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As part of the revision of Australian Rainfall and Runoff, the Bureau of Meteorology has revised the 
Intensity-Frequency-Duration (IFD) design rainfall estimates. Daily point rainfall data are available for 
over 8000 sites across Australia. However, as IFD estimates are required Australia wide, the point 
data need to be gridded to provide estimates for areas where point data are not available. The grids 
serve as the basis for deriving IFD estimates for Annual Exceedance Probabilities (AEP) of 50% to 
1%. Different gridding approaches are available to interpolate spatial data with thin plate smoothing 
splines being one widely used technique. This paper examines the gridding of the Generalised 
Extreme Value (GEV) parameters using a thin plate smoothing spline to estimate design rainfalls 
across Australia. 

When gridding rainfall data, the interaction between topography and precipitation is important for the 
accurate interpolation of rainfall data. Large rainfalls tend to occur in areas of high elevation where the 
density of data is sparse as rainfall gauges are often located in more accessible lowland areas. As a 
consequence, at high elevations, rainfall is likely to be underestimated when it is spatially interpolated 
without reference to elevation. Thin plate smoothing splines allow for the incorporation of the 
topographic dependence of rainfall, which this study confirms as important for the modelling of Annual 
Maximum Series rainfall data. This investigation also explores the implications of Digital Elevation 
Model (DEM) resolution and the number of knot points when gridding precipitation using the 
smoothing spline software ANUSPLIN. 

1. INTRODUCTION  

As part of the revision of Australian Rainfall and Runoff, the Bureau of Meteorology has updated 
Intensity-Frequency-Duration (IFD) data. Daily point rainfall data, available for over 8000 sites across 
Australia has been gridded and serves as the basis for deriving IFD estimates for 50% to 1% Annual 
Exceedance Probability (AEP) events. The interaction between topography and precipitation is 
important for the accurate gridding of rainfall data. In areas of high elevation the density of data is 
sparse as rainfall gauges tend to be located in more accessible lowland areas. As a result at high 
elevations, rainfall is likely to be underestimated if the point data are interpolated without reference to 
elevation. The performance of the interpolation is known to be affected by a number of factors; 
including the digital elevation model (DEM) resolution, the number of data points, and the weighting 
and transformations applied to the data. This paper discusses these issues and recommends the best 
approaches for the IFD Revision Project. The following section provides a discussion of the approach 
used for the gridding of rainfall data for the project. This is followed by the results and a discussion of 
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their implications for the project. Finally conclusions are made for the approach adopted to produce 
the final IFD estimates. 

2. METHOD 

2.1. Thin plate smoothing splines 

A number of methods are available to interpolate spatial point data. Thin plate smoothing splines and 
kriging are two of the most common methods used in gridding climate data (Hutchinson, 1995; Jeffrey 
et al., 2001; Sharples et al., 2005; Beesley et al., 2009; Hutchinson et al., 2009). Thin plate splines 
have been chosen as the analysis method for the IFD Revision Project due to their ability to model the 
spatially coherent signal in the rainfall data as well as removing the noise inherent in the point data 
(Hutchison and Gessler, 1994). Thin plate splines are readily accessed through the use of the 
ANUSPLIN Version 4.37 software (Hutchinson, 2007). A beta release of ANUSPLIN Version 4.4 was 
used for this study. The beta version has the capability to provide individual cross validated estimates 
of the fitted spline surface as well as an ability to use error variances to weight the contribution of the 
transformed target variable. The software has also been simplified by combining the selection of the 
initial knot set with the surface fitting procedure in a single program. 
 
The general model for the trivariate thin plate spline is shown in Equation (1) 

 
( ) Niforexfz iii ,...,1=+=  (1) 

 
where zi are the observed data values for N stations, xi is a 3-dimensional vector of spline independent 
variables, consisting of longitude, latitude and appropriately scaled elevation, and f is an unknown 
smooth function of xi. The error term ei is discussed further in Section 3.3.  
 
The aim of fitting the thin plate spline to the data is to estimate the function f by minimising a penalised 
residual sum of squares, where the penalty is a trade off between the residual sum of squares and the 
roughness of the spline function, as determined by a smoothing parameter. If the smoothing 
parameter approaches zero then the spline fits the data points exactly. As the value of the smoothing 
parameter increases, a second order spline, the usual default, approaches a linear least squares 
regression fit (Wahba 1990). The smoothing parameter is normally optimised by minimising the 
Generalised Cross Validation, as discussed in Section 2.3. 

2.2. Rainfall parameters for analysis 

Previous investigations for the IFD revision project have shown that the Generalised Extreme Value 
(GEV) distribution provides a good fit to the Annual Maximum Series data from individual sites and 
also from regionalised relationships. The GEV has been fitted to regionalised rainfall as reported in 
Johnson et al. (2012), using a region of influence approach. This approach involves scaling the 
regionalised GEV growth curve by the at site mean rainfall, which is also called the “index rainfall”. 
 
The GEV parameters are related to the rainfall quantiles according to the following equation: 
 

( ) ( )( ){ } καξ κ /log1 FFq −−+=                                 0≠k  (2) 
 
where ξ, α and κ are the location, scale and shape parameters, and F is the quantile of interest. 
 
There are two alternatives for providing the final rainfall quantile estimates at gridded locations across 
Australia. The first is to grid the three parameters that describe the GEV distribution at each station 
location (i.e. the index rainfall and the shape and scale parameter). Alternatively the rainfall quantiles 
of interest can be calculated at each station location and used as the inputs to the ANUSPLIN 
gridding. Earlier investigations have shown that there is little practical difference in the estimates from 
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the two approaches for the final gridded estimates of the 50% to 1% AEP rainfall quantiles. Thus the 
ANUSPLIN analysis reported here discusses gridding of the GEV parameters due to the flexibility of 
this approach to estimate any desired rainfall quantile. The gridding optimisation reported here has 
only been carried out for the index rainfall as there is a better conceptual understanding of the 
expected output for this parameter because the relationship between the rainfall and topography is 
clearer. In addition, there is a large range in the values of index rainfalls across Australia which makes 
it easier to isolate inconsistencies in the gridded data. The results reported here are for the 1 day to 7 
day duration rainfall events. The data used for the analysis is a set of 8075 Bureau of Meteorology 
owned daily rainfall stations with more than 30 years of data. The station locations are shown in 
Figure 1. 

2.3. Model optimisation and evaluation 

The optimisation of the thin plate spline fits and the evaluation of the different modelling strategies 
have been made through the use of several summary statistics as described below: 
 

• Generalised Cross Validation (GCV) of each fitted spline surface. The GCV is calculated by 
implicitly removing each data point in turn and calculating the residual of the surface fitted 
using all other data points for a fixed value of the smoothing parameter. The GCV is a 
weighted sum of squares of these residuals. The amount of data smoothing imposed by the 
thin plate spline is determined by minimising the GCV with respect to the value of the 
smoothing parameter. The resulting minimum GCV for a particular spline model option can 
then be compared with the GCV for other models to help determine the best model. 

• Cross Validation Statistics – each data point can be implicitly left out of the analysis to 
calculate the individual residual from the fitted surface without that station. The Mean Absolute 
Error (MAE) and Root Mean Square Error (RMSE) of these individual unweighted residuals 
can also be used to evaluate the overall predictive error of the fitted spline surface. 

• Cross validation statistics on a high quality data subset – the cross validation statistics are 
also reported for a spatially representative set of 500 stations across Australia, all of which 
have at least 50 years of data (Figure 1). The high quality station subset was selected using 
SELNOT, one of the supporting programs for ANUSPLIN which attempts to sample equally in 
the independent spline variable space (Hutchinson, 2007). This spatially representative 
sample reduces the bias in the cross validation statistic that can arise from data sets with 
uneven spatial density (Hutchinson et al. 2009), as is evident in the data plotted in Figure 1.   

 

 
 

Figure 1 Location of high quality data subset used in cross validation. 

Given the skewness of the distributions of index rainfalls across Australia, it is considered that the 
MAE is a more reliable validation statistic as the RMSE may be biased by poor fits to sites with large 
rainfalls. The main statistic used in the validations is therefore the MAE of the spatially representative 
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high quality data subset. The signal of the fitted thin plate spline is also reported in the results 
presented in Section 3. The signal measures the effective number of parameters used in the fitted 
spline. It can be used to assess whether the fitted spline is appropriate. If the signal is too large then 
this can indicate that there are insufficient data points or that errors in the data are correlated. 
Hutchinson and Gessler (1994) suggest that the signal should not exceed about the half the number of 
knots. 
 
The following questions are addressed in this investigation: 
 

• Optimum grid resolution  
• Optimum number of knots to be used for the thin plate smoothing spline 
• Impact of weighting the inputs using their error variances 
• Appropriate transformations for the index rainfall 
• Impact of including elevation in the thin plate smoothing spline as a predictor of index rainfall  

 
For each of these, a natural logarithm transform of the index rainfall has been used. This choice of 
transformation is further explored in Section 3.4. Analysis has been carried out for rainfall event 
durations from 1 day to 7 days. Each spline surface is fitted independently and the ANUSPLIN log file 
reports results for each duration’s surface separately. Summary statistics averaged across all 
durations are reported below.  

3. RESULTS AND DISCUSSION 

3.1. Optimum Grid Resolution 

The grid resolution is used in fitting the thin plate smoothing splines through the use of area averaged 
elevations at the station locations rather than the point station elevations. This is considered to be 
desirable for several reasons. Firstly the recorded station point locations may not be accurate for 
rainfall stations that have not been recently open and station elevation information may not be 
available for all rainfall stations. Secondly it is thought that by using the elevations from an area 
averaged DEM, the thin plate smoothing splines will be using information at the scales that rainfall 
processes generally operate i.e. in the order of a few km (Sharples et al., 2005). 
 
Grid resolutions from 0.0025 to 0.07 degrees (approximately 0.25 to 7 km) were tested for the 
surfaces of index rainfall. For the initial testing 2000 knots were used for each thin plate smoothing 
spline. Summary results averaged over all durations are presented in Table 1. The minimum predictive 
error for the high quality data set (far right column in Table 1) is obtained from the 0.025 degree 
(approximately 2.5 km) resolution. Results are fairly similar for the five finest grid resolutions. 
 

Table 1 Summary statistics for grid resolution optimisation using 2000 knots 
 

 
2000 knots 

 
All Stations 

Cross Validated 
Transformed 

Variable 

Cross Validated 
Untransformed 

Variable 

Cross Validated 
High Quality 

Stations 
Resolution Signal GCV RMSE MAE RMSE MAE RMSE MAE 

0.0025 1440.8 0.0853 0.0871 0.0628 14.30 7.31 18.65 8.31 
0.010 1431.2 0.0843 0.0861 0.0622 14.20 7.25 18.19 8.20 
0.020 1417.3 0.0842 0.0856 0.0619 14.00 7.20 17.80 8.22 
0.025 1455.3 0.0823 0.0840 0.0611 13.70 7.07 17.70 8.12 
0.030 1453.0 0.0828 0.0844 0.0612 13.50 7.04 18.38 8.27 
0.050 1449.9 0.0827 0.0842 0.0609 13.40 6.98 18.15 8.21 
0.070 1415.0 0.0857 0.0865 0.0627 13.70 7.23 18.37 8.51 

 
ANUSPLIN reports the largest residuals between the fitted and point estimates. These residuals were 
checked for obvious data errors, that their location was correct and that the period of record was 
representative. This was found to be the case for all stations, as quality control and previous 
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ANUSPLIN analyses had identified problem stations. To reduce the deviations of the fitted spline 
surface from the point estimates, an additional 20 knots, obtained from the 20 largest residuals that 
were not already knots, were used in the second round of DEM resolution testing. This was based on 
adding 1% to the initial number of knots. The results from this work are shown in Table 2. The 
optimum resolution appears to be the 0.025 degree DEM resolution according to the MAE for the high 
quality data set followed closely by the 0.05 degree DEM. Thus the 0.025 degree and 0.05 degree 
DEM resolutions will be used for the other optimisation tests. 
 

Table 2 Summary statistics for grid resolution optimisation using 2020 knots  
 

 
2020 knots 

 
All Stations 

Cross Validated 
Transformed 

Variable 

Cross Validated 
Untransformed 

Variable 

Cross Validated 
High Quality 

Stations 
Resolution Signal GCV RMSE MAE RMSE MAE RMSE MAE 

0.0025 1521.9 0.0829 0.0859 0.0623 14.00 7.23 18.82 8.26 
0.010 1509.1 0.0821 0.0852 0.0618 14.00 7.19 18.39 8.24 
0.020 1489.5 0.0817 0.0843 0.0614 13.60 7.08 18.44 8.30 
0.025 1531.1 0.0804 0.0835 0.0610 13.10 6.97 17.76 8.05 
0.030 1530.3 0.0806 0.0834 0.0609 13.30 6.99 18.41 8.21 
0.050 1544.5 0.0794 0.0823 0.0602 13.00 6.86 17.31 8.11 
0.070 1496.9 0.0820 0.0841 0.0613 13.30 7.05 17.77 8.35 

3.2. Optimum number of knots 

The results in the previous section show that the choice of DEM resolution is strongly affected by the 
number of knots used in the thin plate smoothing spline. Previous investigations for the IFD revision 
project, not reported here, have shown that the number of knots should be around 2000 and 3000 to 
provide appropriate definition of the spatial variations in index rainfall when using around 8000 rainfall 
stations. It was found that the complexity of the fitted spline did not appreciably increase with larger 
knot sets. 
 
Tests for the 0.025 degree and 0.05 degree resolutions were carried out with 2000 knots and 2500 
knots. For both knot sizes, the number of knots was increased by up to 2% in two stages (e.g. initially 
2000 knots, then 2020 knots and 2040 knots). Results clearly indicate the addition of knots improves 
the performance of the model resulting in lower cross validation error statistics (Table 3) for all stations 
and the set of high quality stations. Based on these statistics, it is recommended that 2550 knots are 
used for both DEM resolutions. 
 

Table 3 Summary statistics for optimising number of knots 
 

DEM 
Resolution All Stations 

Cross Validated 
Transformed 

Variable 

Cross Validated 
Untransformed 

Variable 

Cross Validated 
High Quality 

Stations 
No. of knots Signal GCV RMSE MAE RMSE MAE RMSE MAE 

0.025 degree DEM 
2000 1455.3 0.0823 0.0840 0.0611 13.70 7.07 17.70 8.12

2020 - +1% 1531.1 0.0804 0.0835 0.0610 13.10 6.97 17.76 8.05
2040 - +1% 1575.4 0.0794 0.0834 0.0609 13.10 6.94 17.95 8.03

2500 1694.4 0.0810 0.0827 0.0600 13.50 6.93 17.63 8.06
2525 - +1% 1804.7 0.0788 0.0819 0.0598 12.90 6.83 17.61 8.00
2550 - +1% 1886.2 0.0771 0.0812 0.0594 12.80 6.76 17.73 8.02

0.05 degree DEM 
2000 1449.9 0.0827 0.0842 0.0609 13.40 6.98 18.15 8.21

2020 - +1% 1544.5 0.0794 0.0823 0.0602 13.00 6.86 17.31 8.11
2040 - +1% 1591.2 0.0782 0.0820 0.0601 12.80 6.82 17.79 8.12

2500 1706.0 0.0799 0.0818 0.0595 13.20 6.83 17.83 8.07
2525 - +1% 1824.5 0.0772 0.0805 0.0589 12.70 6.70 16.71 7.81
2550 - +1% 1896.5 0.0759 0.0801 0.0588 12.50 6.67 16.91 7.88
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3.3. Impact of weighting the inputs using their error variances 

The thin plate spline uses a model for the errors at individual sites as shown in Equation 3. 
 

( )2,0~ σii wNe  (3) 
 
Where N denotes a normal distribution, wi is the relative error variance at station i and σ2 is the error 
variance term which is constant across all points. 
 
In the models reported in Section 3.1 and 3.2, the errors were assumed to be constant across all 
stations (i.e. wi all equal to one). However this neglects the variance information that is available for 
each point estimate of the rainfall parameters. For the index rainfall, the point estimates of the error 
variance were estimated as the square of the standard error of the index rainfall estimates. 
 
Table 4 compares the cross validation error estimates for the unweighted cases (as reported in Table 
3) with the corresponding case where the inputs are weighted by their error variances. The results are 
reported for the 2550 knot case since this was shown to provide the best results in Table 3. Since the 
standard errors are inversely proportional to the record length, using the error variances in ANUSPLIN 
allows the longer record lengths stations to be given more weight in the fitted spline. In addition 
ANUSPLIN is given information on the variability of the rainfall at the location. The weighted analyses 
have smaller signals, indicating more robust analyses. However, the differences between the weighted 
and unweighted estimates are quite small. A review of the resulting surfaces shows that the largest 
differences occur in data sparse areas. The MAE for the high quality data set is reduced by using the 
error variance weighting although some of the other summary statistics are increased slightly using 
the differential weighting. 
 

Table 4 Summary statistics for the impact of weighting with error variances 
 

2550 knots All Stations 
Cross Validated 

Transformed 
Variable 

Cross Validated 
Untransformed 

Variable 

Cross Validated 
High Quality 

Stations 
Case Signal GCV RMSE MAE RMSE MAE RMSE MAE 

0.025 deg. unweighted 1886.2 0.0771 0.0812 0.0594 12.80 6.76 17.73 8.02
0.025 deg. weighted 1725.6 0.0854 0.0812 0.0591 13.10 6.80 17.95 7.98
0.05 deg. unweighted 1896.5 0.0759 0.0801 0.0588 12.50 6.67 16.91 7.88
0.05 deg. weighted 1753.5 0.0835 0.0795 0.0581 12.70 6.65 17.15 7.84

3.4. Appropriate transformations for index rainfall 

ANUSPLIN offers a choice of transformations for the dependent variable. A transformation may be 
required if the variable to be predicted is strongly skewed. In these cases without the transformation, 
the results are likely to be biased to the high values. Two alternatives are a square root transformation 
and a natural logarithm transformation. ANUSPLIN transforms the error variances according to the 
chosen data transformation and the error analysis for the fitted surface can be reported in both 
transformed and untransformed variable space. ANUSPLIN also corrects for the bias that is induced in 
the back-transformed fitted spline values (Neyman and Scott, 1960). The fitted thin plate smoothing 
splines were tested using all transformation options. 
 
Results are based on tests using 2500 knots for simplicity and using the error variances to weight the 
inputs to the analysis. The log transformation clearly provides the best performance for all cross 
validation statistics and also minimises the signal of the resulting surface (Table 5). The latter gives 
rise to a more robust analysis and also enables a more effective analysis for a given limited number of 
knots. As it was very clear that the log transformations provided the best results, it was only tested on 
the 0.05 degree DEM. 
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Table 5 Summary statistics for applying different transformations to index rainfall 
  

Resolution and 
transformation 

applied 

 
All Stations 

Cross Validated 
Transformed 

Variable 

Cross Validated 
Untransformed 

Variable 

Cross Validated 
High Quality 

Stations 
Case Signal GCV RMSE MAE RMSE MAE RMSE MAE 

0.05 deg no trans 2052.8 12.2000 - - 14.90 7.35 19.98 8.85
0.05 deg sqrt trans 1797.3 0.4760 0.4950 0.3140 14.20 7.08 19.06 8.39
0.05 deg log trans 1592.5 0.0881 0.0818 0.0592 13.40 6.85 18.11 8.08

3.5. Impact of elevation as a predictor of index rainfall 

Elevation is considered to play an important role in the accuracy of gridded rainfall data because of the 
topographic dependence of rainfall (Hutchinson, 1998; Sharples et al., 2005). Past studies have 
shown that position and vertically exaggerated elevation are useful independent variables to use in 
interpolating mean rainfall data (Hutchinson, 1995). The effect of vertically exaggerated elevation on 
rainfall has been demonstrated by showing that the root mean square residuals of withheld data 
displayed a distinct minimum when station elevations were exaggerated by a factor of 100 
(Hutchinson, 1998;1995). The appropriate relative scaling for these analyses was achieved by using 
longitude and latitude in units of decimal degrees and elevations in km. 
 
To assess the importance of elevation, tests were conducted by fitting splines with error variance 
weighted data that excluded elevation and used only longitude and latitude. The results were 
compared to the earlier results for the 0.025 and 0.05 degree DEM based on 2500 knots. Results 
indicate that the inclusion of elevation as a predictor of index rainfall leads to a significant reduction in 
the cross validation error statistics by as much as 10% (Table 6).  
 

Table 6 Summary statistics for the impact of elevation  
 

 
2500 knots 

 
All Stations 

Cross Validated 
Transformed 

Variable 

Cross Validated 
Untransformed 

Variable 

Cross Validated 
High Quality 

Stations 
Case Signal GCV RMSE MAE RMSE MAE RMSE MAE 

Elevation excluded 1426.6 0.11 0.0935 0.0661 14.80 7.61 21.95 8.86 
0.025deg DEM 1566.1 0.0898 0.0829 0.0599 13.80 6.98 18.10 8.11 
0.05 deg DEM 1592.5 0.0881 0.0818 0.0592 13.40 6.85 18.11 8.08 

4. CONCLUSIONS 

The investigations in ANUSPLIN reported in this paper have been used to recommend a strategy to 
provide grids of rainfall parameters for the IFD Revision Project. Although the 0.025 degree resolution 
performed the best in most cases, there is marginal difference when compared the 0.05 degree DEM 
results. For the purposes of the IFD Revision Project it is recommended that the 0.025 degree DEM 
resolution should be adopted because of the additional definition it can provide for the final IFD grids 
in urban areas where practitioners are likely to need IFDs derived for small catchments.  
 
The choice of resolution is also influenced by the number of knots used. The optimum number of knots 
was found to be 2550, because it led to the lowest cross validated MAE for the spatially representative 
High Quality stations. Variance weighting was shown to provide more robust results in data sparse 
areas. However the use of variance weighting for the IFD revision project is still being considered due 
to possible difficulties in calculating the variances for sub-daily durations. This will be an area for future 
research. The natural log transformation for index rainfall provides the best performance for all 
validation statistics. Elevation has been confirmed as an important covariate, improving the 
performance of thin plate splines and will be incorporated in all models along with longitude and 
latitude. Figure 2 shows the final index rainfall map for the 1 day rainfall event, based on the model 
parameters recommended from this investigation. 
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The spatial pattern in Figure 2 is reasonably similar to the pattern of Mean Annual Rainfall (MAR), but 
with simpler gradients over central Australia and possibly a more consistent coastal gradient along the 
east coast of Australia. The latter reflects the consistent availability of atmospheric moisture along the 
east coast. The area of high MAR in south western Tasmania is not reflected in the index rainfall. 
Further investigations are required to assess whether this is a result of the daily station density in this 
region or is caused by nature of the meteorological conditions affecting this region. Other fine scale 
features in this map largely reflect local variations in topography, but also occasional data outliers in 
some data sparse areas.    

 
Figure 2 1 day index rainfall map (0.025 degree DEM, 2550 knots) 
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