 158) 39.6 

32.8 
(30.0 – 35.1) 

Antecedent rainfall prior to 1-hr burst (mm) 

6 hr 15.4 13.1  
(10.5-17.6) 

6.76 5.36 
(4.20-6.96) 

6.10 4.31  
(2.59 – 6.32) 

25.4 20.8  
(16.0 – 27.6) 

6.31 5.04 
(3.76 – 6.71) 

12 hr 22.7 17.4  
(13.9-22.9) 

9.63 7.02  
(5.51-9.01) 

7.98 5.71 
(3.47 – 8.10) 

32.2 27.2  
(20.4 – 37.2) 

9.10 6.14 
(4.54 – 7.93) 

24 hr 31.4 21.9  
(17.9-28.1) 

11.9 9.20 
(7.28 – 11.6) 

10.6 8.63 
(6.03 – 11.3) 

40.3 35.7  
(26.5 – 46.9) 

9.09 7.24 
(5.67 – 9.79) 

48 hr 38.4 25.7 
(21.3-33.0) 

12.5 12.9  
(10.5 – 16.3) 

15.5 11.9 
(8.97 – 15.8) 

54.9 47.6 
(38.4 – 59.4) 

10.2 8.85 
(7.35 – 11.5) 
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4.5. Summary 

The objectives of this chapter were to present a framework for the substitution of ‘nearby’ daily 

rainfall records in cases where daily rainfall at the target location is either unavailable or too 

short, and to evaluate the performance of the approach at a range of locations. 

The stations which are likely to be statistically similar to the target location were identified using 

a range of predictors including location parameters and difference in elevation and difference in 

proximity to the coast. The model parameters were then estimated using the data at these 

locations, and the generated data using these parameters were transferred to the target location 

after an adjustment was made for annual average rainfall.  

The procedure was tested in a fully cross-validation setting, so that simulations for target 

locations did not involve parameters fitted to rainfall observations at nearby locations. The 

results show that the method performs well in reproducing the number of wet days and rainfall 

amounts when there are a large number of daily stations in the vicinity of the target location, 

although performance did deteriorate for Alice Springs which is located in a data-sparse region 

of Australia. In contrast, the standard deviation of both wet days and amounts is typically 

undersimulated at all locations.  

Interestingly, the sub-daily statistics, namely the annual maxima and the antecedent conditions, 

are well preserved, and the use of the regionalised daily model results in little deterioration in 

performance compared to using recorded daily data. This suggests the model is well suited for 

flood simulation which requires correct representation of peak rainfall and the moisture 

conditions in the hours and days leading up to the event. 

Finally we conclude that although regionalised methods of rainfall generation enable the 

generation of rainfall time series at locations where no data is recorded, the models should not 

be expected to perform as well as models which are trained using high-quality at-site rainfall 

data. This is particularly the case where a location is climatologically anomalous compared to 

surrounding gauges, or where the density of nearby gauging stations is sparse, and highlights 

the value of maintaining a high-quality recording network. Nevertheless performance is generally 

reasonable across most statistics, particularly those necessary for flood estimation.  
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5. Comparison with DRIP and NSRP 

5.1. Overview 

In this chapter we compare the output of the continuous simulation model described in the 

previous three chapters with the Disaggregated Rectangular Intensity Pulse (DRIP) model of 

Heneker et al [2001] and a single site version of the Neyman-Scott Rectangular Pulse (NSRP) 

model of Cowpertwait et al [2002]. Both the DRIP and NSRP models were evaluated in detail by 

Frost et al [2004] at ten locations across Australia, and thus for this report we reproduce the 

analysis only for the at-site state-based method of fragments / daily modified Markov model 

presented in earlier chapters.  

The pluviograph and daily rain gauge locations were summarised in Tables 1 and 2 of Frost et al 

[2004]. As with that study, one hundred replicates with the length of the original series were 

generated, with these sequences used to estimate confidence intervals for each of the statistics. 

Missing years were discarded from the analysis, with the average fraction missing data over the 

period of record (excluding those years which were missing in their entirety) being around 5%. 

As the generated sequences do not contain missing data, the generated sequences are slightly 

longer than the observed sequences, and the missing data may slightly affect the observed 

statistics. Nevertheless, each of the continuous simulation methods – namely the state-based 

method of fragments, DRIP and NSRP – are treated similarly, so that this is not likely to impact 

on the conclusions.  

Both the DRIP and NSRP models were based on at-site data so that, to ensure the models were 

comparable, we considered only the results of the state-based method of fragments 

disaggregation model using at-site pluviograph data described in Chapter 2, together with a 

daily rainfall model generated using the modified Markov model described in Chapter 4. 

Although some deterioration might be expected when moving to a regionalised framework, this 

issue was covered in detail using the test statistics described in Chapters 2-4 and is not 

repeated here. 

5.2. Sub-daily results 

The results from our state-based method of fragments / daily modified Markov model are 

summarised in Table 5.1, with figures for all statistics for all months at all ten locations provided 

in Appendix A. The figures are directly comparable with Figures A1-A9 and A12 (for the DRIP 

model) and Figures B1-B9 and B12 (for the NSRP model), which were provided in Frost et al 

[2004]. The only statistics not considered were the dryspell-wetspell correlation and the 

wetspell-dryspell correlation, as we were not able to reproduce the statistics for the observed 

data. The confidence bands for these statistics in Frost et al [2004] were generally very wide, 

suggesting that limited information is provided on model performance from these statistics. 

Therefore these statistics were not considered here. 

The results in Table 5.1 show generally good performance for the state-based method of 

fragments disaggregation, with most statistics being very similar to the DRIP model. The main 

exception was the treatment of extreme rainfall in terms of the distribution of annual maxima, 
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with the state-based method of fragments showing closer correspondence with the observations 

compared to DRIP.  

Table 5.1: Evaluation statistics for state-based method of fragments model against 

observed pluviograph data at 10 locations (detailed results provided in Appendix A). A 

comparison with the DRIP and NSRP results described in Frost et al [2004] is also 

provided.  

Statistic Performance Comparison with DRIP/NSRP Figure 

Dry probability (%) Good – slight downward bias Similar to DRIP; less variable 

than NSRP 

A1 

Mean rainfall (mm) Good Similar to DRIP/NSRP A2 

Standard deviation 

of rainfall (mm) 

Good Similar to DRIP/NSRP A3 

Coefficient of skew 

of rainfall (-) 

Good Similar to DRIP/NSRP A4 

Lag one 

autocorrelation 

Slight underestimation all 

durations 

DRIP underestimates 1hr and 

overestimates 24hr; NSRP 

performs well across all 

durations 

A5 

Dry spell duration 

mean (hr) 

Good  Similar to DRIP; significantly 

improves on NSRP 

A6 

Dry spell duration 

standard deviation 

(hr) 

Good  Similar to DRIP; significantly 

improves on NSRP 

A7 

Wetspell duration 

mean (hr) 

Overestimates  24hr duration Similar to DRIP; slight 

improvement to NSRP 

A8 

Wet spell duration 

standard deviation 

(hr) 

Overestimates 24hr duration Similar to DRIP; slight 

improvement to NSRP 

A9 

Annual maximum 

intensity 

distribution plot 

(Intensity-

Frequency-Duration) 

Good – possible upward bias for 

low non-exceedance probability 

events however this may be due to 

quality of raw pluviograph data 

Superior to DRIP; similar to 

NSRP.  

A10 

An interesting result was that, for cases where biases were present, they tended to be in the 

same direction, of the same magnitude, during the same months and at the same locations, as 

was the case for DRIP. The state-based method of fragments and DRIP are two fundamentally 

different approaches, and thus it is possible that some of the observed biases may be due to the 

issue of missing data described previously, as the stochastically generated data by definition 

does not contain any missing records. Nevertheless, given the generally satisfactory 
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performance of both DRIP and the state-based method of fragments across almost all the 

statistics, this issue was not explored further. 

 

Due to the similarity between the performance of the state-based method of fragments and 

DRIP, the conclusions of Frost et al [2004] with regards to the difference between DRIP and 

NSRP also hold for the difference between the state-based method of fragments and NSRP. In 

particular, both the state-based method of fragments and DRIP are superior in representing dry 

and wet spell duration means and standard deviations, whereas NSRP is superior in terms of 

lag-one autocorrelation. NSRP performs better than DRIP in terms of the annual maximum 

intensity distribution, with results generally comparable to the state-based method of fragments.  

In general, however, all methods perform satisfactorily in reproducing sub-daily statistics.  

5.3. Daily rainfall results 

The results based on the daily statistics are summarised in Table 5.2, with figures for all 

statistics at all ten locations provided in Appendix B. The figures have been developed to be 

directly comparable with Figures A13-A22 (DRIP) and Figures B13-B22 (NSRP) in Frost et al 

[2004]. 

Once again the results show generally good performance across most statistics, with similar or 

better performance to both DRIP and NSRP. A weakness of the NSRP identified in Frost et al 

[2004] was a major overestimation of dry spell means and standard deviations at most locations, 

as well as an overestimation of wetspell means. The longer dry and wet spells simulated by the 

NSRP model suggest that a greater clustering of wet spells, which can have an impact on 

whether this method properly simulates antecedent rainfall conditions prior to the storm event. 

The main weakness of the Markov model is a slight underestimation of annual variability, with 

the method underestimating the probability of the driest and wettest years. The inclusion of the 

previous 365 day’s rainfall as a predictor in the Markov model was designed to address this 

issue; however additional work is required to completely resolve this issue. Although the issue 

appears to be systematic (occurring in most of the 10 locations studied), the magnitude of the 

underestimation is generally low, with the observations usually falling within the 90% confidence 

intervals. 
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Table 5.2: Evaluation statistics for Daily Markov model against observed daily rainfall 
data at 10 locations (detailed results provided in Appendix B). A comparison with the 
DRIP and NSRP results described in Frost et al [2004] is also provided. 

Statistic Performance Comparison with DRIP/NSRP Figure 

Annual rainfall 

distribution plot 

Reasonable; slight 

underestimation of variability 

DRIP and NSRP are slightly 

superior although both 

significantly underestimate Perth 

rainfall across all most 

exceedance probabilities. NSRP 

generally performs best. 

B1 

Dry probability Good – slight overestimation for 

Hobart 

Slight improvement on DRIP; 

significant improvement on 

NSRP 

B2 

Mean rainfall (mm) Good Similar to DRIP and NSRP B3 

Standard deviation 

of rainfall (mm) 

Good Similar to DRIP and NSRP B4 

Coefficient of skew 

of rainfall (-) 

Good Similar to DRIP and NSRP B5 

Lag one 

autocorrelation 

Underestimates all locations DRIP also underestimates 

autocorrelation by similar 

magnitude; NSRP performs best 

B6 

Dry spell duration 

mean (days) 

Slight overestimation for some 

location 

Similar performance to DRIP. 

Both outperform NSRP. 

B7 

Dry spell duration 

standard deviation 

(days) 

Good Similar performance to DRIP. 

Both outperform NSRP. 

B8 

Wet spell duration 

mean (days) 

Slightly underestimates Slight improvement over DRIP, 

which also underestimates but 

by a greater amount. Significant 

improvement over NSRP. 

B9 

Wet spell duration 

standard deviation 

(days) 

Good Performs better than both DRIP 

and NSRP. 

B10 
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6. Discussion and conclusions 

This report describes the outcomes from the second stage of Project 4 – Continuous Simulation 

at a Point, which is conducted as part of the revision of Australian Rainfall and Runoff. The 

emphasis of this stage was to: (1) finalise the development of the regionalised state-based 

method of fragments approach as well as the development of a regionalised daily rainfall 

generation model; and (2) assess the performance of the state-based method of fragments 

using the same statistics and locations that were used in Frost et al [2004], to enable direct 

comparison with the DRIP and NSRP models. 

6.1. Regionalised state-based method of fragments and modified Markov 

models 

The complete at-site state-based method of fragments methodology was described in Chapter 

2, which was based on generating near-continuous rainfall time series that aim to ensure the 

rainfall patterns prior to the major storm event are represented in a realistic manner. Testing 

using both extreme statistics (such as the Intensity-Frequency-Duration, or IFD, relationships) 

and antecedent rainfall-based statistics show this model performs well, although it is heavily 

reliant on having access to long records of sub-daily rainfall at the location of interest. 

Furthermore, by only sampling from historical sub-daily rainfall at the location of interest, the 

diversity of possible rainfall events which could fall on the catchment is likely to be under-

simulated.  

To address these issues, the regionalised version of this model was then presented in Chapter 

3, and involves sampling from a set of nearby sub-daily rain gauges, conditional to at-site daily 

rainfall records. Model evaluation based on the two statistics most relevant for flood simulation: 

namely the Intensity-Frequency-Duration (IFD) statistics and the associated antecedent rainfall, 

showed the model performed generally well in most locations. The primary exception was for 

Alice Springs, for which the regionalised state-based method of fragments model resulted in an 

overestimation of the IFD statistics. This is attributed to the lack of sufficient nearby pluviograph 

records, such that the algorithm was forced to draw from geographically distant pluviograph data 

to develop the continuous sequences. Such biases could also be expected from other 

regionalised approaches, however, as the estimation of model parameters would also be based 

on the availability of sufficient pluviograph records. By contrast, the regionalised state-based 

method of fragments approach identified a likely recording error in Hobart Airport, such that the 

synthetic series is likely to be more representative of the IFD statistics at Hobart Airport than the 

historical data itself.  

A regionalised Markov model was then described in Chapter 4, which was designed to enable 

the generation of continuous sequences of daily rainfall at any location in Australia regardless of 

the presence of gauged data. Testing of this method showed generally reasonable performance, 

although a slight underestimation of the standard deviation of both wet days and amounts was 

found at all locations. Nevertheless, combining this modified Markov model with the regionalised 

state-based method of fragments approach, it was found that the IFD and antecedent rainfall 

statistics were well represented at all locations, once again with the exception of Alice Springs. 
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6.2. Comparison with DRIP and NSRP 

The at-site version of the state-based method of fragments disaggregation and daily rainfall 

modified Markov models were then compared with the DRIP and NSRP models. In general, the 

model performed similarly to the DRIP model, and with both models performing better than the 

NSRP model. Whereas the state-based method of fragments model outperformed DRIP in 

simulating annual maximum storm bursts for sub-daily durations, DRIP appeared superior in 

simulating the distribution of total annual rainfall. Nevertheless these differences were in general 

minor, and both models appear adequate for use in generating continuous rainfall data at the 

sub-daily timescale. 

Finally, although several alternative regional methods are available for continuous simulation, 

such as a regionalised version of DRIP by Jennings et al [2009] and regionalised versions of the 

Poisson cluster models by Gyasi-Agyei [1999], Gyasi-Agyei and Parvez Bin Mahbub [2007] and 

Cowpertwait and O’Connell [1997], there is still a significant research requirement in 

performance of differing classes of regionalised models. Testing conducted on the regionalised 

state-based method of fragments and Markov models described in this report show fairly limited 

deterioration in model performance as the model becomes increasingly regionalised. The 

principal exceptions are for regions where there are limited nearby daily rainfall or pluviograph 

gauges, or for regions what are very climatologically different from the nearby gauged locations 

(for example in mountainous areas). Unfortunately other regionalised approaches, which involve 

estimating model parameters based on nearby gauges, would be likely to suffer from similar 

limitations. This highlights that despite the rapid advance in approaches in regionalising rainfall 

generation, there remains a continued need for maintaining a high-quality observational network 

of point rainfall data. 

6.3. Recommendations and outstanding issues 

Based on the outcomes described in this report, it is concluded that there are a number of 

approaches now available which allow for the generation of extended sequences of continuous 

rainfall at point locations. Comparison of these approaches at locations where significant at-site 

data is available shows similar performance, particularly for the state-based method of 

fragments and DRIP models. Nevertheless, a range of outstanding issues remain, which are 

summarised as follows: 

1) The regionalised state-based method of fragments and modified Markov models have 

not been compared with other regionalised approaches such as the regionalised version 

of DRIP by Jennings et al [2009] and regionalised versions of the Poisson cluster models 

by Gyasi-Agyei [1999], Gyasi-Agyei and Parvez Bin Mahbub [2007] and Cowpertwait 

and O’Connell [1997]. Such a comparison may be beneficial to facilitate wider uptake of 

these methods. 

2) Given the complexity of continuous simulation models, wide update of such methods by 

engineering practice is unlikely in the absence of software products. Although software is 

freely available for the at-site version of DRIP, software is lacking for most of the 

remaining methods.  
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3) There is a linkage between the outcomes of this project and ARR Revision Project 8: 

Use of Continuous Simulation for Design Flow Estimation. Testing of different continuous 

rainfall simulation methods in their capacity to simulate design flows may be beneficial to 

evaluate the implications of moving to a continuous simulation approach for design flood 

estimation.  

4) A multi-site extension to the modified Markov model was described by [Mehrotra and 

Sharma, 2007a], in which stochastic sequences of daily rainfall can be generated at 

multiple point locations in a manner that preserves spatial dependence. This could be 

extended to a regionalised setting by evaluating how the spatial dependence varies 

spatially, and may also serve as an alternative basis for estimating areal reduction 

factors. 

5) All the methodologies here have been developed to generate continuous rainfall 

sequences based on historical climate conditions. One of the principal advantages of 

continuous simulation for future climate is that all changes to the character of 

precipitation (mean and extreme rainfall, seasonality, intermittency, etc) can be 

accommodated. The capacity of extending the approaches described in this report for 

simulating precipitation sequences that are representative of future climate is likely to be 

of significant benefit for future design flood estimation. 
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Appendix A: State-Based Method of Fragments sub-daily evaluation 

statistics 

For all statistics plotted, the observed values are plotted as a point value. The 1, 6 & 24 hr 

results use the ○ (black), ∆ (green) and + (red) symbols, respectively. Simulated median (thick 

line) and 5 and 95% confidence levels (dotted line) are also plotted.  
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Figure A1: Method of fragments dry probability: 1, 6 & 24 hr statistics 
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Figure A2: Method of fragments monthly mean: 1, 6 & 24 hr statistics 
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Figure A3: Method of fragments monthly standard deviation: 1, 6 & 24 hr statistics 
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Figure A4: Method of fragments monthly skew: 1, 6 & 24 hr statistics 
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Figure A5: Method of fragments monthly autocorrelation: 1, 6 & 24 hr statistics 
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Figure A6: Method of fragments monthly dryspell mean: 1, 6 & 24 hr statistics 
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Figure A7: Method of fragments monthly dryspell standard deviation: 1, 6 & 24 hr 
statistics 
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Figure A8: Method of fragments monthly wetspell mean: 1, 6 & 24 hr statistics 
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Figure A9: Method of fragments monthly wetspell standard deviation: 1, 6 & 24 hr 
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statistics 
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Figure A10: Method of fragments 1, 6 & 24 hr Intensity-Frequency-Duration curves 
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Appendix B: Daily Markov model - evaluation statistics 

For all statistics plotted, the observed values are plotted as a point value. Simulated median 

(thick line) and 5 and 95% confidence levels (dotted lines) are also plotted.  
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Figure B1: Daily Markov model - annual rainfall distribution  
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Figure B2: Daily Markov model – dry probability 
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Figure B3: Daily Markov model – daily mean rainfall 
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Figure B4: Daily Markov model – daily standard deviation 
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Figure B5: Daily Markov model – daily skew 
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Figure B6: Daily Markov model – autocorrelation 
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Figure B7: Daily Markov model – dry spell mean 
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Figure B8: Daily Markov model – dry spell standard deviation 
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Figure B9: Daily Markov model – wet spell mean 
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Figure B10: Daily Markov model – wet spell standard deviation 


