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FOREWORD 

 
AR&R Revision Process 

 
Since its first publication in 1958, Australian Rainfall and Runoff (ARR) has remained one of the 

most influential and widely used guidelines published by Engineers Australia (EA).  The current 

edition, published in 1987, retained the same level of national and international acclaim as its 

predecessors.  

 

With nationwide applicability, balancing the varied climates of Australia, the information and the 

approaches presented in Australian Rainfall and Runoff are essential for policy decisions and 

projects involving: 

• infrastructure such as roads, rail, airports, bridges, dams, stormwater and sewer 

systems; 

• town planning; 

• mining; 

• developing flood management plans for urban and rural communities; 

• flood warnings and flood emergency management; 

• operation of regulated river systems; and 

• prediction of extreme flood levels. 

 

However, many of the practices recommended in the 1987 edition of AR&R now are becoming 

outdated, and no longer represent the accepted views of professionals, both in terms of 

technique and approach to water management.  This fact, coupled with greater understanding of 

climate and climatic influences makes the securing of current and complete rainfall and 

streamflow data and expansion of focus from flood events to the full spectrum of flows and 

rainfall events, crucial to maintaining an adequate knowledge of the processes that govern 

Australian rainfall and streamflow in the broadest sense, allowing better management, policy 

and planning decisions to be made. 

 

One of the major responsibilities of the National Committee on Water Engineering of Engineers 

Australia is the periodic revision of ARR.  A recent and significant development has been that 

the revision of ARR has been identified as a priority in the Council of Australian Governments 

endorsed National Adaptation Framework for Climate Change.   

 

The update will be completed in three stages.  Twenty one revision projects have been identified 

and will be undertaken with the aim of filling knowledge gaps.  Of these 21 projects, ten projects 
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commenced in Stage 1 and an additional 9 projects commenced in Stage 2.  The remaining two 

projects will commence in Stage 3.  The outcomes of the projects will assist the ARR Editorial 

Team with the compiling and writing of chapters in the revised ARR. 

 

Steering and Technical Committees have been established to assist the ARR Editorial Team in 

guiding the projects to achieve desired outcomes.  Funding for Stages 1 and 2 of the ARR 

revision projects has been provided by the Federal Department of Climate Change and Energy 

Efficiency.  Funding for Stages 2 and 3 of Project 1 (Development of Intensity-Frequency-

Duration information across Australia) has been provided by the Bureau of Meteorology.  

 

Project 5: Regional Flood Methods 

The most commonly encountered hydrological problem associated with estimating flood flows is 

that of estimating the flood flow of a given Annual Exceedence Probability (AEP) at a location 

where the historical monitored information is inadequate for frequency analysis.  These locations 

are referred to as ungauged catchments.  Numerous alternative techniques have been 

developed historically in the different regions of Australia to provide the necessary design flow 

predictions in ungauged catchments.  The current diversity of approaches has resulted in 

predicted flows varying significantly at the interfaces between regions.  It was recognised that 

there was a need to develop generic techniques that can be applied across the whole country, 

to test these techniques, and to develop appropriate guidance in their usage. 

 

The aim of Stage 2 of Project 5 was to test the suitability of alternative national approaches to 

the estimation of design peak flow predictions for ungauged catchments. 

 

 

 

Mark Babister     Assoc Prof James Ball 
Chair Technical Committee for   ARR Editor 
ARR Research Projects 
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AR&R REVISION PROJECTS 

The 21 AR&R revision projects are listed below: 

 

AR&R Project 

No. 
Project Title 

1 Development of intensity-frequency-duration information across Australia 

2 Spatial patterns of rainfall 

3 Temporal pattern of rainfall 

4 Continuous rainfall sequences at a point 

5 Regional flood methods 

6 Loss models for catchment simulation 

7 Baseflow for catchment simulation 

8 Use of continuous simulation for design flow determination 

9 Urban drainage system hydraulics 

10 Appropriate safety criteria for people 

11 Blockage of hydraulic structures 

12 Selection of an approach 

13 Rational Method developments 

14 Large to extreme floods in urban areas 

15 Two-dimensional (2D) modelling in urban areas. 

16 Storm patterns for use in design events 

17 Channel loss models 

18 Interaction of coastal processes and severe weather events 

19 Selection of climate change boundary conditions 

20 Risk assessment and design life 

21 IT Delivery and Communication Strategies 

 
AR&R Technical Committee:  

 

Chair:  Mark Babister, WMAwater  

Members: Associate Professor James Ball, Editor AR&R, UTS  

  Professor George Kuczera, University of Newcastle 

  Professor Martin Lambert, Chair NCWE, University of Adelaide 

  Dr Rory Nathan, SKM 

  Dr Bill Weeks, Department of Transport and Main Roads, Qld 

  Associate Professor Ashish Sharma, UNSW 

  Dr Bryson Bates, CSIRO  

  Steve Finlay, Engineers Australia 

 

Related Appointments: 

ARR Project Engineer:    Monique Retallick, WMAwater 

Assisting TC on Technical Matters:  Dr Michael Leonard, University of Adelaide 
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EXECUTIVE SUMMARY 

In Australia, there are many streams where there is little/no recorded streamflow data. In 

these ungauged and poorly gauged catchments, there is insufficient information/data to 

obtain design flood estimates which are needed to size hydraulic structures, plan and design 

other water infrastructure and undertake various environmental and ecological studies. 

Regional flood frequency analysis (RFFA) is the most commonly adopted technique to derive 

design flood estimates on the ungauged catchments. A RFFA method attempts to transfer 

flood characteristics information from a group of gauged catchments to an ungauged 

catchment of interest. The RFFA methods recommended in the Australian Rainfall and 

Runoff (ARR) in 1987 need updating to reflect the advancements in RFFA methods and new 

additional streamflow data. To update the RFFA methods in the ARR, a project team was 

formed in 2008 and since then the team has been carrying out research and investigations, 

which have now formed part of Project 5 „Regional Flood Methods in Australia‟ in the ARR 

revision projects.  

 

So far, Stage I and Stage II of Project 5 have been completed. The major outcomes of Stage 

I project are as follows.  

 

Formation of Project 5 team and establishment of contacts and cooperations with various 

state agencies to obtain necessary streamflow data and relevant information. About 31 

researchers/engineers from over 14 organisations of various Australian states directly 

contributed to Project 5 Stage I.  

 

Preparation of initial version of national database which involved examination of a large 

number of potential stations from each state, short-listing of the stations, infilling the gaps in 

annual maximum flood series, test for outliers, test for trends and test for rating curve 

extrapolation error. In Stage I, databases for Victoria, NSW, Qld, Tasmania and SA were 

prepared.  

 

Based on detailed literature review, consultation with Project 5 team and various state 

representatives and ARR Technical Committee, a number of RFFA methods were selected 

for detailed investigation which included the Probabilistic Rational Method, Quantile 

Regression Technique and Parameter Regression Technique. For the regression-based 

methods, both ordinary least squares and generalised least squares methods were 

considered. For the formation of regions, fixed state-based regions and region-of-influence 

(based on geographical proximity) were considered.  
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From initial trend analysis, a good number of stations showed trends in the annual maximum 

flood series data; these stations were not included in the development and testing of the 

RFFA methods. However, it was decided to conduct further investigation e.g. impact of serial 

and cross-correlation on the trends, and relationship between the identified trends and 

catchment and climate change/variability indices and impacts of the identified trends on 

regional flood estimates with respect to locations and ARIs of the flood estimates.  

 

The major findings from Stage II project, presented in this report, are as follows.  

 

A quality controlled national database consisting of 727 stations has been prepared.  

 

It has been found that regression-based RFFA methods (such as the quantile regression 

technique (QRT) or parameter regression technique (PRT)) are preferable to the Probabilistic 

Rational Method.  

 

It has also been found that Bayesian QRT and Bayesian PRT methods perform very similarly 

for various Australian states. Since the PRT method offers several additional advantages 

over the QRT (namely, in the PRT flood quantiles increase smoothly with increasing ARIs 

and from the regional LP3 distribution, flood quantiles of any ARI (in the range of 2 to 100 

years) can be estimated), this has been recommended for general application in Australia.  

 

From the comparison of fixed regions and region-of-influence (ROI) approaches, it has been 

found that, where a region contains a sufficient number of sites, the ROI approach 

outperforms the fixed regions. The mean annual flood model generally has the highest model 

error as compared to the SD and skew models. However, the SD and skew estimates are 

suffered greatly by sampling errors.  

 

The developed RFFA methods in Stage II require data of two or three climatic and physical 

catchment characteristics (i.e. catchment area, representative design rainfall intensity and 

mean annual rainfall), which are easy to obtain. This would make the application of the 

recommended RFFA methods easy and simple.  

 

It has been found that the recommended RFFA methods i.e. GLS-PRT-ROI and GLS-PRT-

fixed region perform quite well for the smaller catchments in the database where there is no 

evidence that smaller catchments perform poorly than the medium and larger catchments. 

The possibility of extending the RFFA method to very small catchments beyond the limit of 
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the current Project 5 database has been examined; however, further study is needed to 

develop an acceptable method. 

 

The development of a simple Large Flood Regionalisation Model for regional flood estimation 

in the major flood range was investigated in Stage I of the project (see Stage I report), which 

however did not consider the impacts of inter-station correlation of the annual maximum flood 

series among different pairs of stations on final design flood estimates. Some preliminary 

investigations on inter-station correlation have been undertaken in this report, which however 

needs further investigation.  

 

There is insufficient streamflow data availability at both temporal and spatial scales in the 

arid and semi-arid regions of Australia that can be used to develop statistically meaningful 

RFFA methods. A simplified index type RFFA is recommended for arid/semi-arid regions of 

Australia where four separate regions are recommended at this stage (this needs further 

development and testing before inclusion in the ARR).  

 

In the preliminary investigation (see Stage I report), about 13% of the selected stations (for 

Project 5) showed a trend in the annual maximum flood series data. In this report, the 

impacts of serial and cross-correlation on trend analysis have been investigated. At the 

significance level of 10% and with the consideration of the cross-correlation among the sites 

in the network, the field significance of downward trends in the annual maximum flood series 

was detected over the whole country. However, the field significance of upward trends was 

discovered to be statistically non-significant at 10% significant level. The impacts of the 

identified trends on regional flood quantile estimates for ARIs in the range of 2 to 100 years 

will be investigated in Stage III of the project. This is expected to produce climate change 

adjustment factors as a function of ARIs and locations across Australia. 

 

The testing of the recommended RFFA methods for Australia by various states/stakeholders 

in cooperation with the Project 5 team has been recommended. A set of future tasks has 

been identified. Also, the scope of developing an application tool/software has been 

indicated. 

 

Stage II has developed a firm basis for recommendations on the RFFA methods to be 

included in the revised ARR Chapter (4th edition). It has also identified future research and 

development work in Stage III of the Project, required to develop the Stage II findings into a 

final set of methods, design databases, user guidelines and application tools. 
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The results presented in this report are applicable to the rural catchments in the vicinity of the 

catchments selected in this study; this should not be applied to urban catchments. 
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1. Introduction 
 
1.1 Background 
 
 
To upgrade the regional flood estimation methods in Australian Rainfall and Runoff (ARR), a 

project team has been working since early 2006 with researchers from various Australian 

states, as described in the Stage I report of Project 5 „Regional Flood Methods in Australia‟ 

(see Stage I report, Rahman et al., 2009). 

 

ARR Project 5 has the following broad objectives: 

 

• To collate a quality controlled national database covering all the Australian states for 

testing and developing new regional flood frequency analysis (RFFA) methods. 

 

• To select potential RFFA methods for detailed investigation using the prepared 

national database. 

 

• To develop and test the selected RFFA methods to form the scientific basis of 

recommending suitable RFFA methods for inclusion in the 4th edition of ARR. 

 

• To further test the recommended RFFA methods by various state 

agencies/stakeholders and the Project 5 team to assess their applicability in practical 

situations under a wide range of catchment and hydrologic conditions and make the 

necessary updates/improvements before including them in the ARR chapter.  

 

• To develop application tools that will facilitate the application of the recommended 

RFFA methods by practitioners. 

 

• To identify areas where improvements to the database and further development of 

RFFA methods would be desirable. 

 

As in Dec 2010, Stage I and Stage II of the project have been completed. The major 

outcomes of Stage I project were: 

 

1) Formation of Project 5 team and establishment of contacts and cooperation with various 

state agencies to obtain necessary streamflow data and relevant information. More than  
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31 researchers/engineers from various Australian states directly contributed to Project 5 

Stage I. 

 

2) Preparation of the initial version of the national database, which involved examination of 

a large number of potential stations from each state, short-listing of the stations, infilling 

the gaps in annual maximum flood series, testing for outliers, trends and for rating curve 

extrapolation error. In Stage I, databases for Victoria, NSW, Qld, Tasmania and SA were 

prepared. 

 

3) Based on a detailed literature review, consultation with the Project 5 team and various 

state representatives and ARR Technical Committee members, a number of RFFA 

methods were selected for detailed investigation, which included the Probabilistic 

Rational Method, the Quantile Regression Technique and the Parameter Regression 

Technique. For the regression-based methods, both ordinary least squares (OLS) and 

generalised least squares (GLS) methods were considered. For the formation of regions, 

fixed state-based regions and region-of-influence (ROI) approaches (based on 

geographical proximity) were considered. It was found that regression-based methods 

outperformed the Probabilistic Rational Method. Furthermore, both the Quantile 

Regression Technique and the Parameter Regression Technique with GLS regression 

demonstrated potential for inclusion in the 4th edition of ARR. The superiority of the ROI 

approach over the fixed region was established for regions with sufficient number of sites. 

 

4) From the initial trend analysis, a substantial number of stations showed trends in the 

annual maximum flood series data; these stations were not included in the development 

and testing of the RFFA methods. However, it was decided to conduct further 

investigations, e.g. impact of serial and cross-correlation on the trends, relationship 

between the identified trends and catchment and climate change/variability indices, and 

impacts of the identified trends on regional flood estimates with respect to locations and 

ARIs of the flood estimates.  

 

5) It was found that a simple Large Flood Regionalisation Model can be coupled with the 

GLS regression to develop an easy to apply RFFA method for application in the large 

flood range. 

 

6) It was found necessary to test the applicability of the selected RFFA methods to very 

small catchments, e.g. down to 0.10 km2, for which little or no recorded streamflow data 

are available. 
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7) Up to Dec 2010, a total of five peer-reviewed journal papers and five conference papers 

have been published based on Project 5 Stage I research outcomes. 

 

Project 5 Stage II set the following deliverables: 

 

• Detailed testing on national basis of selected RFFA methods based on Stage I 

outcomes. 

• Development of a method for incorporating climate change signals. 

• Selection of a national method or regions for different methods. 

• International bench marking of the approach. 

• Testing of methods that incorporate climate change adjustments. 

 

To achieve the above deliverables, an extensive research program has been undertaken to 

assess the performance of different RFFA methods when applied in a consistent manner in 

different regions, and to identify the best method for forming regions, dealing with boundary 

issues, establishing limits of application and exploring methods for dealing with special 

situations (small catchments, arid areas, rare events, changing climate). This report presents 

the detailed outcomes of this research.  

 

1.2 Scope of the report 
 
The report presents the data updating and results in relation to Project 5 Stage II. This 

broadly covers the following aspects: 

 

 An update of the national database that was initially prepared as a part of Project 5 

Stage I. 

 A comparison of the short-listed regional flood estimation methods (as an outcome of 

Project 5 Stage I) to make a final recommendation of the regional flood estimation 

method(s) to be adopted for Australia in the 4th edition of the ARR. 

 Detailed results of the development and testing of the recommended regional flood 

estimation method(s). 

 Initial results of regional flood estimation methods for arid and semi-arid regions of 

Australia. 

 Results from on-going investigations on the identification of time trends in the 

Australian annual maximum flood series data. 
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 Results from on-going investigations on the development of a simplified regional flood 

estimation method for large floods. 

 Identification of the scope for further development and testing of the recommended 

regional flood estimation methods by various state agencies/stake holders in 

association with Project 5 team. 

 Identification of the scope for the development of an application tool for routine 

application of the recommended regional flood estimation method(s).   

 
 

1.3 Outline of the report 
 
 

There are 12 chapters in the report, as follows. 

 

Chapter 1 provides the background and scope of the project. 

 

Chapter 2 details the data updating and archiving for all the Australian states/regions. 

 

Chapter 3 presents a brief review of various RFFA methods and identifies potential methods 

for application in Australia. These methods include the Probabilistic Rational Method (PRM) 

and regression based methods such as the Quantile Regression Technique (QRT) and the 

Parameter Regression Technique (PRT). In the PRT, the parameters of the log-Pearson type 

3 (LP3) distribution are regionalised.  A detailed comparison of the PRM and QRT is 

presented in this chapter as well. 

 

Chapter 4 presents results in relation to the development and comparison of the QRT and 

PRT. This chapter also compares fixed region and region-of-influence approaches for the 

formation of regions. Results of the application of the QRT and PRT methods are presented 

for all the Australian states and territories. 

 

Chapter 5 presents the investigations on the applicability of the selected regional flood 

estimation method(s) to smaller catchments. 

 

Chapter 6 presents the results of on-going investigations into the development of a large 

flood regionalisation model. 

 

Chapter 7 presents the current state of development of regional flood estimation methods for 

selected arid and semi-arid regions of Australia. 
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Chapter 8 presents the investigations on the detection of time trends in Australian annual 

maximum flood series data. 

 

Chapter 9 summarises the investigations made in this report. 

 

Chapter 10 recommends the regional flood estimation method(s) to be included in the 4th 

edition of the ARR. It also presents the scope of the further development and testing of the 

recommended regional flood estimation methods by various state agencies/stakeholders in 

association with Project 5 team.  

 

Chapter 11 presents the draft specification for developing an application tool for routine 

application of the recommended regional flood estimation methods. 

 

Chapter 12 presents major conclusions derived from this study. 

 

Finally, references and appendices are provided at the end. 

 

Stage II has developed a firm basis for recommendations on the RFFA methods to be 

included in the revised ARR Chapter (4th edition). It also identified future research and 

development work in Stage III of the Project, required to develop the Stage II findings into a 

final set of methods, design databases, user guidelines and application tools. 
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2. Data updating and archiving 
 

2.1 General 
 
A total of 96 catchments from NSW & ACT, 131 catchments from Victoria, and 30 

catchments from SA were selected as described in Project 5 Stage I report (Rahman et al., 

2009). These selected catchments are listed in Appendix A of this report. 

 

The initially selected catchments from Tasmania, Queensland and NT as provided in Stage I 

report have been updated as described below. Also, catchments from Western Australia 

have been selected here, which were not covered in the Stage I report. Similarly, data on 

arid/semi-arid regions have been added. The criteria of catchment selection is presented in 

Stage I report (Rahman et al., 2009). 

  

2.2 Data for New South Wales and ACT 

 

A total of 96 catchments have been selected from New South Wales and ACT (listed in 

Appendix Table A1). 

 

The record lengths of annual maximum flood series of these 96 stations range from 25 to 75 

years (mean: 37 years, median: 34 years and standard deviation: 11.4 years). The 

distribution of record lengths is shown in Figure 2.1. The record lengths and the number of 

stations constitute a dataset which is suitable for regional flood frequency analysis. 

 

The catchment areas of the selected 96 catchments range from 8 km2 to 1010 km2 (mean: 

353 km2 and median: 267 km2). The geographical distribution of the selected 96 catchments 

is shown in Figure 2.2. The distribution of catchment areas of these stations is shown in 

Figure 2.3. 

 

This data set does not include 4 stations in the arid/semi-arid part of New South Wales (see 

Section 2.9).  
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Figure 2.1 Distribution of streamflow record lengths of 96 stations from New South Wales. 

 

 

Figure 2.2 Geographical distributions of the selected 96 stations from NSW and ACT 
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Figure 2.3 Distribution of catchment areas of 96 stations from NSW and ACT 

 

2.3 Data for Victoria 

 

A total of 131 catchments have been selected from Victoria (listed in Appendix Table A2). 

 

The record lengths of annual maximum flood series of these 131 stations range from 26 to 

52 years (mean: 33 years, median: 33 years and standard deviation: 4.6 years). The 

distribution of record lengths is shown in Figure 2.4.  

 

The catchment areas of the selected 131 catchments range from 3 km2 to 997 km2 (mean: 

321 km2 and median: 289 km2). The geographical distribution of the selected 131 catchments 

is shown in Figure 2.5. The distribution of catchment areas of these stations is shown in 

Figure 2.6. 

 

This data set does not include 5 stations in the semi-arid part of Victoria (see Section 2.9).  
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          Figure 2.4 Distribution of streamflow record lengths of 131 stations from Victoria 

 

           Figure 2.5 Geographical distributions of the selected 131 stations from Victoria 
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                 Figure 2.6 Distribution of catchment areas of 131 stations from Victoria 

 

2.4 Data for South Australia 

 

A total of 29 catchments have been selected from South Australia (listed in Appendix Table 

A3). 

 

The record lengths of annual maximum flood series of these 29 stations range from 18 to 67 

years (mean: 36 years, median: 34 years and standard deviation: 11.2 years). The 

distribution of record lengths is shown in Figure 2.7.  

 

The catchment areas of the selected 30 catchments range from 0.6 km2 to 708 km2 (mean: 

170 km2 and median: 76.5 km2). The geographical distribution of the selected 29 catchments 

is shown in Figure 2.8. The distribution of catchment areas of these stations is shown in 

Figure 2.9. 

 

This data set does not include 6 stations in the arid/semi-arid part of South Australia (see 

Section 2.9).  
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Figure 2.7 Distribution of streamflow record lengths of 29 stations from South Australia 

 

 

          

Figure 2.8 Geographical distributions of the selected 29 stations from South Australia 
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Figure 2.9 Distribution of catchment areas of 29 stations from South Australia 

 

2.5 Data for Tasmania 

 

A total of 53 catchments have been selected from Tasmania (listed in Appendix Table A4). 

 

The record lengths of annual maximum flood series of these 53 stations range from 19 to 74 

years (mean: 30 years, median: 28 years and standard deviation: 10.43 years). The 

distribution of record lengths is shown in Figure 2.10.  

 

The catchment areas of the selected 53 catchments range from 1.3 km2 to 1900 km2 (mean: 

323 km2 and median: 158 km2). The geographical distribution of the selected 53 catchments 

is shown in Figure 2.11. The distribution of catchment areas of these stations is shown in 

Figure 2.12. 
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          Figure 2.10 Distribution of streamflow record lengths of 53 stations from Tasmania 

 

            Figure 2.11 Geographical distributions of the selected 53 stations from Tasmania 
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              Figure 2.12 Distribution of catchment areas of 53 stations from Tasmania 

 

2.6 Data for Queensland 

 

A total of 172 catchments have been selected from Queensland (listed in Appendix Table 

A5). 

 

The record lengths of annual maximum flood series of these 172 stations range from 25 to 

97 years (mean: 41 years, median: 36 years and standard deviation: 15.2 years). The 

distribution of record lengths is shown in Figure 2.13.  

 

The catchment areas of the selected 172 catchments range from 7 km2 to 963 km2 (mean: 

325 km2, median: 254 km2). The geographical distribution of the selected 172 catchments is 

shown in Figure 2.14. The distribution of catchment areas of these stations is shown in 

Figure 2.15. 

 

This data set does not include 16 stations in the arid/semi-arid part of Queensland (see 

Section 2.9).  
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  Figure 2.13 Distribution of streamflow record lengths of 172 stations from Queensland 

      

Figure 2.14 Geographical distributions of the selected 172 stations from Queensland 
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Figure 2.15 Distribution of catchment areas of 172 stations from Queensland 

 

2.7 Data for Western Australia 

 

A total of 146 catchments have been selected from Western Australia (listed in Appendix 

Table A6). 

 

The record lengths of annual maximum flood series of these 146 stations range from 20 to 

57 years (mean: 31 years, median: 30 years and standard deviation: 8.02 years). The 

distribution of record lengths is shown in Figure 2.16.  

 

The catchment areas of the selected 146 catchments range from 0.1 km2 to 7405.7 km2 

(mean: 323 km2 and median: 60 km2). The geographical distribution of the selected 146 

catchments is shown in Figure 2.17. The distribution of catchment areas of these stations is 

shown in Figure 2.18. 
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Figure 2.16 Distribution of streamflow record lengths of 146 stations from Western Australia 

 

 

 

 

Figure 2.17 Geographical distributions of the selected 146 stations from Western Australia 
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Figure 2.18 Distribution of catchment areas of 146 stations from Western Australia 

 

 
2.8 Data for Northern Territory 
 

A total of 55 catchments have been selected from Northern Territory (listed in Appendix 

Table A7). 

 

The record lengths of annual maximum flood series of these 55 stations range from 19 to 54 

years (mean: 35 years, median: 33 years and standard deviation: 11.30 years). The 

distribution of record lengths is shown in Figure 2.19.  

 

The catchment areas of the selected 55 catchments range from 1.4 km2 to 4325 km2 (mean: 

682 km2 and median: 360 km2). The geographical distribution of the selected 55 catchments 

is shown in Figure 2.20. The distribution of catchment areas of these stations is shown in 

Figure 2.21. 

 

This data set does not include 14 stations in the arid/semi-arid part of the Northern Territory 

(see Section 2.9).  
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Figure 2.19 Distribution of streamflow record lengths of 55 stations from Northern 

Territory 

 

 

Figure 2.20 Geographical distributions of the selected 55 stations from Northern Territory 
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      Figure 2.21 Distribution of catchment areas of 55 stations from Northern Territory  

 

 

2.9 Data for arid and semi-arid regions 

 

A total of 45 catchments have been selected from all over Australia for arid and semi-arid 

region (listed in Appendix Table A8). 

 

The record lengths of annual maximum flood series of these 45 stations range from 10 to 46 

years (mean: 25 years, median: 22 years and standard deviation: 10.0 years). The 

distribution of record lengths is shown in Figure 2.22.  

 

The catchment areas of the selected 45 catchments range from 3.8 km2 to 5975 km2 (mean: 

1152 km2, median: 360 km2). The geographical distribution of the selected 45 catchments is 

shown in Figure 2.23. The distribution of catchment areas of these stations is shown in 

Figure 2.24. 
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Figure 2.22 Distribution of streamflow record lengths of 45 stations from all over Australia for 

arid semi-arid regions 

 

 

Figure 2.23 Geographical distributions of the selected 45 stations from all over Australia for 

arid semi-arid regions 
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Figure 2.24 Distribution of catchment areas of 45 stations from all over Australia for arid 

semi-arid regions 

 

2.10 All Australia (without arid and semi-arid database) 

 

A total of 682 catchments have been selected from all over Australia. 

 

The record lengths of the annual maximum flood series of these 682 stations range from 18 

to 97 years (mean: 35 years, median: 33 years and standard deviation: 11.5 years). The 

distribution of record lengths is shown in Figure 2.25.  

  

The catchment areas of the selected 682 catchments range from 0.1 km2 to 7405.7 km2 

(mean: 350 km2, median: 214 km2). The geographical distribution of the selected 682 

catchments is shown in Figure 2.26. The distribution of catchment areas of these stations is 

shown in Figure 2.27. 
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Figure 2.25 Distribution of streamflow record lengths of 682 stations from all over Australia 

 

 

Figure 2.26 Geographical distributions of the selected 682 stations from all over Australia 
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      Figure 2.27 Distribution of catchment areas of 682 stations from all over Australia 

 

2.11 Summary of all Australian data 

 

The summary of all the Australian data prepared as a part of Project 5 is provided in Table 

2.1 

  

Table 2.1 Summary of selected stations Australia wide 

State 
No. of 

stations 
Median streamflow record 

length (years) 
Median catchment 

size (km2) 

NSW & ACT 96 34 267 

Victoria 131 33 289 

South Australia 29 34 76.5 

Tasmania 53 28 158 

Queensland 172 36 254 

Western Australia 146 30 60 

Northern Territory 55 33 360 

Sub Total 682 - - 

Arid semi-arid region 45 22 360 

TOTAL 727 - - 
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2.12 Archiving of the data 

 

The list of selected catchments, annual maximum flood series data, estimated flood quantiles 

and abstracted catchment characteristics data of all the states have been saved in a CD and 

archived. The selected catchment characteristics are provided in Stage I report (Rahman et 

al., 2009) 
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3. Overview and comparison of regional flood frequency 
analysis (RFFA) methods 
 

3.1 General 
 
Estimation of peak flows on small to medium sized rural catchments is required for the 

design of culverts, small to medium sized bridges, causeways and soil conservation works 

and many other water resources management tasks (Pilgrim, 1987). Typically, these 

catchments are ungauged. In such cases, peak flow estimates are obtained using a regional 

flood frequency analysis (RFFA) which transfers information from gauged catchments to the 

catchment under consideration. RFFA techniques are preferred in situations where 

catchment rainfall-runoff modelling is unwarranted due to a full streamflow hydrograph not 

being required for resolution of the design flood problem. A RFFA technique is expected to 

be simple, requiring readily obtainable input data to obtain design flood estimates relatively 

quickly.  

 

This chapter provides a brief description of various RFFA methods and results of the 

comparison of some of the most commonly adopted RFFA methods. 

 

3.2 Classification of RFFA methods 

 

There are many RFFA methods in the literatures ranging from simple Rational Method 

(Mulvany, 1851) to non-linear models like Artificial Neural Network (ANN). The selection of a 

RFFA method for general application depends on factors such as:  

 

1) Quantity and quality of temporal and spatial data availability: A RFFA method is „as good 

as‟ the quantity and quality of the observed streamflow and other data. There is little merit 

in developing a highly complex RFFA model when there is limited data availability. 

2) Ease of application: The recommended RFFA methods should be „easy to apply‟ by the 

end-users. To facilitate this, simple maps, graphs, equations and/or computer models 

should be made available. 

3) Simplicity of the model: Recommended RFFA methods/prediction equations should 

contain „easy to obtain‟ predictor variables. The number of predictor variables should be 

as few as possible, and these variables should have plausible physical significance in 

terms of regional floods. 

4) Robustness: The recommended RFFA methods should be unbiased and robust. 
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5) Measure of uncertainty: the recommended RFFA methods should provide a measure of 

uncertainty with the estimated flood quantiles.  

 

All RFFA methods use the results of at-site FFA as basic data. A RFFA method then 

essentially consists of two principal steps: (i) Formation of regions: This involves formation of 

regions from the available streamflow gauging stations. (ii) Development of regional 

estimation models: This involves development of prediction equations to estimate flood 

quantiles, based on the results of at-site FFA within the region. Various RFFA methods are 

briefly described below.  

 

3.3 Formation of regions 

 

In RFFA, formation of regions can be based on proximity in geographic or catchment 

attributes space. A region can be fixed, having a definite boundary or it can be formed in 

geographic or catchment attributes space with respect to the ungauged catchment of interest 

(i.e. where flood quantile estimation is desired). Various methods of the formation of regions 

in RFFA are illustrated in Figure 3.3.1. The allocation of an ungauged catchment to regions 

formed in catchment attributes space is often problematic. Acreman and Wiltshire (1987) 

proposed regions without fixed boundaries. Subsequently, Burn (1990a, 1990b) and Zrinji 

and Burn (1994) proposed the region-of-influence (ROI) approach where each site of interest 

(i.e. catchment where flood quantiles are to be estimated) can form its own region. 
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Figure 3.3.1 Methods of formation of regions in RFFA 
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3.4 Development of regional estimation models 

 

3.4.1 Probabilistic Rational Method (PRM) 

 

The Rational Method, introduced by Mulvany (1851), has been widely regarded as a 

deterministic method for estimating the peak discharge from an individual storm. However in 

ARR1987 (IEAust, 1987), it was presented as a probabilistic method (referred to as 

Probabilistic Rational Method (PRM)). This means that the runoff coefficient becomes a 

simple transfer function which converts the design rainfall of given ARI to a design peak flow 

of the same ARI.  

  

The Rational Method has often been recommended for application to only small catchments 

below some arbitrary limit such as 25 km2. This limited range of applicability reflects the 

inadequate manner in which the method considers physical factors such as the effects of 

temporary storage on the catchment, and temporal and spatial variations of rainfall intensity. 

These physical considerations have little relevance to the probabilistic interpretation of the 

PRM, where their effects are incorporated in the recorded floods, and hence in the flood 

frequency statistics and the derived values of the runoff coefficient YC . As mentioned in 

ARR1987, the PRM derived from observed data should be valid for catchment areas and 

ARIs up to and somewhat beyond the maximum areas and record lengths used in their 

derivation (I. E. Aust., 1987).  

 

In ARR1987, the PRM is represented by: 

 

YtcYY AICQ ,278.0           (3.4.1) 

 

where YQ  is the peak flow rate (m3/s) for an ARI of Y years; YC  is the runoff coefficient 

(dimensionless) for ARI of Y years; YtcI ,  is the average rainfall intensity (mm/h) for a time of 

concentration  ct  (hours) and ARI of Y years; and A is the catchment area (km2). 

 

From Equation 3.4.1, the value of the runoff coefficient is given by: 

        

AI

Q
C

Ytc

Y
Y

,278.0
                (3.4.2) 
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The values of QY for a station can be obtained from at-site flood frequency analysis, subject 

to the availability of reasonably long streamflow records.  Values for YtcI ,  at a given location 

can be found from Book II Section 1 of ARR.  The catchment and rainfall characteristics and 

conditions affecting the relation between YQ , A and YI  are incorporated in YC , but not 

necessarily in a physically realistic fashion.   

 

In the deterministic interpretation of the Rational Method, the critical rainfall duration is ct , 

which is considered to be the travel time from the most remote point on the catchment to the 

outlet, or the time taken from the start of rainfall until all of the catchment is simultaneously 

contributing flow to the outlet. For the probabilistic interpretation of the Rational Method, as in 

the PRM, these physical measures are not really relevant.  However, Equation 3.4.2 shows 

that the value of YC  depends on the duration of rainfall, and some design duration related to 

catchment characteristics must be specified as part of the overall procedure.  A typical 

response time of flood runoff is appropriate, and the „time of concentration‟ is a convenient 

measure.  In this context, its accuracy regarding travel time is much less important than the 

consistency and reproducibility of derived YC  values.  Also, values of YC  cannot be 

compared unless consistent estimates of ct  are used in their derivation. Pegram (2002) and 

French (2002) discussed various methods of estimating ct  as well as the strengths and 

weaknesses of the PRM.  

 

One commonly adopted equation to estimate tc is:  

 

38.076.0 Atc                 (3.4.3) 

 

where ct  is the time of concentration (hours) and A is the catchment area (km2). 

 

An alternative approach is to use the Bransby William formula, as given below: 

 

2.01.0

58

e

c
SA

L
t                 (3.4.4) 
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where ct  is in minutes; L is the mainstream length measured to the catchment divide (km); A 

is the catchment area (km2) and eS  is the equal area slope of the main stream projected to 

the catchment divide (m/km).  This is the slope of a straight line drawn on a profile of a 

stream such that the line passes through the outlet and has the same area below and above 

the stream profile.  

 

Equation 3.4.3 was adopted with the PRM for eastern NSW and Victoria in ARR1987. This 

was also adopted by Weeks (1991) in an attempt to develop the PRM for Queensland. In this 

current study, Equation 3.3 is used as it is easier to apply. In the development of the PRM for 

a region, the C10 value for each individual catchment is estimated using Equation 3.2, and 

these „site‟ values are then „regionalised‟ by plotting a C10 contour map. A frequency factor 

(FFY) is used to convert Q10 to QY. The value of FFY is estimated for each of the model 

catchments using Equations 3.2 and 3.5; the average or median FFY value is then used in 

the design. 

 

10C

C
FF Y

Y                                                  (3.4.5) 

 

3.4.2 Quantile Regression Technique (QRT) 

 

United States Geological Survey (USGS) proposed a quantile regression technique (QRT) 

where a large number of gauged catchments are selected from a region and flood quantiles 

are estimated from recorded streamflow data, which are then regressed against catchment 

characteristics variables that are most likely to govern the flood generation process. Studies 

by Benson (1962) suggested that Y-year flood peak discharges could be estimated directly 

using catchment characteristics data by multiple regression analysis. The quantile regression 

technique can be expressed as follows: 

 

QY = aBbCcDd ...                     (3.4.6) 

                                                                                                    

where B, C, D, … are catchment characteristics variables and QY is the flood magnitude with 

Y-year ARI (flood quantile), and a, b, c, … are regression coefficients.  

 

There have been various techniques and many applications of regression models that have 

been adopted for hydrological regression. The USGS has been applying the QRT for several 

decades. A well known study using the QRT with an Ordinary Least Squares (OLS) 
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procedure was carried out by Thomas and Benson (1970). The study tested four regions in 

the United States for design flood estimation using multiple regression techniques that 

related streamflow characteristics to catchment characteristics. This study found that the 

QRT was able to predict quantile estimates more accurately as compared to previous 

methods adopted by the USGS. However, the study noted that the equations were not 

statistically sound. 

 

The OLS estimator has traditionally been used by hydrologists to estimate the regression 

coefficients in Equation 3.4.6. But in order for the OLS model to be statistically efficient and 

robust, the annual maximum flood series in the region must be uncorrelated, all the sites in 

the region should have equal record length and all estimates of Y-year events have equal 

variance. Since the annual maximum flow data in a region do not generally satisfy these 

criteria, the assumption that the model residual errors in OLS are homoscedastic is violated 

and the OLS approach can provide distorted estimates of the model‟s predictive precision 

(model error) and the precision with which the regression coefficients are being estimated 

(Stedinger and Tasker, 1985). 

 

To overcome the above problems in OLS, Stedinger and Tasker (1985) proposed the 

Generalised Least Squares (GLS) procedure which can result in remarkable improvements 

in the precision with which the parameters of regional hydrologic regression models can be 

estimated, in particular when the record length varies widely from site to site. In the GLS 

model, the assumptions of equal variance of the Y-year events and zero cross-correlation for 

quantiles are relaxed. The Bayesian GLS (BGLS) regression offers additional advantages by 

providing a realistic description of the possible values of the model error variance, especially 

in the case where sampling error tends to dominate the model errors in the regional analysis 

(Reis et al., 2005).  

 

3.4.3 Parameter Regression Technique (PRT) 

 

In the parameter regression technique (PRT), the parameters of a particular probability 

distribution are regressed against the catchment characteristics similar to QRT. Here, both 

the OLS and GLS methods (including BGLS) can be used to develop the prediction 

equations for the mean, standard deviation and skewness of the annual maximum flood 

series. These equations are then used to predict the mean, standard deviation and skewness 

of the annual maximum flood series for an ungauged catchment to fit a particular probability 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  33 

distribution. This fitted probability distribution is then used to estimate the flood quantiles for 

the ungauged catchment. 

 

3.4.4 Index Flood Method 

 

The key assumption in the index flood method is that the distribution of floods at different 

sites within a homogeneous region is the same except for a site-specific scale or index flood 

factor. Homogeneity with regard to the index flood relies on the concept that the standardised 

flood peaks from individual sites in the region follow a common probability distribution with 

identical parameter values. From all the method examined in this project, the Index Flood 

Method involves the strongest assumptions on homogeneity. The method is used in many 

countries.  

 

ARR1987 (I.E Aust., 1987; 2001) did not favour the index flood method as a design flood 

estimation technique. The index flood method had been criticised on the grounds that the 

coefficient of variation of the flood series vC  may vary approximately inversely with 

catchment area, thus resulting in flatter flood frequency curves for larger catchments. This 

had particularly been noticed in the case of humid catchments that differed greatly in size 

(Dawdy, 1961; Benson, 1962; Riggs, 1973; Smith, 1992). 

 

There have been recent studies carried out by Bates et al. (1998) and Rahman et al. (1999) 

where the development of an application for design flood estimation in ungauged catchments 

in south-east Australia was tested using the index flood method. The method involved the 

assignment of ungauged catchments to a particular homogenous group identified (through 

the use of L-moments) on the basis of catchment characteristics as opposed to geographical 

proximity. The relationships sought were developed by statistical procedures such as 

canonical correlation analysis, tree based modelling and other multivariate statistical 

techniques. This allowed for the development of a RFFA method using up to 12 independent 

catchment characteristics variables.  

 

Although the results of this method showed promise when compared to the PRM, its 

limitations were already evident in that it needed a large number of independent variables 

which are very time consuming to obtain. The results of this method also depend upon the 

correct assignment of an ungauged catchment to a homogenous group, thus any wrong 

assignment would greatly increase error in quantile estimation.    
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3.4.5 Probabilistic Model (PM)/ Large Flood Regionalisation Model (LFRM) 

 

The Probabilistic Model presented by Majone and Tomirotti (2004) assumes that the 

maximum observed floods Qmax from the annual flood series of each of the sites in a region 

(after standardisation by the at-site average flood and a function of the coefficient of variation 

of annual flood series) can be pooled (similar to the station-year approach) and assumed to 

follow a single probability distribution. That is, the standardised Qmax across various sites 

form a homogeneous region. This is similar to the assumption of the index flood method but, 

by allowing for differences in the standard deviation of annual floods, it overcomes a major 

weakness of the index flood method. The Probabilistic Model is also referred to as Large 

Flood Regionalisation Model (LFRM) in this report.  

 

The main focus of the PM/ LFRM is the prediction of flood quantiles of higher ARIs. To apply 

the PM/ LFRM to ungauged catchments, one needs to develop prediction equations for the 

mean and coefficient of variation of the annual flood series. Majone et al. (2007) applied the 

PM to flood data from 8500 gauging stations across the world and found that the method can 

provide quite reasonable design flood estimates for higher ARIs.  

 

The method has been applied for the NSW and Victoria data set and has shown promising 

results (Haddad, Rahman and Weinmann, 2011).  

 

3.4.6 Summary of the classification of RFFA methods 

 

Based on the discussion presented in this chapter, various methods of the formation of 

regions and development of the regional estimation models are illustrated in Figure 3.4.1. 
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Figure 3.4.1 Various RFFA methods including formation of regions and development of 

estimation models 
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3.5 Comparison of the commonly adopted RFFA methods 

  

Various RFFA methods were compared in Stage I of Project 5 (Rahman et al., 2009). These 

included a comparison of the PRM and QRT, OLS and GLS regression and fixed region and 

ROI and application of PM/LFRM. The results of these have been summarised in a number 

of refereed papers (e.g. Haddad et al., 2006, 2008, 2009a,b, 2010a,b, 2011; Haddad and 

Rahman,  2008, 2010, 2011a, b, c; Rahman et al., 2008, 2010, 2011; Hackelbusch et al., 

2009; Pirozzi et al., 2009; Pirozzi and Rahman, 2010; Zaman et al., 2010; Ishak et al., 2009, 

2011; Aziz et al., 2010). 

 

A further comparison of the PRM and QRT is presented the Section 3.5.1. The development 

and testing of the BGLS-QRT and BGLS-PRT are presented in Chapter 4. 

 

3.5.1 Comparison of PRM and QRT 
 
Differences and similarity between PRM and QRT 

 

The PRM and QRT have been described in Sections 3.4.1 and 3.4.2. To allow a more direct 

comparison of the performance of the PRM and QRT, a special form of the QRT has been 

adopted in this chapter, using the same explanatory variables as the PRM, as expressed by 

the following equation: 

 

 
c

Ytc

b

Y IaAQ ,                                                                                               (3.5.1) 

 

In this study, regression coefficients a, b and c in Equation 3.5.1 are estimated using GLS 

regression.  

 

Equation 3.5.1 reduces to Equation 3.4.1 for Y = 10 years under the following conditions: (i) 

there are two independent variables in both the equations: A and Itc_10; ii) b = 1 and c = 1; 

and (iii) a = 0.278*C10. The PRM attempts to lump coefficients a, b and c in C10, which allows 

mapping of C10 in one single contour map. The QRT does not require maps of coefficients as 

the set of coefficients determined from regression applies over the whole region under 

consideration.  

 

There may be advantage in lumping the effects of a, b and c in a single coefficient like C10 

but issues arise in how to regionalise the C10 values to allow the determination of the C10 
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value for a given ungauged catchment. Mapping and simple interpolation are based on the 

assumption that the flood producing characteristics vary in a continuous fashion over the 

region, which appears to be too simplistic, as it neglects the obvious discontinuities at 

catchment boundaries. The use of simple interpolation routines to generalise the C10 values 

from gauged catchments to the whole region also assumes that the C10 value obtained for 

each gauged catchment is error free. This limitation could be overcome by using a surface 

fitting technique for the mapping of C10 values, with allowance for estimated errors in the C10 

site values.  

 

It may be argued that QRT is superior to PRM as it develops prediction equation for each 

ARI of interest, thus the use of FFY is not required.  In principle, use of FFY in the PRM could 

be avoided by preparing separate maps of runoff coefficients for various ARIs e.g. C2, C5, 

C10, C20, C50 and C100. The FFY is similar to the regional growth factors used in the index 

flood approach, i.e. the same frequency factor is applicable for all the stations in the region. 

However, this assumption of regional homogeneity with FFY has never been tested.  

 

In this special application of the QRT (Equation 3.5.1), all the variation in flood quantile 

estimates for different catchments in the region is explained by differences in A and Itc_Y.  

However, a significant advantage of the QRT is that it can include additional catchment 

variables (other than A and Itc_Y) in the regression equation without much difficulty.  The 

influence of other flood producing factors (which may be reflected in the runoff coefficient of 

the PRM) can be allowed for without any assumption of geographic contiguity of such 

influences.  

 

Uncertainty analysis for the PRM is quite difficult to undertake as the errors in the 

interpolation between the two nearest points on the C10 curves and in the curves themselves 

are difficult to quantify. In contrast, the coefficients a, b and c in QRT can be estimated using 

methods such as GLS regression, which accounts for variation in record lengths from site to 

site and inter-station correlation, and a rigorous uncertainty analysis can be undertaken for 

the sampling and model error. The PRM needs a greater spatial coverage of the available 

stations to increase the density of contour curves; for QRT it would be enough to have a 

reasonable number of stations covering the expected variability in the independent variables 

and a sample size which is large enough (say about 40 catchments) to estimate regression 

coefficients a, b and c (and possibly coefficients associated with additional explanatory 

variables) with sufficient accuracy. Furthermore, by integrating the QRT with the region-of-

influence approach, an appropriate region size for the ungauged catchment of interest can 

be established on the criterion of minimum model error variance. This is likely to result in a 
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more accurate set of estimated regression coefficients for the ungauged catchment of 

interest.     

 

Description of data used in the comparison of PRM and QRT 

 

The study uses data from 107 catchments from NSW (Figure 3.5.1). These catchments are 

not affected by any major regulation and have not undergone major land use changes during 

the period of streamflow data availability. The initial data set consisted of stations with at 

least 25 years of data. This however did not provide sufficient spatial coverage at a few 

locations in the study area to be able to develop a C10 contour map with reasonable 

resolution; some additional stations were therefore selected with streamflow record lengths 

slightly smaller than 25 years to fill gaps in spatial coverage. The overall streamflow record 

lengths of the selected stations range from 18 to 74 years with mean and median of 32 and 

30 years, respectively. The distribution of annual maximum flood record lengths of the 

selected 107 stations is shown in Figure 3.5.2. 

 

The catchment areas of the selected catchments range from 8 to 1010 km2 with mean and 

median values of 325 km2 and 236 km2, respectively. The distribution of catchment areas is 

shown in Figure 3.5.3. It should be noted that there are only 2 and 6 catchments smaller than 

10 km2 and 20 km2, respectively. Thus, the application of the developed PRM and QRT to 

catchments smaller than 8 km2 needs special consideration, which is discussed in Chapter 5. 

 

The streamflow data for these catchments were prepared by following the stringent criteria 

detailed in Rahman et al. (2009) and Haddad et al. (2010). As far as possible, gaps in the 

annual maximum flood series were infilled and outliers in the data series were detected. To 

limit the error in flood frequency analysis arising from rating curve extrapolation, an empirical 

procedure was adopted, as discussed in Haddad et al. (2010). This method is based on the 

ratio of the estimated flow and the maximum measured flow (rating ratio) at a gauging 

station. The stations with rating ratio values greater than 20 were excluded from the 

database. Also, the effects of rating curve error were accounted for in the at-site flood 

frequency analyses using the in-built facility in the FLIKE software (Kuczera, 1999). Stations 

with significant time trends in the annual maximum flood series were excluded from the 

analysis. 
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Figure 3.5.1 Locations of the selected 107 catchments from NSW 

     

         

21

40

29

10

5

2

0

5

10

15

20

25

30

35

40

45

18 to 25 26 to 30 31 to 40 41 to 50 51 to 60 61 to 74

Record length (years)

F
re

q
u

e
n

c
y

 

Figure 3.5.2 Distribution of streamflow record lengths 
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Figure 3.5.3 Distribution of catchment sizes. 

 

Approach adopted in the comparison between PRM and QRT 

 

At-site flood frequency estimates for ARIs of 2, 5, 10, 20, 50 and 100 years for each of the 

selected 107 stations were obtained by fitting a Log Pearson Type 3 (LP3) distribution using 

a Bayesian parameter estimation procedure as implemented in the FLIKE software (Kuczera, 

1999). The LP3 distribution (with a Bayesian parameter estimation procedure) generally 

provided better fitting to the observed annual maximum flood series data, and hence adopted 

in this study.  

 

A one-at-a-time validation approach was used for both the PRM and QRT, i.e. in an 

individual run, one catchment (from the 107) was left out for independent testing, leaving 106 

model catchments. The procedure was repeated 107 times so that each of the catchments 

was selected once for independent testing. In this process, a total of 107 contour maps of 

C10 were produced; similarly 107 sets of prediction equations for QY (Y = 2, 5, 10, 20, 50 

and 100 years) were developed using GLS regression. In both the PRM and QRT, all the 106 

model catchments in an individual run were assumed to form one region i.e. the region-of-

influence approach was not used to form a separate region for each catchment with a 

reduced number of neighbouring stations. 
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In addition to the one-at-a-time validation approach, as discussed above, an alternative split-

sample validation was conducted where 20% of the catchments (i.e. 21 catchments) were 

selected randomly as test catchments. The QRT and PRM were then developed based on 

the remaining 86 catchments (model catchments) and subsequently applied to the 21 test 

catchments. 

 

For the PRM, C10 values were estimated for the model data set and a map of C10 was 

produced. The GIS program Mapinfo‟s Vertical Mapper add-on was then used to develop the 

C10 contour map. A spreadsheet containing the latitude, longitude and C10 values for each 

model catchment was produced and entered into the mapping program with the C10 values 

represented in the z axis. The program used a kriging method (Kottegoda and Rosso, 1997) 

to create a model of the C10 surface, from which isopleths were developed. The isopleths 

were labelled and the test catchment was located on the map. Linear interpolation was then 

used to estimate the C10 value for the test catchment from the contour map. 

 

For the QRT, prediction equations were developed using the model data set for QY (Y = 2, 5, 

10, 20, 50 and 100 years) using GLS regression as described in Stedinger and Tasker 

(1985), Tasker and Stedinger (1989) and Haddad et al. (2006, 2008 and 2009). 

 

To assess the relative performance of the PRM and QRT, a number of evaluation statistics 

were employed: root mean squared error (RMSE), relative error (RE), mean squared relative 

error (MSRE), mean percent relative error (MPRE), coefficient of efficiency (CE) and the ratio 

of predicted and observed values (ratio).  These statistics are defined below:  
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where obsQ is the observed flood quantile obtained from at-site flood frequency analysis using 

FLIKE (Kuczera, 1999), predQ is the predicted flood quantile obtained by applying the PRM or 

QRT based on one-at-a-time or split-sample validation approach, Q is the mean of the 

obsQ values for a given ARI and n is the number of catchments. 

 

The RMSE, MSRE and MPRE provide an indication of the overall accuracy of a model. The 

CE provides an indication of how good a model is at predicting values away from the mean. 

The CE ranges from - ∞ in the worst case to +1 for a perfect model. The Qpred/Qobs ratio gives 

an indication of the degree of bias (i.e. systematic over- or under estimation), where a value 

of 1 indicates perfect agreement between the Qpred and Qobs. The Qpred/Qobs ratio values were 

counted based on a number of thresholds, e.g. 0.7 to 1.4 and 0.5 to 2. Here, ratio values 

smaller than 0.5 and greater than 2 may be used to identify cases showing „gross under-

estimation‟, and 'gross over-estimation‟, respectively. It should be mentioned here that these 

are only arbitrary limits and could be expected to provide a reasonable guide about the 

relative accuracy of the method as far as the practical application of the method is 

concerned. 

 

Results of comparison between PRM and QRT 

 

A typical C10 contour map is shown in Figure 3.5.4. The value of the runoff coefficients tends 

to decrease from east to west (similar to the C10 contour map in ARR1987). At many 

locations, a higher C10 value is surrounded by relatively much smaller values. These C10 

estimates at individual locations are affected by the errors in Q10 and Itc,10 estimates. Given 

the streamflow record lengths (18 to 74 years with a mean of 32 years) and the method of at-

site flood frequency analysis employed in this study, the magnitude of error for Q10 is likely to 

be smaller than the error in the corresponding ARR1987 estimates, where stations with a 

minimum of 10 years of streamflow data were included). The error in Itc,10 value can be 

further reduced in the near future by using the new design rainfall estimates; these will be 
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based on longer record lengths and superior statistical techniques and will be available in the 

near future as a part of the updated ARR. The frequency factors for each of the 107 

catchments for a given ARI were obtained using Equation 3.4.5. The median frequency 

factor value for a given ARI was then computed and is shown in Table 3.5.1. 

           

Table 3.5.1 Median of Frequency factors of different ARIs for PRM 

ARI (years) Frequency factor 

2 0.37 

5 0.73 

10 1.00 

20 1.20 

50 1.45 

100 1.58 

 

 

The GLS-based regression was adopted for developing the prediction equations for ARIs of 

2, 5, 10, 20, 50 and 100 years based on 106 model catchments in an individual run. There 

were altogether 107 sets of these equations. The regression coefficients for a given ARI 

were very similar over the 107 sets of these equations, which is as expected as only one 

catchment was different between any two runs. A typical set of equations is shown below 

(Equations 3.14-3.19).  

 

log10(Q2) = - 3.46 +1.25log10(A) + 2.40log10(Itc,2)                (3.5.8)   

log10(Q5) = - 2.73 + 1.15log10(A) + 2.10log10(I tc,5)     (3.5.9) 

log10(Q10) = - 2.33 + 1.09log10(A) + 1.94log10(I tc,10)     (3.5.10) 

log10(Q20) = - 1.99 + 1.05log10(A) + 1.78log10(I tc,20)                (3.5.11) 

log10(Q50) = - 1.58 + 0.99log10(A) + 1.59log10(I tc,50)     (3.5.12) 

log10(Q100) = -1.30 + 0.94log10(A) + 1.48log10(I tc,100)     (3.5.13) 

 

It is reassuring to observe that the regression coefficients in this set of equations vary in a 

regular fashion with increasing ARI. 
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Figure 3.5.4 Typical C10 contour map 
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Various diagnostic plots related to the prediction equations from the GLS regression were 

examined. The plots of standardised regression residuals vs. predicted flood quantiles 

(Figure 3.5.5) showed some trends; however, based on the Kolmogorov-Smirnov and 

Anderson-Darling tests, the hypothesis that the standardised residuals are normally 

distributed could not be rejected at the 10% significance level. The QQ-plots of the 

standardised residuals (Figure 3.6 for ARI = 20 years) show that the assumption of normality 

for the standardised residuals is well satisfied with all the points closely following a straight 

line. If the standardised residuals were indeed normally and independently distributed with 

mean 0 and variance 1, then the slope of the best fit line in the QQ-plot, which can be 

interpreted as the standard deviation of the sample, should approach 1 and the intercept, 

which is the mean of the sample, should approach 0 as the number of sites increases. Figure 

3.5.6 indeed shows that the fitted line passes through the origin (0, 0) and it has a slope 

approximately equal to 1.  These results indicate that the developed prediction equations 

satisfy the homogeneity and normality of the residual assumption quite well.  

 

Tables 3.5.2 and 3.5.3 summarise various error statistics for the PRM and QRT. These 

values are based on independent testing of the PRM and QRT i.e. based on one-at-a-time 

validation as explained previously. The RMSE values for the PRM are 3 to 12% higher than 

those of the QRT. The MPRE values for the PRM are 2 to 17% higher than those of QRT. 

With respect to MSRE, QRT performs better by 1 to 47% for ARIs of 2 to 20 years. However, 

PRM performs better for ARIs of 50 and 100 years by 4 to 12%. In relation to CE, the higher 

the values, the better the performance; here QRT performs better by 2 to 12%. In terms of 

median relative error values (Table 3.5.4), QRT performs better by 11 to 27% for ARIs of 10 

to 100 years. For 2 and 5 years ARIs, both the methods perform very similarly.  

 

Table 3.5.2 Comparison of RMSE, MPRE & MSRE for the PRM and QRT. 

ARI(years) 
RMSE (m3/s) MPRE (%) MSRE 

PRM QRT PRM QRT PRM QRT 

2 58.17 56.44 64.21 54.61 0.89 0.60 

5 121.79 109.27 48.67 45.01 0.48 0.41 

10 193.73 171.8 48.45 45.29 0.47 0.43 

20 296.88 265.63 50.12 48.03 0.51 0.50 

50 507.65 452.77 56.27 53.32 0.64 0.67 

100 732.13 662.62 60.54 59.10 0.75 0.86 
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Table 3.5.3 Comparison of CE for the PRM and QRT. 

ARI(years) 
CE 

PRM QRT 

2 0.64 0.66 

5 0.74 0.79 

10 0.71 0.77 

20 0.65 0.71 

50 0.50 0.60 

100 0.37 0.48 

 

 

Table 3.5.4 Median relative error values (%) for the PRM and QRT. The absolute values of 

the relative errors are considered in obtaining the median value. 

Method 
Median relative error (%) 

Q2 Q5 Q10 Q20 Q50 Q100 

PRM 43 33 36 36 40 44 

QRT 44 34 32 30 31 32 

 

 

Examples of the Qpred/Qobs ratio values for all the six ARIs and 107 test catchments (based on 

one-at-a-time validation) are presented in Tables 3.5.5 and 3.5.6. Out of the 642 cases (6 

ARIs and 107 test catchments), PRM and QRT produce 283 and 305 cases respectively in 

the range of 0.7 ≤ ratio ≤ 1.4, which are equivalent to 44% and 48% of the cases 

respectively. PRM and QRT respectively produce 24% and 25% cases with ratio < 0.7 and 

32% and 28% cases with ratio > 1.4. There are 77% and 79% of cases in the range of 0.5 ≤ 

ratio ≤ 2 for the PRM and QRT respectively. For the PRM, there are 10% and 13% cases 

respectively with ratio < 0.5 and ratio > 2. For the QRT, there are 11% and 10% cases 

respectively with ratio < 0.5 and ratio > 2. These results demonstrate that in relation to 

Qpred/Qobs ratio, QRT performs slightly better than the PRM. The results also show that with 

both PRM and QRT, there are about 10% of cases with gross under-estimation, and another 

10% of cases with gross over-estimation, which are expected for these types of approximate 

RFFA methods.    
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Figure 3.5.5 Standardised residuals vs. predicted quantiles for ARI = 20 years (the 

heavy lines show the bound of  2.0standardised residual) 
   

Figure 3.5.6 QQ-plot of the standardised residuals (ARI = 20 years) 

 

Figures 3.5.7 and 3.5.8 present Qpred/Qobs ratio values vs. catchment size for the PRM and 

QRT, respectively. These plots show that the performance of both the PRM and QRT is 

similar over all catchment sizes, i.e. there is no evidence that the methods perform poorly for 
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smaller catchments. The box plots of Qpred/Qobs ratio values for various ARIs were examined 

and it was found that generally QRT shows a narrower band of ratios. Figure 3.5.9 shows 

such a plot for the 20 years ARI, which highlights a few outliers for both the PRM and QRT. 

These outlier catchments were examined but no unusual catchment characteristics were 

found when compared to the other catchments in the data set. This result indicates that there 

are likely to be a few cases when PRM and QRT may perform poorly. 

 

The overall results from the split-sample validation test (where 20% catchments were 

randomly selected as test catchments as explained previously) favoured the QRT over the 

PRM, where the median relative error values for the QRT were smaller by 5%, 10%, 6% and 

12% than those of the PRM for ARIs of 2, 20, 50 and 100 years, respectively. However, for 

ARIs of 5 and 10 years, PRM shows smaller median relative error values than the QRT by 

9% and 2%, respectively.  In terms of the count of the Qpred/Qobs ratio values, QRT shows 

55% (0.7 ≤ ratio ≤ 1.4), 28% (ratio < 0.7) and 17% (ratio > 1.4) as compared to 51% (0.7 ≤ 

ratio ≤ 1.4), 32% (ratio < 0.7) and 17% (ratio > 1.4) for the PRM; these results overall favour 

the QRT.   

Table 3.5.5 Summary of counts based on Qpred/Qobs ratio values for PRM. 

ARI (years) 

Count Percentage 

ratio < 
0.7 

0.7 ≤ ratio ≤ 
1.4 

ratio > 
1.4 ratio < 0.7 

0.7 ≤ ratio ≤ 
1.4 

ratio > 
1.4 

2 24 42 41 22% 39% 38% 

5 19 57 31 18% 53% 29% 

10 22 53 32 21% 50% 30% 

20 27 47 33 25% 44% 31% 

50 30 44 33 28% 41% 31% 

100 33 40 34 31% 37% 32% 

Sum/average 155 283 204 24% 44% 32% 

 
 
             Table 3.5.6 Summary of counts based on  Qpred/Qobs ratio values for QRT. 

ARI (years) 

Count Percentage 

ratio < 
0.7 

0.7 ≤ ratio ≤ 
1.4 

ratio > 
1.4 ratio < 0.7 

0.7 ≤ ratio ≤ 
1.4 

ratio > 
1.4 

2 28 40 39 26% 37% 36% 

5 26 51 30 24% 48% 28% 

10 25 55 27 23% 51% 25% 

20 24 54 29 22% 50% 27% 

50 26 53 28 24% 50% 26% 

100 29 52 26 27% 49% 24% 

Sum/average 158 305 179 25% 48% 28% 
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Figure 3.5.7 Qpred/Qobs ratio values vs. catchment area for ARI = 20 years for PRM 
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Figure 3.5.8 Qpred/Qobs ratio values vs. catchment area for ARI = 20 years for QRT 
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Figure 3.5.9 Box plot showing distribution of Qpred/Qobs ratio values for PRM and QRT (ARI = 
20 years) 

 
 
Findings from the comparison of PRM and QRT  
 
 

This section has compared two commonly used regional flood frequency analysis methods 

using data from 107 catchments in NSW, the Probabilistic Rational Method (PRM) and the 

Generalised Least Squares (GLS) based Quantile Regression Technique (QRT). To make a 

valid comparison, the same predictor variables and data set have been used with both the 

methods. The comparison examines the specific features of each method and assesses its 

performance using a one-at-a-time validation method, where each of the 107 study 

catchments is tested independently, as well as a split sample approach, leaving a randomly 

selected 20% of catchments for independent testing. The following conclusions can be drawn 

from this study:  

 

 Based on a range of evaluation statistics (such as root mean squared error, median 

relative error, mean squared relative error, standard error, coefficient of efficiency and 

ratio of predicted and observed flood quantiles), the QRT has been found to 

outperform the PRM.  

 There is no evidence that PRM and QRT perform poorly for smaller catchments as far 

as the range of smaller catchments used in this study is concerned. The applicability 
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of these methods for catchments smaller than 8 km2 could not be tested, due to 

limitations of streamflow data for these catchments. 

 The particular advantage of the QRT is that it does not require a contour map of the 

runoff coefficient as with the PRM. The GLS-based QRT also offers rigorous 

uncertainty analysis of the estimated flood quantiles by differentiating the sampling 

and model error. The QRT can also be integrated with the region-of-influence 

approach where a region can be formed around an ungauged catchment by selecting 

an „appropriate number‟ of neighbouring gauged catchments based on the criterion of 

minimum model error variance. Hence, QRT offers much greater flexibility and 

potential in terms of error analysis and further development. 

 In the application of the PRM and QRT, the users should note that these are 

approximate methods and are likely to provide reasonably accurate results in most 

cases. However, there are likely to be a few cases where relative errors in design 

flood estimates may be quite high. Thus, the users should consider checking of the 

results with alternative methods.    
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4. Development of Quantile Regression Technique (QRT) 

and Parameter Regression Technique (PRT) using fixed 

region and ROI 

 

4.1 Introduction 

 

Regression based methods are widely used in RFFA which is based on the concept that 

spatial variations in flood flow statistics are closely related with variations in regional 

catchment and climatic characteristics (Pandey and Nguyen, 1999). The most common form 

of the regression approach is to develop a regression equation for a flood quantile of interest, 

known as the quantile regression technique (QRT) (Benson, 1962; Thomas and Benson, 

1970). The USGS has adopted the QRT as the standard RFFA method since the 1960s 

(Gupta et al., 1994).   

 

As an alternative to the QRT, the parameters of a probability distribution can be regressed 

against the explanatory variables; for example, in the case of the log Pearson Type 3 (LP3) 

distribution, regression equations can be developed for the first three moments i.e. the mean, 

standard deviation and skewness of the logarithms of annual maximum flood series. For an 

ungauged catchment, these equations can then be used to predict the mean, standard 

deviation and skewness to fit an LP3 distribution. This method here is referred to as 

„parameter regression technique‟ (PRT).  

 

The PRT offers three significant advantages over regionalizing quantiles: 

 

 It ensures flood quantiles increase smoothly with increasing average recurrence 

interval (ARI), an outcome that may not always be achieved with quantile regression; 

 It is straightforward to combine any at-site flood information with regional estimates 

using the approach described by Micevski and Kuczera (2009) to produce more 

accurate quantile estimates; and 

 It permits quantiles to be estimated for any ARI in the range of interest.  

 

There has been little research on the applicability of the PRT as compared to the QRT in 

RFFA. This section compares the performances of the QRT and PRT for different Australian 

states.  
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4.2 Methods 

 

4.2.1 Fixed regions vs. region-of-influence (ROI) approaches 

 

In RFFA, formation of regions can be based on geographic and administrative boundaries or 

in catchment characteristics data space. The allocation of an ungauged catchment to regions 

formed in catchment characteristics data space is often problematic. Acreman and Wiltshire 

(1987) proposed regions without fixed boundaries. Subsequently, Burn (1990a, 1990b) and 

Zrinji and Burn (1994) proposed the region-of-influence (ROI) approach where each site of 

interest (i.e. catchment where flood quantiles are to be estimated) can form its own region. 

Tasker et al. (1996) compared five methods of developing regression models for ungauged 

catchments using data from 204 gauging stations in Arkansas. The formation of regions in 

these methods was based on proximity in geographical space or catchment attributes space. 

They found the ROI approach was the best among the five methods considered. A key 

advantage of the ROI approach is that it can overcome the inconsistency in flood quantile 

estimates at the boundary of two neighbouring administrative regions (e.g. state borders).  A 

recent study by Eng et al. (2005) compared the performance of ROI approaches based on 

predictor-variable similarity or geographical proximity for estimating the 50-year peak 

discharge, using an ordinary least squares approach with 1091 sites in southeastern USA.  

They found that using geographical proximity produced the smallest predictive errors over 

the study region.  Similar results demonstrating the superiority of geographical proximity over 

predictor-variable similarity have been shown by others (e.g. Merz and Blöschl, 2005, 

Kjeldsen and Jones, 2006). 

 

In this chapter, the performances of the fixed regions (based on state boundary) and ROI  

approaches are compared. The ROI approach uses the physical distance between sites as 

the distance metric (i.e. geographic proximity). In applying the ROI approach, in the first 

iteration, the 15 nearest sites to the site of interest are selected and the regional BGLS 

regression is performed and the predictive variance is noted. The second iteration proceeds 

with the next five closest stations being added to the previous ROI and repeating the BGLS 

regression. This procedure terminates when all the eligible sites have been included in the 

ROIs. The ROI for the site of interest is then selected as the one exhibiting the lowest 

predictive variance. Here, in implementing the ROI approach, the states of NSW, Victoria, 

Queensland, Tasmania and south-east WA are treated separately so that a comparison 

between the ROI and fixed regions can be made. In future testing of the ROI, the database 
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for NSW, Victoria and Queensland will be combined as they form a continuous spatial 

distribution. 

 

The ROI approach adopted here is fundamentally different to that of Tasker et al. (1996) in 

that it seeks to minimise  

 

 It seeks to minimise regression model‟s predictive error variance rather than 

selecting or assuming a fixed number of sites that minimise a distance metric in 

catchment characteristic space;  

 the ROI criterion of Tasker et al. (1996) cannot guarantee minimum predictive 

variance; and  

 moreover, the selection of sites that are minimally different in catchment 

characteristic space may result in greater uncertainty in the estimated regression 

coefficients.  

 

4.2.2 Bayesian generalised least squares regression 

 

Hydrologists commonly use ordinary least squares (OLS) estimators that are appropriate and 

statistically efficient if the flow records are of equal length and if concurrent flows between 

any pair of stations are uncorrelated (Tasker et al., 1986). These assumptions are often 

violated with regional annual maximum flood series data. To overcome the problems with the 

GLS regression, Stedinger and Tasker (1985, 1986) developed a GLS model that accounts 

for the differences in at-site record lengths and inter-site correlation among at-site estimators. 

Stedinger and Tasker (1985, 1986) showed in a Monte Carlo simulation that the GLS 

estimators provide model regression parameters with smaller mean–squared errors than the 

competing OLS estimators, provide relatively unbiased estimates of the variance of the 

regression parameters and produce more accurate estimates of the regression model error. 

GLS regression has been widely adopted in hydrology (e.g., Tasker and Stedinger, 1989; 

Madsen et al., 1995; Madsen et al., 1997; Kroll and Stedinger, 1998; Reis et al., 2005; Eng et 

al., 2005; Griffis and Stedinger, 2007; Gruber and Stedinger, 2008; Hackelbusch et al., 2009; 

Micevski and Kuczera, 2009).  

 

Reis et al. (2005) and Gruber et al. (2007) introduced a Bayesian analysis of the GLS model 

which provides more accurate measure of the model error variance and a more realistic 

description of the possible values of the model error variance in cases where the method of 
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moments estimator of the model error variance as described by Stedinger and Tasker (1985) 

may be zero or close to it; this occurs when sampling errors dominate the regional analysis.  

 

GLS regression 

 

The GLS regression assumes that the hydrological variable of interest (e.g. a flood quantile 

or a parameter of the LP3 distribution) denoted by yi for a given site i can be described by a 

function of catchment characteristics (explanatory variables) with an additive error: 

 





k

j

iijji Xy
1

0    ni ,...,2,1                                   (4.2.1)                                                                   

 

where ijX (j = 1,…, k)  are explanatory variables, j are the regression coefficients, i is the 

model error which is assumed to be normally and independently distributed with model error 

variance 
2

  and n is the number of sites in the region. In all cases only an at-site estimate of 

yi denoted as iŷ is available. To account for the error in this data, a sampling error i must be 

introduced into the model so that:  

 

εXβδηXβy ˆ  where iii yy ˆ ; ni ,...,2,1                   (4.2.2)                                     

 

Thus the observed regression model errors iε  are the sum of the model errors i  and the 

sampling errors i . The total error vector )( 2

  has mean zero and a covariance matrix:  

 

  )ˆ()( 22
yIΛεε   TE                                     (4.2.3)                                                                                        

 

where )ˆ(y is the covariance matrix of the sampling errors in the sample estimators of the 

flood quantiles or the parameters of the LP3 distribution. The variance of i depends on the 

record length available at each site and the cross-correlation of the sites flood data. 

Therefore the observed regression model errors are a combination of time-sampling error 

i and an underlying model error i .  

 

In this regional framework, 
2

  can be viewed as a heterogeneity measure. Madsen et al. 

(2002; 1997) showed that the regional average GLS estimator is a general extension of the 
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record-length-weighted average commonly applied in the index-flood procedure; however the 

record-length-weighted average estimator neglects inter-site correlation and regional 

heterogeneity (Stedinger et al., 1992 and Stedinger and Lu, 1995).  

 

The GLS estimator of  and its respective covariance matrices for known 
2
  are given by: 

 

  yXXX ˆ)()(ˆ 12112     TT

GLS       (4.2.4)  
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GLS         (4.2.5)  

                                       

 

The model error variance 
2


 can be estimated by either generalised method of moments 

(MOM) or maximum likelihood (ML) estimators as described by Stedinger and Tasker (1986). 

The MOM estimator is determined by iteratively solving equation 4.2.6 along with the 

generalised residual mean square error equation: 

 

)1()ˆˆ()]ˆ(ˆ[)ˆˆ( 12   knGLS

T

GLS βXyyIβXy                                     (4.2.6)                                                                                                             

 

In some situations, the sampling covariance matrix explains all the variability observed in the 

data, which means the left-hand side of equation 4.2.6 will be less than n – (k+1) even if 
2ˆ 

 

is zero. In these circumstances, the MOM estimator of the model error variance is generally 

taken to be zero (Stedinger and Tasker, 1985; 1986). 

 

Bayesian GLS regression 

 

Bayesian inference is an alternative to the classical statistical approach. In a Bayesian 

framework, the parameters of the model are considered to be random variables, whose 

probability density function should be estimated. Reis et al. (2005) developed a Bayesian 

approach to estimate the regional model parameters and showed that the Bayesian 

approach can provide a realistic description of the possible values of the model error 

variance, especially in the case where sampling error tends to dominate the model errors in 

the regional analysis.  
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With the Bayesian approach, it is assumed that there is no prior information on any of the β 

parameters thus a multivariate normal distribution with mean zero and a large variance (e.g. 

greater than 100) is used as a prior for the regression coefficient parameters as suggested 

by Reis et al. (2005).  This prior is considered virtually non-informative, which produces a 

probability distribution function that is generally flat in the region of interest. The prior 

information for the model error variance 
2

  is represented by an informative one-parameter 

exponential distribution, which represents the reciprocal of the prior mean of the model error 

variance.  Reis et al. (2005) made a detail discussion on the derivation of the prior for the 

model error variance for regionalising the skew. A variance of 6 is adopted in our study for 

the regionalisation of skew following Reis et al. (2005). 

 

To derive the prior distribution for the standard deviation, mean flood and quantiles of the 

LP3 distribution we used an informative one-parameter exponential distribution where the 

reciprocal of the residual error variance estimates from the OLS regression is taken as the 

prior mean of the model error variance. For the mean flood and flood quantiles, the model 

error variance tends to dominate the regional analysis. In this case a zero or negative value 

for the model error variance is highly unlikely. 

 

A negative model error variance is unrealistic as noted by Reis et al. (2005). In this situation 

equation 4.2.6 may introduce further uncertainty into the regional model. A Bayesian 

estimator of the model error variance as discussed above may be used to safeguard against 

this happening. Further details on this can be found in Reis et al. (2005) and Micevski and 

Kuczera (2009). In summary, the Bayesian estimator offers a better way of dealing with the 

model error and quantifying uncertainty associated with this. 

 

Selection of predictor variables  

 

In the OLS regression, several statistics are used to justify the model selection such as the 

traditional coefficient of determination (R2), F statistics, Durbin Watson Statistics, Akaike 

information criterion (AIC) and Bayesian information criteria (BIC) (Gelman et al., 2004). 

Among these statistics, the AIC and BIC penalise for the extra complexity in the model, 

which means that an extra predictor variable must improve the model significantly to justify 

its inclusion. Provided below is a brief discussion on the Bayesian GLS regression statistics 

that guided our model selection procedure.  
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Average Variance of Prediction 

In RFFA, the objective is to make prediction at both gauged and ungauged sites, hence a 

statistic appropriate for evaluation of model selection is the variance of prediction, which in 

many cases depends on the explanatory variables at both gauged and ungauged sites. 

Hence, Tasker and Stedinger (1989) suggested the use of the average variance prediction 

(AVP) computed with the sites in the regression. The assumption here is that these sites are 

representatives of all the sites in the region, or at least the sites at which predictions are 

needed. 

 

By using a GLS regression model one can predict a hydrological statistic on average over a 

new region. Thus this becomes the average variance of prediction AVPnew for a new site 

which is made up of the uncertainty in estimating the coefficients of the regression model and 

the average model error (Tasker and Stedinger, 1986).   

 

Consider a new site not used in the derivation of the regional model. Let ox be the vector of 

characteristics at the new site. The expected value of the variable of interest yo is ˆT

ox β  where 

β̂  is the expected GLS value of β . The predictive variance of yo is (Reis et al. 2005): 

 

T
iioyVar xXΛXx

1T 12 )()(                                                                                  (4.2.7a)                                                                                    

 

The second term is the contribution of uncertainty in β  to yo. For Bayesian GLS analysis 

according to Gruber et al. (2007): 
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Also, if the prediction is for a site that was used in the estimation of the regional regression 

model, the measure of prediction AVPold requires an additional term: 
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where ei  is a unit column vector with 1 at the ith row and 0 otherwise. 

 

 

Bayesian and Akaike Information Criteria 
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The Akaike information criterion (AIC) is given by equation 4.2.9, where )(Y is the log-

likelihood maximised function, n is the number of sites in the region and k is the number of 

predictor variables in the fitted regression model. The first term on the right hand side of 

equation 4.2.9 measures essentially the true lack of fit while the second term measures 

model complexity which is related to the number of predictor variables. 

 

k2)Y(2AIC                               (4.2.9)                                                                                                        

  

In practice, after the computation of the AIC for all of the competing models, one selects the 

model with the minimum AIC value, AICmin. The Bayesian information criterion (BIC) is very 

similar to AIC, but is developed in a Bayesian framework: 

 

kn)ln(  (Y)2-  BIC                                                (4.2.10)                                                                                                           

 

The BIC penalises more heavily models with higher values of k than does AIC. Since 

)(Y depends on the sample size (n), the competing models can be compared using AIC and 

BIC only if fitted using the same sample, as done in this study. 

 

Regression Diagnostics  

 

The assessment of the regional regression model is made by using a number of statistical 

diagnostics such as a pseudo–coefficient of determination and standard error of prediction. 

An analysis of variance for the Bayesian GLS models is undertaken to examine which 

proportion of the sampling and model errors dominates the regional analysis. The 

standardised residuals are used to identify outlier sites; absence of outlier in regression 

diagnostics indicates the overall adequacy of the regional model. These statistics are 

described below. 

 

 Co-efficient of Determination (R
2
) and Analysis of Variance 

The traditional coefficient of determination (R2) measures the degree to which a model 

explains the variability in the dependent variable.  It uses the partitioning of the sum of 

squared deviations and associated degrees of freedom to describe the variance of the signal 

versus the model error. Traditionally for OLS regression, the Total-Sum-of-Squared 

deviations about the mean (SST) is divided into two separate terms, the Sum-of-Squared 

Errors explained by the regression model (SSR) and the residual Sum-of-Squared Errors 

(SSE), where SST = SSR + SSE. 
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Reis et al. (2005) proposed a pseudo co-efficient of determination ( )2

GLSR  appropriate for use 

with the GLS regression. For traditional R2, both the SSE and SST include sampling and 

model error variances, and therefore this statistic can grossly misrepresent the true power of 

the GLS model to explain the actual variation in the iy . Hence, for the GLS regression a more 

appropriate pseudo co-efficient of determination is defined by: 

 

)0(ˆ

)(ˆ
1
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)](ˆ)0(ˆ[
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



 k

n

kn
RGLS 


                       (4.2.11)                                                                                             

 

where )(ˆ 2 k and )0(ˆ 2

 are the model error variances when k and no explanatory variables are 

used, respectively. Here, 
2

GLSR measures the improvement of a GLS regression model with k 

explanatory variables against the estimated error variance for a model without any 

explanatory variable. If )(ˆ 2 k = 0, 
2

GLSR = 1 as it should, even though the model is not perfect 

because var[ ii   ] is still not zero because var[ i ] > 0. A pseudo ANOVA table is used in 

GLS regression for the error variance analysis as presented by Reis et al. (2005) and Griffis 

and Stedinger (2007). 

 

Standard Error of Prediction 

If the residuals have a nearly normal distribution, the standard error of prediction in percent 

(SEP) for the true flood quantiles/flood statistics is described by: 

 

5.0]1)[exp(100(%)  newAVPSEP                            (4.2.12)                                                                        

 

where the regression models independent and dependant variables have been transformed 

by loge.  

 

Analysis of Residuals and Z-score 

 

Analysis of residuals provides a means of assessing the model fit and identifying possible 

outliers. In this study, the standardised residual (rsi) (Tasker et al., 1996) is used, which is the 

residual ri divided by the square root of its variance. This is calculated as:  
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
   (4.2.13) 

 

To assess the adequacy of the model in estimating flood quantiles, a Z score is used, which 

is defined as:  
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
         (4.2.14) 

 

Here the numerator is the difference between the at-site flood quantile and regional flood 

quantile (estimated from the developed regression equation) and the denominator is the 

square root of the sum of the variances of the at-site (
2

ARI,iσ
) and regional (

2

ARI,iσ̂
) flood 

quantiles in natural logarithm space. It is reasonable to assume that the errors in the two 

estimators are independent because iARIQ ,  is an unbiased estimator of the true quantile 

estimators based upon the at-site data, whereas the error in iARIQ ,
ˆ   is mostly due to the 

failure of the best regional model to estimate accurately the true at-site flood quantile. The 

use of log space makes the difference approximately normally distributed and hence enables 

the use of standard statistical tests. 

 

4.2.3 At-site Flood Frequency Analysis and Quantile and Parameter Regression 

Technique   

 

At-site flood quantiles for ARIs of 2, 5, 10, 20, 50 and 100 years were estimated by FLIKE 

(at-site flood frequency analysis software) using an LP3 distribution with Bayesian parameter 

estimation procedure as described in Kuczera (1999). No prior information was used in fitting 

the LP3 distribution. The parameters of the LP3 distribution were also extracted from the 

FLIKE software.  

 

To regionalise the flood quantiles the sampling covariance matrix () of the LP3 distribution is 

required. Tasker and Stedinger (1989) and Griffis and Stedinger (2007) provide the 

approximate estimator of the components of  matrix of the LP3 distribution. The skew and 

standard deviation in the  matrix are subject to estimation uncertainty. In this study to avoid 

correlation between the residuals and the fitted quantiles, (i) the inter site correlation between 

the concurrent annual maximum flood series (ρij) is estimated as a function of the distance 
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between sites i and j, (ii) the standard deviations σi and σj are estimated using a separate 

OLS/GLS regression using the explanatory variables used in the study, and (iii) the regional 

skew is used in place of the population skew  as suggested by Tasker and Stedinger (1989). 

This analysis above used the regional estimates of the standard deviation and skew obtained 

from Bayesian GLS regression. The detailed information on the covariance matrices 

associated with the standard deviation and skew can be found in Reis et al. (2005) and 

Griffis and Stedinger (2007).  

 

For the parameter regression technique (PRT), we adopted the GLS regression (Tasker and 

Stedinger, 1989 and Griffis and Stedinger, 2007) using a Bayesian framework (Reis et al., 

2005) to develop regression equations for the parameters of the LP3 distribution (i.e. mean 

µ, standard deviation , and skew coefficient  of the logarithms of the annual maximum flood 

series). The regional values of standard deviation and skew were taken from the  matrix of 

the flood quantile modelling as mentioned above. The covariance matrix for the mean flood 

was obtained following Stedinger and Tasker (1986) 

 

4.2.4 Evaluation Statistics 

 

We evaluate the overall performance of the Bayesian GLS regression method by using one-

at-a-time cross validation.  The site of interest is left out in building the model so it is in effect 

being treated as an ungauged site. This is repeated for all the sites considered in the study. 

The advantage of the one-at-a-time cross-validation procedure is that it generates quantile or 

moment estimates for the site of interest which are independent from the site itself. To 

compare model adequacy we adopt a number of evaluation statistics (equations 4.2.15 to 

4.2.17)) being the relative error (RE), relative root mean square error (RMSE) and the mean 

ratio of the predicted flow to observed flow (ratio).  
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where obsQ is the observed flood quantile obtained from at-site flood frequency analysis, 

predQ is the predicted flood quantile obtained from the Bayesian GLS-QRT or Bayesian GLS-

PRT based on the one-at-a-time cross validation approach and n is the number of sites in the 

region. 

 

The RMSE (%) and RE provide an indication of the overall accuracy of a model. The average 

value of the Qpred/Qobs ratio gives an indication of the degree of bias (i.e. systematic over- or 

under estimation), where a value of 1 indicates a good average agreement between the Qpred 

and Qobs. A Qpred/Qobs ratio value in the range of 0.5 to 2 may be regarded as „desirable (D)‟, 

a value smaller than 0.5 may be regarded as „gross underestimation (U)‟, and a value greater 

than 2 may be regarded as „gross overestimation (O)‟. It should be mentioned here that 

these are only arbitrary limits and would provide a reasonable guide about the relative 

accuracy of the methods as far as the practical application of the methods is concerned. In 

applying these evaluation statistics to compare the alternative models, factors such as data 

error (e.g. measurement error and error due to rating curve extrapolation) and the error 

associated with the at-site flood frequency analysis have not been considered. 
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4.3 Results for NSW and ACT 

 

4.3.1 QRT and PRT – fixed and ROI approaches  

A total of 96 catchments were used from NSW and ACT for the analyses presented here. 

These catchments are listed in Table A1. The record lengths of annual maximum flood series 

of these 96 stations range from 25 to 75 years (mean: 37 years, median: 34 years and 

standard deviation: 11.4 years). The catchment areas of the selected 96 catchments range 

from 8 km2 to 1010 km2 (mean: 353 km2 and median: 267 km2). The geographical distribution 

of the selected 96 catchments is shown in Figure 2.2. The distribution of the catchment areas 

of these stations is shown in Figure 2.3. 

 

In the fixed region approach, all the 96 catchments were considered to have formed one 

region, however, one catchment was left out for cross-validation and the procedure was 

repeated 96 times to implement the one-at-a-time cross validation. The ROI approach in this 

study was applied to the parameters (i.e. mean, standard deviation and skew) and flood 

quantiles of the LP3 distribution to further reduce the heterogeneity unaccounted for by the 

fixed-region BGLS model. 

 

The ROI approach in this paper uses the physical distance between sites as the distance 

metric (i.e. geographic proximity). In the first iteration, the 15 nearest stations to the site of 

interest are selected and a regional BGLS regression is performed and the predictive 

variance is noted. The second iteration proceeds with the next five closest stations being 

added to the ROI and repeating the regression. This procedure terminates when all 96 sites 

have been included in the ROI. The ROI for the site of interest is then selected as the one 

which shows the lowest predictive variance. 

 

Table 4.3.1 shows different combinations of predictor variables for Q10 QRT model and the 

first three moments of the LP3 distribution. Figures 4.3.1 and 4.3.2 show example plots of the 

statistics used in selecting the best set of predictor variables for Q10 and the skew models. 

According to the model error variance, combinations 19, 18, 20, 23, 16, 6, 4, 25 and 10 were 

potential sets of predictor variables for the Q10 model. Combinations 18, 19, 20 and 23 

contained 3 to 4 predictor variables while combinations 16, 6, 4, 25 and 10 contained 2 

predictor variables with similar model error variances and R2
GLS. The average variance of 

prediction for an old and new site (AVPO) and (AVPN) and the Akaike information and 

Bayesian information criteria (AIC) and (BIC) values favour combination 10, and hence this 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  65 

was finally selected as the best set of predictor variables for the Q10 model which includes 

area and design rainfall intensity Itc,10.  

 

For the skew model, combination 9 showed a slightly higher model error variance than 

combination 1 and the highest R2
GLS (see Figure 4.3.2) as well as the lowest AIC and BIC. 

Combination 1 without any predictor variables however showed a lower AVPO and AVPN as 

compared to combination 9. Both combinations 1 and 9 were trialled in this study.  

 

A similar procedure was adopted in selecting the best set of predictor variables for the other 

models with the QRT and PRT. The set of predictor variables selected as above was used in 

the one-at-a-time cross validation (with fixed regions) and region-of-influence (ROI) 

approach. 

 

The significance of the estimated regression coefficient values shown in Equations 4.3.1 to 

4.3.9 was evaluated using the Bayesian plausibility value (BPV) as described by Reis et al. 

(2005) and Gruber et al. (2007). The BPV allows one to perform the equivalent of a classical 

hypothesis p-value test within a Bayesian framework. The BPV was carried out at the 5% 

significance level. The advantage of the BPV is that it uses the posterior distribution of each 

-parameter. The BPVs for the regression coefficients associated with variable area and 

design rainfall intensity Itc,ARI for the QRT over all the ARIs were smaller than 0%. The BPVs 

for the skew model were 6% and 7% for area and forest, respectively indicating that these 

are reasonably good predictors for skew in this application. The BPVs for the mean flood 

model were 0% for both the predictor variables (area and 2I12). For the standard deviation 

model, the BPVs for the predictor variables rain and S1085 were 2%.  

 

Regression equations developed for the QRT and PRT for the fixed region are given by 

Equations 4.3.1 to 4.3.9. 
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Table 4.3.1 Different combinations of predictor variables considered for the QRT models and 

the parameters of the LP3 distribution (QRT and PRT fixed region NSW) 

Combination Combinations for mean, 

standard deviation & skew 

models 

Combinations for flood quantile 

model 

1 Const Const 

2 Const, area Const, area 

3 Const, area, 2I1 Const, area, 2I1 

4 Const, area, 50I1 Const, area, 2I12 

5 Const, area, 50I12 Const, area, 50I1 

6 Const, area, 2I12 Const, area, 50I12 

7 Const, area, S1085 Const, area, rain 

8 Const, area, sden Const, area, for 

9 Const, area, forest Const, area, forest, evap 

10 Const, area, evap Const, area, Itc,ARI 

11 Const, area, rain Const, area, evap 

12 Const, rain, S1085 Const, area, S1085 

13 Const, sden, S1085 Const, area, sden 

14 Const, evap, sden Const, sden, rain 

15 Const, forest Const, for, rain 

16 Const, S1085, forest Const, area, 50I12, rain  

17 - Const, area, 50I12, sden 

18 - Const, area, 50I12, rain, evap 

19 - Const, area, 50I12, Itc,ARI, evap 

20 - Const, area, 50I12, Itc,ARI, rain, 

evap 

21 - Const, area, 50I12, Itc,ARI, sden 

22 - Const, area, 50I12, Itc,ARI, S1085 

23 - Const, area, Itc,ARI, evap 

24 - Const, area, Itc,ARI, rain 

25 - Const, area, 2I1, Itc,ARI 
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Figure 4.3.1 Selection of predictor variables for the BGLS regression model for Q10 model  

(QRT, fixed region NSW), MEV = model error variance, AVPO = average variance of 

prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information 

criterion, BIC = Bayesian information criterion 
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Figure 4.3.2 Selection of predictor variables for the BGLS regression model for skew 

 

ln(Q2) = 4.06 + 1.26(zarea) + 2.42(zItc,2)                                                                     (4.3.1) 

ln(Q5) =  5.11+ 1.19(zarea) + 2.08(zItc,5)                                                                     (4.3.2) 

ln(Q10) = 5.56 + 1.14(zarea) + 1.93(zItc,10)                                                                  (4.3.3) 

ln(Q20) = 5.91 + 1.09(zarea) + 1.79(zItc,20)                                                                  (4.3.4) 

ln(Q50) = 6.55 + 1.01(zarea) + 1.73(zItc,50)                                                                  (4.3.5) 

ln(Q100) = 6.47 + 0.97(zarea) + 1.50(zItc,100)                                                                (4.3.6) 

M = 4.09 + 0.67(zarea) + 2.31(zI12,2)                                                                           (4.3.7) 

stdev =  1.22 – 0.59(zrain) – 0.13(zS1085)                                                                 (4.3.8) 

skew =  – 0.42 – 0.10(zarea) – 0.10(zforest)                                                               (4.3.9) 

 

where  

n
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xxz

n
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ii
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 1
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)ln()(                                                                                             (4.3.10) 

 

where, ln(xi) is the logarithm of the catchment variable at a site; and  

n

x
n

i

i
1

)ln(

 is the arithmetic average of the same log transformed catchment variable over all 

the sites in the region. These average values for the required predictor variables for all the 

states/regions are provided in Section 4.10 (Table 4.10.1). Here, M = average of ln(Q), where 
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Q is annual maximum flood series and stdev is the standard deviation of ln(Q) and skew is 

the skewness of ln(Q) data. 

 

The Pseudo Analysis of Variance (ANOVA) tables for the Q20 and Q100 models and the 

parameters of the LP3 distribution are presented in Tables 4.3.2 – 4.3.6 for the fixed regions 

and ROI. A Pseudo ANOVA table describes how the total variation among the iŷ  values can 

be apportioned between that explained by the model error and sampling error. This is an 

extension of the ANOVA in the OLS regression which does not recognize and correct for the 

expected sampling variance (Reis et al., 2005). An error variance ratio (EVR) is used in 

Pseudo ANOVA, which is the ratio of the sampling error variance to model error variance. An 

EVR greater than 0.20 indicates that the sampling variance is not negligible when compared 

to the model error variance, which suggests the need for a GLS regression analysis (Gruber 

et al., 2007).  

 

For the LP3 parameters, the sampling error (i.e. EVR) increases as the order of moment 

increases. The ROI shows a reduced model error variance (i.e. a reduced heterogeneity) as 

compared to the fixed regions. The model error dominates the regional analysis for the mean 

flood and the standard deviation models for both the fixed regions and ROI. However, ROI 

shows a higher EVR than the fixed regions; e.g. for the mean flood model the EVR is 0.30 for 

the ROI and 0.17 for the fixed region (Table 4.3.4). For the standard deviation model the 

EVR is 0.77 for the ROI and 0.35 for the fixed region (Table 4.3.5) 

 

The EVR values for the skew model are 19 and 18 for the fixed regions and ROI respectively 

(Tables 4.3.6), which are much higher than the recommended limit of 0.20. This clearly 

indicates that the GLS regression is the preferred modeling choice over OLS for the skew 

model. An OLS model for the skew would have clearly given misleading results as it does not 

distinguish between the model error and sampling error. Importantly, what is clear is that if a 

method of moments estimator was used to estimate the model error variance 2

   for the 

skew model, the model error variance would have been grossly underestimated as the 

sampling error has heavily dominated the regional analysis. A more reasonable estimate of 

the model error variance has been achieved with the Bayesian procedure as it represents the 

values of 2

 by computing expectations over the entire posterior distribution. As far as the 

ROI is concerned there is little change in the EVR as compared to the fixed region (as the 

skew model tends to include more stations in the regional analysis). 

 

For the fixed regions, the mean flood model has the model error variance of 27.7, which is 
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much higher than 5.6 (for the standard deviation model) and 1.22 (for the skew model) 

(Tables 4.3.4, 4.3.5 and 4.3.6). For the ROI, the mean flood model also shows a much higher 

model error variance than those of the standard deviation and skew models. These results 

indicate that the mean flood has the greater level of heterogeneity associated with it as 

compared to the standard deviation and skew.   

 

The pseudo ANOVA tables were also prepared for the flood quantile models. Tables 4.3.2 

and 4.3.3 show the results for Q20 and Q100 models, respectively. Here the ROI shows a 

higher EVR than the fixed region. It can also be clearly seen that the model error () terms 

for ROI of tables 4.3.2 and 4.3.3 are smaller than that of the fixed region. This is due to the 

fact that ROI has found an optimum number of sites based on the minimum model error 

variance which naturally uses a smaller number of sites than that of the fixed region.  This 

suggests that sub regions may exist in larger regions and that the BGLS regression should 

be used with ROI in developing the flood quantile models. 

` 

Table 4.3.2 Pseudo ANOVA table for Q20 model (QRT, fixed region and ROI NSW) 

 

 

Table 4.3.3 Pseudo ANOVA table for Q100 (QRT, fixed region and ROI NSW) 

 

 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI Equations Fixed 
region 

ROI 

Model k=3 k=3 n )( 22

0    =  61.1 61.1 

Model error  n-k-1=92 n-k-1=48 n )( 2

 =  23.5 17.3 

Sampling error  N = 96 N = 52 )]ˆ([ ytr   =  7.6 7.0 
Total 

2n-1 = 191 2n-1 = 103 
Sum of the 

above = 
92 86 

   EVR 0.32 0.43 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  50.0 50.0 
Model error  n-k-1=92 n-k-1=51  33.6 26.1 

Sampling error  N = 96 N = 55  10.9 10.0 
Total 

2n-1 = 191 2n-1 = 109 
Sum of the 

above = 
95 87 

   EVR 0.32 0.42 
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Table 4.3.4 Pseudo ANOVA table for the mean flood model (PRT, fixed region and ROI NSW 

 

 

Table 4.3.5 Pseudo ANOVA table for the standard deviation model (PRT, fixed region and 

ROI NSW) 

 

 

Table 4.3.6 Pseudo ANOVA table for the skew model (PRT, fixed region and ROI NSW) 

 

To assess the underlying model assumptions (i.e. the normality of residuals), the plots of the 

standardised residuals vs. predicted values were examined. The predicted values were 

obtained from one-at-a-time cross validation. Figures 4.3.3 to 4.3.5 show the plots for the Q20 

and the mean flood models with the fixed region and ROI. If the underlying model 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  61.5 61.2 
Model error  n-k-1=92 n-k-1=32  27.7 16.5 

Sampling error  N = 96 N = 36  5 4.5 
Total 

2n-1 = 191 2n-1 = 71 
Sum of the 

above = 
94 83 

   EVR 0.17 0.3 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  3.1 3.1 
Model error  n-k-1=92 n-k-1=43  5.6 4.4 

Sampling error  N = 96 N = 47  3.6 3.4 
Total 

2n-1 = 191 2n-1 = 93 
Sum of the 

above = 
12 11 

   EVR 0.35 0.77 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  0.1 0.1 
Model error  n-k-1=92 n-k-1=91  1.22 1.21 

Sampling error  N = 96 N = 95  24 23 
Total 

2n-1 = 191 2n-1 = 189 
Sum of the 

above = 
25 23 

   EVR 19 18 
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assumption is satisfied to a large extent the standardised residual values should not exceed 

± 2 limits; in practice, 95% of the standardised residuals should fall between ± 2. The results 

in Figures 4.3.3 to 4.3.5 reveal that the developed equations satisfy the normality of residual 

assumption quite satisfactorily. Also no specific trend (heteroscedasicity) can be identified 

with the standardised values being almost equally distributed below and above zero. Similar 

results were obtained for the skew, standard deviation and other flood quantile models. 

 

 

 

 

 

 

 

 

 

Figure 4.3.3 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, fixed region, NSW) 

 

 

 

 

 

 

 

 

 

Figure 4.3.4 plot of standardised residuals vs. predicted values for the mean flood (PRT, 

fixed region, ROI, NSW) 
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Figure 4.3.5 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, ROI, NSW) 

 

The QQ-plots of the standardised residuals (Equation 4.2.13) vs. normal score (Equation 

4.2.14) for the fixed region (based on one-at-a-time cross validation) and ROI were 

examined. Figures 4.3.6 to 4.3.8 present results for the Q20 (fixed region and ROI) and skew 

(ROI) models, which show that all the points closely follow a straight line. This indicates that 

the assumption of normality and the homogeneity of variance of the standardised residuals 

have largely been satisfied. If the standardised residuals are indeed normally and 

independently distributed N(0,1) with mean 0 and variance 1 then the slope of the best fit line 

in the QQ-plot, which can be interpreted as the standard deviation of the normal score (Z 

score) of the quantile, should approach 1 and the intercept, which is the mean of the normal 

score of the quantile should approach 0 as the number of sites increases. Figures 4.3.6 to 

4.3.8 indeed show that the fitted lines for the developed models pass through the origin (0, 0) 

and it has a slope approximately equal to one. The ROI approach approximates the normality 

of the residuals slightly better (i.e. a better match with the fitted line) than the fixed region 

approach. Similar results were also found for the mean, standard deviation and other flood 

quantile models.  
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Figure 4.3.6 QQ-plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, fixed region, NSW) 

 

 

 

 

 

 

 

 

Figure 4.3.7 QQ-plot of the standardised residuals vs. Z score for the skew model (PRT, 

fixed region, ROI, NSW) 

 

 

 

 

 

 

 

 

Figure 4.3.8 QQ-plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, ROI, NSW) 
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The summary of various regression diagnostics (the relevant equations are described in 

Section 4.2.2) is provided in Table 4.3.7. This shows that for the mean flood model, the 

model error variance (MEV) and average standard error of prediction (SEP) are much higher 

than those of the standard deviation and skew models. This indicates that the mean flood 

model exhibits a higher degree of heterogeneity than the standard deviation and skew 

models. Indeed the issue here is that sampling error becomes larger as the order of the 

moment increases, therefore in case of the skew the spatial variation is a second order effect 

that is not really detectable. The R2GLS value for the mean flood model with the ROI is 8% 

higher than the fixed region. These indicate that the ROI should be preferred over the fixed 

region for developing the mean flood model. For the standard deviation model, ROI also 

shows 2% smaller SEP and 9% higher R2GLS values. This indicates that the ROI is 

preferable over the fixed region for the standard deviation model. The SEP and R2GLS 

values for the skew model are very similar for the fixed region and ROI as the number of 

sites in the fixed region and ROI is very similar.  

 

Interestingly one can see from Table 4.3.7 that the SEP values for all the flood quanitle 

models are 5% to 11% smaller for the ROI cases than the fixed region. Also, the R2GLS 

values for ROI cases are 4% to 7% higher than the fixed region. These show that the ROI 

approach performs better overall than the fixed region approach. 

 

Table 4.3.7 Regression diagnostics for fixed region and ROI for NSW 

Model Fixed region ROI 

 
MEV AVP SEP (%) R2

GLS (%) 
 MEV AVP SEP (%) R2

GLS (%) 
Mean 

0.29 0.31 60 76 0.19 0.23 51 84 
Stdev 

0.058 0.062 25 37 0.046 0.054 23 46 
Skew 

0.013 0.024 16 65 0.013 0.023 16 65 
Q2 0.31 0.33 63 77 0.20 0.24 52 84 

Q5 0.23 0.24 52 79 0.16 0.20 47 85 

Q10 0.23 0.24 52 79 0.16 0.20 46 85 

Q20 0.25 0.27 55 76 0.18 0.22 49 83 

Q50 0.35 0.37 66 70 0.25 0.28 56 74 

Q100 0.35 0.38 68 65 0.29 0.34 63 70 
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Table 4.3.8 shows number of sites in a region and associated model error variances for the 

ROI and fixed region models. This shows that the ROI mean flood model has fewer sites on 

average (36 out of 96 i.e. 37% of the available sites) than the standard deviation and skew 

models. The ROI skew model has the highest number of sites which includes nearly all the 

sites in NSW. The model error variance for the fixed region mean flood model is 34% higher 

than the corresponding ROI model. The model error variances for all the ROI models (except 

the skew model) are smaller than the fixed region models. This shows that the fixed region 

models experience a greater heterogeneity than the ROI. If the fixed region models are made 

too big, the model error will be inflated by heterogeneity unaccounted for by the catchment 

characteristics. Figure 4.3.9 shows the resulting sub-regions in NSW (with minimum model 

error variances) for the ROI mean flood and skew models. For the mean flood model, there 

are distinct sub-regions while the sub-region for the skew model captures the entire study 

area. Similar results were found by Hackelbusch et al. (2009). The significance of this finding 

is that if sub-regions do exist they are most likely to be captured by the ROI. 

 

Table 4.3.8 Model error variances associated with fixed region and ROI for NSW (n = 

number of sites of the parameters and flood quantiles 

 
Parameter/ 
Quantiles 

Mean Stdev Skew Q2 Q5 Q10 Q20 Q50 Q100 

ROI (n)  
 2ˆ

  
36     

0.19 
47 

0.046 
95 

0.013 
31 

0.20 
42 

0.16  
48 

0.16  
52 

0.18 
53 

0.25  
55 

0.29  
Fixed 
region (n) 

2ˆ
  

96     
0.29 

96 
0.058 

96 
0.013 

96 
0.21  

96 
0.23 

96 
0.23 

96 
0.25 

96 
0.35 

96 
0.35 
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Figure 4.3.9 Binned minimum model error variance for (a) mean flood model and (b) skew 

model for NSW 

 

Table 4.3.9 presents the relative root mean square error (RMSE) (Equation 4.2.16) and the 

relative error (RE) (Equation 4.2.15) values for the PRT and QRT models with both the fixed 

region and ROI. In terms of RMSE, ROI gives smaller values than the fixed regions for all the 

ARIs. The QRT-ROI shows smaller RMSE values than the PRT-ROI for all the ARIs except 

for the 5 years. In terms of RE, ROI gives 1 to 8% smaller values than the fixed regions. The 

PRT-ROI gives smaller values of RE (by 2% to 7%) for ARIs of 2 to 10 years than the QRT-

ROI. However, the QRT-ROI gives smaller RE values (by 1% to 3%) for ARIs of 20 to 100 

years than the QRT-ROI. These statistics reveal that there are only modest differences 

between the performances of QRT and PRT.   

 

Tables 4.3.10 and 4.3.11 show results of counting the Qpred/Qobs ratios for the QRT and PRT. 

The use of this ratio has been discussed in Section 4.2.4. It was found that ROI provided 

relatively better results on average overall the ARIs than the fixed regions. For QRT, 82% 

compared to 74% were in the desirable range (ROI and fixed, respectively). For PRT, 78% of 

cases for ROI compared to 77% for fixed were in the „desirable range‟ of estimates. Indeed it 

can be seen that the PRT-ROI methods are very similar, as would be expected, with only an 

average of 4% difference between the methods. The ROI-PRT showed 12% underestimation 

as compared to 9% for the QRT. The cases for overestimation were very similar: 10% for 

PRT-ROI compared to 9% for QRT-ROI. The evaluation statistics show that the PRT does 

not perform worse that the QRT and that the PRT is a viable option for design flood 

estimation for NSW. These results are in agreement with the results in Tables 4.3.9. 

 

(a) (b) 
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Table 4.3.9 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for 

NSW 

Model RMSE (%) RE (%) 
 PRT QRT PRT QRT 
 Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI 

Q2 7.3 6.2 6.8 5.9 46 38 44 40 

Q5 6.5 5.4 7.0 5.9 37 30 38 36 

Q10 6.7 5.6 7.4 5.5 37 29 37 36 

Q20 7.2 5.7 8.3 5.3 36 34 35 31 

Q50 8.1 7.0 10.0 6.7 38 34 36 32 

Q100 9.0 7.5 10.0 7.2 40 36 38 35 

 

 
Table 4.3.10 Summary of counts based on Qpred/Qobs ratio values for QRT and PRT for NSW 

(fixed region). “U” = gross underestimation, “D” = desirable and “O” = gross overestimation 

 

  
ARI 

(years) 
Count (QRT) Percent 

(QRT) 
Count (PRT) Percent 

(PRT) 

U D O U D O U D O U D O 
2 16 70 10 17 73 10 10 69 17 10 72 18 
5 8 77 11 8 80 11 8 77 11 8 80 11 

10 12 72 12 13 75 13 10 76 10 10 79 10 
20 12 72 12 13 75 13 11 77 8 11 80 8 
50 5 72 19 5 75 20 12 75 9 13 78 9 
100 17 65 14 18 68 15 15 72 9 16 75 9 

Sum / 
average 70 428 78 12 74 14 66 446 64 11 77 11 
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Table 4.3.11 Summary of counts based on Qpred/Qobs ratio values for QRT and PRT for NSW 

(ROI). “U” = gross underestimation, “A” = acceptable and “O” = gross overestimation  

 

ARI 
(years) 

Count (QRT) Percent 
(QRT) 

Count (PRT) Percent 
(PRT) 

U D O U D O U D O U D O 
2 10 77 9 10 80 9 10 76 10 10 79 10 
5 8 80 8 8 83 8 10 78 8 10 81 8 

10 11 79 6 11 82 6 10 78 8 10 81 8 
20 10 80 6 10 83 6 12 77 7 13 80 7 
50 5 81 10 5 84 10 13 71 12 14 74 13 
100 6 76 14 6 79 15 13 71 12 14 74 13 

Sum / 
average 50 473 53 9 82 9 68 451 57 12 78 10 

 
 
 

4.3.2 PRT-ROI with constant SD and skew models 

 

Below we present the results of the region-of-influence (ROI) analysis for the parameter 

regression technique (PRT) using constant standard deviation and skew (i.e. no predictor 

variables in the regression equation of the standard deviation and skew). The main aspect of 

this analysis is to determine if there is any loss in accuracy and efficiency, especially in the 

mid to higher ARIs (i.e 20 to 100 years), when using a constant standard deviation and skew 

as compared to models with explanatory variables. 

 

Firstly, in Figure 4.3.10, we present the standardised residual vs. the fitted quantile plot of the 

20 year ARI, superimposing the estimate made by the PRT-ROI with constant standard 

deviation and skew on the estimates by the previous QRT-ROI and PRT-ROI models.. 

Indeed one can observe that the PRT-ROI estimate of the 20 year ARI with constant 

standard deviation and skew performs equally well as the competing models. Nearly all the 

standardised residuals fall within the  2 limits, suggesting that the use of explanatory 

variables does not really add any more meaningful information to the analysis. Secondly we 

show the QQ-plot (Figure 4.3.11) of the competing models which shows that the use of a 

constant standard deviation and skew does not result in any gross errors. The residual 

analysis also reveals that the major assumptions of the regression have been largely 

satisfied (i.e. normality of the residuals).     
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Figure 4.3.10 Plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, ROI and PRT-ROI with constant standard deviation and skew, NSW) 

 

 

 

 

 

 

 

 

Figure 4.3.11 QQ-plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, ROI, and PRT-ROI with constant standard deviation and skew, NSW) 

 

We now present the results based on the evaluation statistics (i.e. Equation 4.2.16 and 

4.2.15) to compare the flood quantiles from PRT-ROI using a constant standard deviation 

and skew to PRT using a standard deviation and skew as a function of catchment variables. 

The evaluation statistics (see Table 4.3.12) from the validation reveal that there is no real 

loss of accuracy (as compared to at-site flood quantiles) if a constant standard deviation and 

skew model is adopted to estimate the flood quantiles up to the 20 years ARI. The results at 

the higher ARIs (50 and 100 years) show that using a constant standard deviation and skew 

may affect the results slightly. The larger ARI estimation may require further information 
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which may be provided by the explanatory variables for the estimation of standard deviation 

and skew. This needs further investigation, which is left for future research.  

 

Table 4.3.12  Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for 

NSW. Blue colour indicates the results where the quantiles are estimated using constant 

standard deviation and skew ( ROI(C) indicates region-of-influence model with regional 

average constant SD and skew, i.e. the SD and skew models do not have any predictor 

variables)  

Model RMSE (%)  RE (%) 
  PRT             PRT  
 Fixed 

region 
ROI ROI 

(C) 
 Fixed 

region 
ROI ROI 

(C) 
Q2 7.3 6.2 6.3  46 38 37 

Q5 6.5 5.4 5.9  37 30 32 

Q10 6.7 5.6 6.0  37 29 33 

Q20 7.2 5.7 6.3  36 34 34 

Q50 8.1 7.0 7.7  38 34 35 

Q100 9.0 7.5 8.5  40 36 39 

 
 

Finally we consider the results of the counting of the Qpred/Qobs ratios. This reveals that there 

is no notable difference between the PRT-ROI (that utilises standard deviation and skew 

predicted from regression models) and PRT-ROI that utilises a constant standard deviation 

and skew. The difference between the two methods in the number of estimates in the 

desirable range is only 1% on average (i.e. 78% and 77%). The numbers in the gross 

overestimation and gross underestimation range show little difference on average. There 

seems to be little loss in accuracy in using a constant standard deviation and skew; however, 

further investigation using data from the other states is needed before recommending this 

type of model. 
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4.4 Results for Victoria 

 

A total of 131 catchments were used from Victoria for the analyses presented here. These 

catchments are listed in Appendix (Table A2). The record lengths of the annual maximum 

flood series of these 131 stations range from 26 to 52 years (mean: 33 years, median: 33 

years and standard deviation: 4.6 years). The distribution of record lengths is shown in 

Figure 2.4. The catchment areas of the selected 131 catchments range from 3 km2 to 997 

km2 (mean: 321 km2 and median: 289 km2). The geographical distribution of the selected 131 

catchments is shown in Figure 2.5. The distribution of catchment areas of these stations is 

shown in Figure 2.6. 

 

In the fixed region approach, all the 131 catchments were considered to have formed one 

region, however, one catchment was left out for cross-validation and the procedure was 

repeated 131 times to implement one-at-a-time cross validation. In the region-of-influence 

(ROI) approach, an optimum region was formed for each of the 131 catchments by starting 

with 15 stations and then consecutively adding 5 stations at each iteration. 

 

Table 4.4.1 shows different combinations of predictor variables for the Q10 QRT model and 

the models for the first three moments of the LP3 distribution. Figures 4.4.1 and 4.4.2 show 

example plots of the statistics used in selecting the best set of predictor variables for Q10 and 

the skew models. According to the model error variance, combinations 8, 11, 9, 3, 21, 13, 7, 

12, 4, 21, 5, 23 and 10 were potential sets of predictor variables for the Q10 model. 

Combinations 21, 23, 25 and 23 contained 3 to 4 predictor variables while the rest of the 

combinations contained 2 predictor variables with very similar model error variances and 

R2
GLS. The AVPO, AVPN, AIC and BIC values favoured combinations 2, 3 and 7. However 

combination 10 which included area and design rainfall intensity Itc,10. was finally selected as 

the best set of predictor variables as it has regression coefficients showing 4 times the 

posterior standard deviation away from zero as compared to combinations 2, 3, and 7. These 

set of predictor variables were also found significant for NSW.  

 

For the skew model, combination 13 showed the lowest model error variance and the highest 

R2
GLS (see Figure 4.4.2) as well as the lowest AIC and BIC values. The comparison with 

combination 1 (having no explanatory variables i.e. regional mean model) showed a higher 

AVPO and AVPN and a higher standard error in the model error variance estimate for 

combination 1 as compared to combination 13. Combination 13 certainly shows an 

improvement over all the combinations and hence was selected. A similar procedure was 
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adopted in selecting the best set of predictor variables for other models with the QRT and 

PRT. The sets of predictor variables selected as above were used in the one-at-a-time cross 

validation with the fixed regions and region-of-influence (ROI) approaches. 

 

The significance of the estimated regression coefficient values shown in Equations 4.4.1 to 

4.4.9 was evaluated using the Bayesian plausibility value (BPV) as described by Reis et al. 

(2005) and Gruber et al. (2007). The BPVs for the regression coefficients associated with 

variable area and design rainfall intensity Itc,ARI for the QRT for the ARIs of 2 – 20 years were 

smaller than 0%, while for the ARIs of 50 and 100 years the BPVs were less than 0% for 

area and less than 0.05% for design rainfall intensity Itc,ARI.. The BPVs for the skew model 

were 0% and 1% for rain and evap, respectively indicating that these are reasonably good 

predictors for skew in Victoria. The BPVs for the mean flood model were 0% for both the 

predictor variables (area and 2I12). For the standard deviation model, the BPVs for the 

predictor variables rain and evap were 0.19% and 0.86% respectively.  

 

Regression models developed for the QRT and PRT for the fixed region are given by 

Equations 4.4.1 to 4.4.9. 
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Table 4.4.1 Different combinations of predictor variables considered for the QRT models and 

the parameters of the LP3 distribution (QRT and PRT fixed region Victoria) 

Combination Combinations for mean, 

standard deviation & skew 

models 

Combinations for flood quantile 

model 

1 Const Const 

2 Const, area Const, area 

3 Const, area, 2I1 Const, area, 2I1 

4 Const, area, 50I12 Const, area, 2I12 

5 Const, area, sden Const, area, 50I12 

6 Const, area, 2I12 Const, area, sden  

7 Const, area, evap Const, area, evap 

8 Const, area, rain Const, area, rain 

9 Const, area, QSA Const, area, rain, QSA 

10 Const, area, forest Const, area, Itc,ARI 

11 Const, area, S1085 Const, area, QSA 

12 Const, S1085, evap Const, area, forest 

13 Const, rain, evap Const, area, S1085 

14 Const, forest, rain Const, S1085, evap  

15 Const, QSA Const, rain, evap 

16 Const, evap, QSA Const, area, sden, evap   

17 - Const, area, sden, S1085 

18 - Const, area, sden, evap, QSA 

19 - Const, area, sden , Itc,ARI, QSA 

20 - Const, area, sden , Itc,ARI, evap, 

QSA 

21 - Const, area, Itc,ARI, S1085 

22 - Const, area, Itc,ARI, forest 

23 - Const, area, Itc,ARI, QSA 

24 - Const, area, Itc,ARI, evap 

25 - Const, area, 2I1, Itc,ARI 
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Figure 4.4.1 Selection of predictor variables for the BGLS regression model for Q10  

(QRT, fixed region Victoria), MEV = model error variance, AVPO = average variance of 

prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information 

criterion, BIC = Bayesian information criterion 
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Figure 4.4.2 Selection of predictor variables for the BGLS regression model for skew 

 

ln(Q2) = 3.38 + 0.90(zarea) + 1.35(zItc,2)                                                                     (4.4.1) 

ln(Q5) =  4.17+ 0.92(zarea) + 1.32(zItc,5)                                                                     (4.4.2) 

ln(Q10) = 4.55 + 0.94(zarea) + 1.42(zItc,10)                                                                  (4.4.3) 

ln(Q20) = 4.82 + 0.97(zarea) + 1.50(zItc,20)                                                                  (4.4.4) 

ln(Q50) = 5.17 + 0.99(zarea) + 1.62(zItc,50)                                                                  (4.4.5) 

ln(Q100) = 5.24 + 0.99(zarea) + 1.63(zItc,100)                                                                (4.4.6) 

M = 3.22 + 0.61(zarea) + 1.50(zI12,2)                                                                           (4.4.7) 

stdev =  1.16 – 0.83(zrain) + 1.49(zevap)                                                                    (4.4.8) 

skew =  – 0.65 + 0.74(zrain) – 3.25(zevap)                                                                 (4.4.9) 

 

where z() is explained by Equation 4.3.10. 

 

It is reassuring to observe that the regression coefficients in the QRT set of equations vary in 

a regular fashion with increasing ARI. 

 

The Pseudo Analysis of Variance (ANOVA) tables for the Q20 and Q100 models and the 

parameters of the LP3 distribution are presented in Tables 4.4.2 – 4.4.6 for the fixed regions 

and ROI approaches. 

 

For the LP3 parameters, the sampling error increases as the order of moment increases i.e. 

the EVR increases with the order of the moment. The ROI shows a reduced model error 

variance (i.e. a reduced heterogeneity) as compared to the fixed regions. The model error 
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dominates the regional analysis for the mean flood in both the fixed region and ROI 

approach. The standard deviation models for both the fixed regions and ROI are dominated 

by the sampling error (i.e. sampling error variance 1.25 and 1.3 times the model error 

variance, see Table 4.4.5). In all cases ROI shows a higher EVR than the fixed regions e.g. 

for the mean flood model the EVR is 0.20 for the ROI and 0.16 for the fixed region (Table 

4.4.4).  

 

The EVR values for the skew model are 8.4 and 9.5 for the fixed regions and ROI 

respectively (Tables 4.4.6), which are much higher than the recommended limit of 0.20. This 

clearly indicates that the GLS regression is the preferred form of modeling, especially in the 

case of the skew and standard deviation models. The sampling error estimate has proved to 

be important, thus OLS and even a method of moment‟s GLS estimator would have certainly 

provided an unstable estimate of the model error variance 2

 .  Indeed the standard 

deviation and skew models would have been grossly underestimated the model error 

variance, as the sampling error has dominated the regional analysis. The BGLS analysis has 

proved to be superior in the handling of the uncertainty of the model error variance. 

Furthermore for the skew model, the ROI has included more sites than the mean and 

standard deviation models. 

 

Pseudo ANOVA tables were also prepared for the flood quantile models. Tables 4.4.2 and 

4.4.3 show the results for the Q20 and Q100 models, respectively. Here the ROI shows a 

higher EVR (nearly double) than the fixed region. This suggests that the BGLS regression 

should be the preferred modeling choice in combination with ROI in developing the flood 

quantile models. 
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Table 4.4.2 Pseudo ANOVA table for Q20 model for Victoria (QRT, fixed region and ROI) 

 

Table 4.4.3 Pseudo ANOVA table for Q100 model for Victoria (QRT, fixed region and ROI) 

 

 

Table 4.4.4 Pseudo ANOVA table for the mean flood model for Victoria (PRT, fixed region 

and ROI) 

 

 

 

 

 

 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI Equations Fixed 
region 

ROI 

Model k=3 k=3 n )( 22

0    =  45.2 45.2 

Model error  n-k-1=127 n-k-1=48 n )( 2

 =  55.2 24.4 

Sampling error  N = 131 N = 52 )]ˆ([ ytr   =  7.4 7.2 

Total 
2n-1 = 261 2n-1 = 103 

Sum of the 
above = 

108 77 

   EVR 0.13 0.30 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  29 29 

Model error  n-k-1=127 n-k-1=53  77 40 

Sampling error  N = 131 N = 57  11 10 

Total 
2n-1 = 261 2n-1 = 113 

Sum of the 
above = 

117 79 

   EVR 0.14 0.25 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  46 45 

Model error  n-k-1=127 n-k-1=39  37.5 28 

Sampling error  N = 131 N = 43  6.1 6 

Total 
2n-1 = 261 2n-1 = 85 

Sum of the 
above = 

90 79 

   EVR 0.16 0.2 
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Table 4.4.5 Pseudo ANOVA table for the standard deviation model for Victoria (PRT, fixed 

region and ROI) 

 

Table 4.4.6 Pseudo ANOVA table for the skew model for Victoria (PRT, fixed region and 

ROI) 

 

We assessed the underlying model assumptions (i.e. the normality of residuals), by 

examining the plots of the standardised residuals vs. predicted values. The predicted values 

were obtained from one-at-a-time cross validation. Figures 4.4.3 to 4.4.5 show the plots for 

the Q20 and the skew models with the fixed region and ROI. It can be seen that most of the 

standardised residuals fall between the ± 2 limits, thus satisfying the normality of residuals to 

a large extent. What is noteworthy is that when ROI is used, both the QRT and PRT (for 

quantiles and skew estimates) provide a better approximation, with a greater proportion of 

the standardised residuals falling within the ± 2 limits.  The results in Figures 4.4.3 to 4.4.5 

reveal that the developed equations satisfy the normality of residual assumption quite 

satisfactorily. Also no specific pattern (heteroscedasicity) can be identified with the 

standardised values being almost equally distributed below and above zero; this is especially 

seen for the ROI case (see Figure 4.4.4 and 4.4.5). Similar results were obtained for the 

mean flood, standard deviation and other flood quantile models. 

 

 

 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  7.6 7.6 

Model error  n-k-1=127 n-k-1=76  5.7 5.4 

Sampling error  N = 131 N = 80  7.1 6.8 

Total 
2n-1 = 261 2n-1 = 159 

Sum of the 
above = 

20.3 20 

   EVR 1.25 1.3 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  6.5 7.3 

Model error  n-k-1=127 n-k-1=113  4.5 3.7 

Sampling error  N = 131 N = 117  38 35 

Total 
2n-1 = 261 2n-1 = 233 

Sum of the 
above = 

49 48 

   EVR 8.4 9.5 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  90 

 

 

 

 

 

 

 

 

Figure 4.4.3 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, fixed region, Victoria) 

 

 

 

 

 

 

 

 

Figure 4.4.4 plot of standardised residuals vs. predicted values for the skew model (PRT, 

fixed region, ROI, Victoria) 

 

 

 

 

 

 

 

 

 

Figure 4.4.5 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, ROI, Victoria) 

 

The QQ-plots of the standardised residuals (Equation 4.2.13) vs. normal score (Equation 

4.2.14) for the fixed region (based on one-at-a-time cross validation) and ROI were 
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examined. Figures 4.4.6 to 4.4.8 present the results for the Q20 and skew models, which 

show that all the points closely follow a straight line. This indicates that the assumptions of 

normality and the homogeneity of variance of the standardised residuals have largely been 

satisfied. If the standardised residuals are indeed normally and independently distributed 

N(0,1) with mean 0 and variance 1 then the slope of the best fit line in the QQ-plot, which can 

be interpreted as the standard deviation of the normal score (Z score) of the quantile, should 

approach 1 and the intercept, which is the mean of the normal score of the quantile should 

approach 0 as the number of sites increases. Figures 4.4.6 to 4.4.8 indeed show that the 

fitted lines for the developed models pass through the origin (0, 0) and have a slope 

approximately equal to one. The ROI approach approximates the normality of the residuals 

slightly better (i.e. a better match with the fitted line) than the fixed region approach for both 

Q20 and skew models. Similar results were also found for the mean, standard deviation and 

other flood quantile models.  

 

 

 

 

 

 

 

 

Figure 4.4.6 QQ-plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, fixed region, Victoria) 

 

 

 

 

 

 

 

 

 

Figure 4.3.7 QQ-plot of the standardised residuals vs. Z score for the skew model (PRT, 

fixed region, ROI, Victoria) 
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Figure 4.4.8 QQ-plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, ROI, Victoria) 

 

The summary of various regression diagnostics (the relevant equations are described in 

Section 4.2.2) is provided in Table 4.4.7. This shows that for the mean flood model, the 

model error variance (MEV) and average standard error of prediction (SEP) are much higher 

than those of the standard deviation and skew models. This indicates that the mean flood 

model exhibits a higher degree of heterogeneity than the standard deviation and skew 

models. Indeed the issue here is that sampling error becomes larger as the order of the 

moment increases, therefore, in case of the skew, the spatial variation is a second order 

effect that is not really detectable. The R2GLS value for the mean flood model with the ROI 

is only 1% higher than that for the fixed region, which is a negligible increase. These results 

indicate that the ROI should be preferred over the fixed region for developing the mean flood 

model, as this reduces the level of heterogeneity in the region. For the standard deviation 

model, ROI also shows 1% smaller SEP and similar R2GLS values. In this case the 

reduction in SEP% is negligible, however, even with this small improvement, ROI is still 

preferable over the fixed region for the standard deviation model. The SEP and R2GLS 

values for the skew model are very similar for the fixed region and ROI, as the number of 

sites in the fixed region and ROI is very similar.  

 

Interestingly one can see from Table 4.4.7 that the SEP values for all the flood quanitle 

models are 6% to 27% smaller for the ROI cases than the fixed region. Also, the R2GLS 

values for ROI cases are 2% to 12% higher than the fixed region. These results demonstrate 

the superiority of the ROI approach over the fixed region analysis. 
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Table 4.4.7 Regression diagnostics for fixed region and ROI for Victoria 

Model Fixed region ROI 

 
MEV AVP SEP (%) R2

GLS (%) 
 MEV AVP SEP (%) R2

GLS (%) 
Mean 

0.29 0.31 60 62 0.21 0.23 46 63 
Stdev 

0.044 0.049 22 65 0.041 0.050 21 65 
Skew 

0.034 0.040 20 70 0.028 0.037 19 73 
Q2 0.27 0.28 57 63 0.20 0.23 51 65 
Q5 0.29 0.31 60 61 0.20 0.23 50 64 
Q10 0.35 0.37 67 57 0.23 0.26 54 61 
Q20 0.35 0.37 67 57 0.19 0.22 48 66 
Q50 0.47 0.49 80 49 0.27 0.32 61 61 
Q100 0.59 0.60 91 45 0.29 0.35 64 54 

 

Table 4.4.8 shows number of sites in a region and associated model error variances for the 

ROI and fixed region models. This shows that the ROI mean flood model has fewer sites on 

average (43 out of 131 i.e. 33% of the available sites) than the standard deviation and skew 

models. The ROI skew model has the highest number of sites which includes nearly all the 

sites in Victoria (i.e. 117/131 = 90%). The model error variance for the fixed region mean 

flood model is 28% higher than the corresponding ROI model. The model error variances for 

all the ROI models in this case are smaller than the fixed region models. This shows that the 

fixed region models experience a greater heterogeneity than the ROI. If the fixed regions are 

made too large, the model error will be inflated by heterogeneity unaccounted for by the 

catchment characteristics. Figure 4.4.9 shows the resulting sub-regions in Victoria (with 

minimum model error variances) for the ROI Q20 and skew models. For the Q20 flood quantile 

and skew models, there is evidence of distinct sub-regions. For the Q20 flood quantile, three 

distinctive regions are formed from north to south Victoria (i.e. north, south and on the Great 

Dividing Range), while the sub-region for the skew model captures the east, middle and west 

regions with some overlapping stations, as expected. The significance of this finding is that if 

sub-regions do exist in a state they are most likely to be captured by the ROI. 
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Table 4.4.8 Model error variances of the parameters and flood quantiles associated with 

fixed region and ROI for Victoria (n = number of sites)  

 

Parameter/ 
Quantiles 

Mean Stdev Skew Q2 Q5 Q10 Q20 Q50 Q100 

ROI (n)  
 2ˆ

  
43 

0.21 
83 

0.041 
117 

0.028 
41 

0.20 
45 

0.20 
52 

0.23  
52 

0.19 
57 

0.27  
57 

0.29 
Fixed 
region (n) 

2ˆ
  

131 
0.29 

131 
0.044  

131 
0.034 

131 
0.27  

131 
0.29 

131 
0.35 

131 
0.35 

131 
0.47 

131 
0.59 

 

 

 

 

 

 

Figure 4.4.9 Binned minimum model error variance for Victoria (a) ARI = 20 flood quantile 

model and (b) skew model  

 

(a) 

(b) 
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Table 4.4.9 presents the root mean square error (RMSE) (Equation 4.2.16) and relative error 

(RE) (Equation 4.2.15) values for the PRT and QRT models with both the fixed region and 

ROI. In terms of RMSE, ROI gives smaller values than the fixed regions for all the ARIs. The 

QRT-ROI shows smaller RMSE values than the PRT-ROI for all the ARIs except for the 2 

and 5 years. In terms of RE, ROI gives 1 to 5% smaller values than the fixed regions. The 

PRT-ROI gives smaller values of RE (by 1% to 2%) for ARIs of 2 to 10 years than the QRT-

ROI. However, the QRT-ROI gives smaller RE values (by 1% to 5%) for ARIs of 20 to 100 

years than the PRT-ROI.  As with NSW, these results reveal only modest differences 

between the performances of the QRT and PRT. 

 

Tables 4.4.10 and 4.4.11 show results of counting the Qpred/Qobs ratios for the QRT and PRT 

with both the ROI and fixed regions. For the QRT, it was found that the ROI and fixed region 

provided very similar results, with 76% and 75% of the ratios being in the desirable range on 

average. For the PRT-ROI, 73% of cases were in the desirable range, compared to 72% for 

the PRT-fixed region. The PRT-ROI showed 15% underestimation on average as compared 

to 12% for the QRT-ROI. The cases for overestimation were the same (12%) for both the 

methods. These results are in agreement with the results provided in Table 4.4.9.  

 

Table 4.4.9 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for 

Victoria 

Model RMSE (%) RE (%) 
 PRT QRT PRT QRT 
 Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI 

Q2 5.6 5.5 7.7 6.8 38 37 37 37 
Q5 6.9 6.8 8.7 6.8 38 36 35 35 
Q10 8.2 8.0 10.7 6.9 37 37 36 35 
Q20 9.6 9.2 11.2 7.4 41 40 38 33 
Q50 11.5 11 11.3 9.5 41 40 41 40 
Q100 13 12.7 14 12 46 45 44 44 
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Table 4.4.10 Summary of counts/percentages based on Qpred/Qobs ratio values for QRT and 

PRT for Victoria (fixed region). “U” = gross underestimation, “D” = desirable range and “O” = 

gross overestimation 

 

Model Count (QRT) Percent 
(QRT) 

Count (PRT) Percent 
(PRT) 

U D O U D O U D O U D O 
Q2 10 109 12 8 83 9 31 93 7 24 71 5 
Q5 12 104 15 9 79 11 22 99 10 17 76 8 
Q10 11 102 18 8 78 14 20 98 13 15 75 10 
Q20 16 96 19 12 73 15 23 94 14 18 72 11 
Q50 20 89 22 15 68 17 25 91 15 19 69 11 
Q100 23 89 19 18 68 15 24 88 19 18 67 15 

Sum / 
average 92 589 105 12 75 13 145 563 78 18 72 10 

 
 

Table 4.4.11 Summary of counts/percentages based on Qpred/Qobs ratio values for QRT and 

PRT for Victoria (ROI). “U” = gross underestimation, “D” = desirable range and “O” = gross 

overestimation  

 
ARI 

(years) 
Count (QRT) Percent 

(QRT) 
Count (PRT) Percent 

(PRT) 

U D O U D O U A O U D O 
2 15 103 13 11 79 10 18 96 17 14 73 13 
5 10 106 15 8 81 11 15 102 14 11 78 11 

10 14 106 11 11 81 8 15 100 16 11 76 12 
20 16 100 15 12 76 11 19 96 16 15 73 12 
50 20 93 18 15 71 14 25 90 16 19 69 12 
100 20 91 20 15 69 15 26 90 15 20 69 11 

Sum / 
average 95 599 92 12 76 12 118 574 94 15 73 12 
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4.5 Results for Tasmania 

4.5.1 QRT and PRT – fixed and ROI approaches (Tasmania considered as a 

single region) 

 

A total of 53 catchments were used from Tasmania for the analyses presented here. These 

catchments are listed in the appendix. The locations of these catchments are shown in 

Figure 2.11. The annual maximum flood series record lengths of these 53 stations range 

from 19 to 74 years (mean 30 years, median 28 years and standard deviation 10 years). The 

catchment areas of these 53 stations range from 1.3 to 1900 km2 (mean 323 km2, median 

158 km2 and standard deviation of 417 km2).  

 

In the fixed region approach, all the 53 catchments were considered to have formed one 

region, however, one catchment was left out for cross-validation and the procedure was 

repeated 53 times to implement one-at-a-time cross validation. In the region-of-influence 

(ROI) approach, an optimum region was formed for each of the 53 catchments by starting 

with 15 stations and then consecutively adding 1 station at each iteration. 

 

Table 4.5.1 shows different combinations of predictor variables for the Q10 QRT model and 

the models for the first three moments of the LP3 distribution. Figure 4.5.1 and 4.5.2 show 

example plots of the statistics used in selecting the best set of predictor variables for the Q10 

and skew models. According to the model error variance, combinations 6, 16, 18, 20, 17, 19 

and 4 were potential sets of predictor variables for the Q10 model. Combinations 16, 18, 20, 

17, 19 and 4 contained 3 to 4 predictor variables, while combinations 6 and 4 contained 2 

predictor variables. Indeed combination 6 with the 2 predictor variables (area and design 

rainfall intensity 50I12) showed the lowest model error variance and the highest R2
GLS. The 

AVPO, AVPN, AIC and BIC values favour combination 6 as well. We also compared 

combination 6 to combination 10 (the latter also contains 2 predictor variables, area and 

design rainfall intensity Itc,10). Combination 6 had a smaller model error variance while also 

showing the regression coefficient for variable 50I12 to be 5.5 times the posterior standard 

deviation away from zero, as compared to 4 times for Itc,10. Hence, combination 6 was finally 

selected as the best set of predictor variables for the Q10 model.  

 

For the skew model, combination 4 showed the lowest model error variance (0.034) and the 

highest R2
GLS (52%) (see Figure 4.5.2), as well as the lowest AIC and BIC. Combination 1 

without any explanatory variables ranked 13 out of the 16 possible combinations (model error 
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variance of 0.045); it also showed higher AVPO and AVPN as compared to combination 4, 

hence combination 4 was finally selected.  

 

A similar procedure was adopted in selecting the best set of predictor values for other 

models with the QRT and PRT. The sets of predictor variables selected as above were used 

in the one-at-a-time cross validation with fixed regions and region-of-influence (ROI) 

approaches. 

 

The BPV values for the regression coefficients associated with the QRT over all the ARIs 

were between 2% and 8% for the variable area and 0.000% for design rainfall intensity 50I12. 

This justifies the inclusion of predictor variables area and 50I12 in the prediction equations for 

QRT. The BPVs for the skew model were 23% and 11% for area and 50I1, respectively 

indicating these variables are not very good predictors for skew. The BPVs for the mean 

model were close to 1% for both the predictor variables. For the standard deviation model, 

the BPV for the predictor variable rain was 1%. 

 

Regression equations developed for the QRT and PRT for the fixed region are given by 

Equations 4.5.1 to 4.5.9.  
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Table 4.5.1 Different combinations of predictor variables considered for the QRT models and 

the parameters of the LP3 distribution (QRT and PRT fixed region Tasmania) 

Combination Combinations for mean, 

standard deviation & skew 

models 

Combinations for flood quantile 

model 

1 Const Const 

2 Const, area Const, area 

3 Const, area, (2I1) Const, area, 2I1 

4 Const, area, (50I1) Const, area, 2I12 

5 Const, area, (2I12) Const, area, 50I1 

6 Const, area, (50I12) Const, area, 50I12 

7 Const, area, rain Const, area, rain 

8 Const, area, for Const, area, for 

9 Const, area, evap Const, area, forest, evap 

10 Const, area, S1085 Const, area, Itc,ARI 

11 Const, area, sden Const, area, evap 

12 Const, sden, rain Const, area, S1085 

13 Const, for, rain Const, area, sden 

14 Const, S1085, for Const, sden, rain 

15 Const, evap Const, for, rain 

16 Const, rain, evap Const, area, 50I12, rain  

17 Const, rain Const, area, 50I12, sden 

18 - Const, area, 50I12, rain, evap 

19 - Const, area, 50I12, Itc,ARI, evap 

20 - Const, area, 50I12, Itc,ARI, rain, 

evap 

21 - Const, area, 50I12, Itc,ARI, sden 

22 - Const, area, 50I12, Itc,ARI, S1085 

23 - Const, area, Itc,ARI, evap 

24 - Const, area, Itc,ARI, rain 

25 - Const, area, 2I1, Itc,ARI 
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Figure 4.5.1 Selection of predictor variables for the BGLS regression model for Q10  

(QRT, fixed region Tasmania), MEV = model error variance, AVPO = average variance of 

prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information 

criterion, BIC = Bayesian information criterion 
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Figure 4.5.2 Selection of predictor variables for the BGLS regression model for skew 

 

 

ln(Q2) = 4.18 + 0.91(zarea) + 3,35(zI12,50)                                                                    (4.5.1) 

ln(Q5) =  4.59+ 0.89(zarea) + 2.80(zI12,50)                                                                    (4.5.2) 

ln(Q10) = 4.87 + 0.85(zarea) + 2.57(zI12,50)                                                                  (4.5.3) 

ln(Q20) = 5.09 + 0.84(zarea) + 2.39(zI12,50)                                                                  (4.5.4) 

ln(Q50) = 5.45 + 0.84(zarea) + 2.23(zI12,50)                                                                  (4.5.5) 

ln(Q100) = 5.48 + 0.82(zarea) + 2.02(zI12,50)                                                                 (4.5.6) 

M = 4.00 + 0.90(zarea) + 3.85(zI12,2)                                                                           (4.5.7) 

stdev =  0.64 + 0.55(zrain)                                                                                           (4.5.8) 

skew =  – 0.05 + 0.07(zarea) + 1.20(zI1,50)                                                                  (4.5.9) 

 

where z() is explained by Equation 4.3.10. 

 

It is reassuring to observe that the regression coefficients in the QRT set of equations vary in 

a regular fashion with increasing ARI. 

 

The Pseudo Analysis of Variance (ANOVA) tables for the Q20 and Q100 models and the 

parameters of the LP3 distribution are presented in Tables 4.5.2 – 4.5.6 for the fixed regions 

and ROI. This is an extension of the ANOVA in the OLS regression which does not recognize 

and correct for the expected sampling variance (Reis et al., 2005).  
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For the LP3 parameters, the sampling error increases as the order of moment increases i.e. 

the EVR increases with the order of the moments. The ROI shows a reduced model error 

variance (i.e. a reduced heterogeneity) as compared to the fixed regions, as fewer sites have 

been used. The model error dominates the regional analysis for the mean flood and the 

standard deviation models for both the fixed regions and ROI. However, ROI shows a higher 

EVR than the fixed regions, e.g. for the mean flood model the EVR is 0.20 for the ROI and 

0.06 for the fixed region (Table 4.5.4). For the standard deviation model the EVR is 0.66 for 

the ROI and 0.54 for the fixed region, which is a 12% increase in EVR (Table 4.5.5). This 

shows that ROI indeed deals better with heterogeneity, even if only slightly. 

 

The EVR values for the skew model are 9 and 9.3 for the fixed regions and ROI respectively 

(Tables 4.4.6), which are much higher than the recommended limit of 0.20. Again GLS 

regression should be the preferred modeling choice over the OLS. Given that the skew 

model has a high sampling error component, an OLS model would give misleading results. 

The advantage of GLS is that it can distinguish between the variance due to model error and 

sampling error. Importantly, the Bayesian procedure adds another dimension to the analysis, 

by computing expectations over the entire posterior distribution. It has provided a more 

reasonable estimate of the model error variance where the method of moment‟s estimator 

would have been grossly underestimated the model error variance, as the sampling error has 

overwhelmed the analysis. As far as the ROI is concerned, there is little change in the EVR 

as compared to the fixed region, as the skew model tends to include more stations in the 

regional analysis. 

 

For the fixed regions, the mean flood model has a model error variance of 17.8, which is 

much higher than 3.6 (for the standard deviation model) and 1.74 (for the skew model) 

(Tables 4.5.4, 4.5.5 and 4.5.6). For the ROI, the mean flood model also shows much higher 

model error variance than those of the standard deviation and skew models. These results 

indicate that the mean flood has the greater level of heterogeneity associated with it as 

compared to the standard deviation and skew models. 

 

Pseudo ANOVA tables were also prepared for the flood quantile models. Tables 4.5.2 and 

4.5.3 show the results for the Q20 and Q100 models, respectively. Here the ROI shows a 

higher EVR than the fixed region. This suggests that the BGLS regression should be used 

with ROI in developing the flood quantile models, especially as the ARI increases. 
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Table 4.5.2 Pseudo ANOVA table for Q20 model for Tasmania (QRT, fixed region and ROI) 

 

Table 4.5.3 Pseudo ANOVA table for Q100 model for Tasmania (QRT, fixed region and ROI) 

 

 

Table 4.5.4 Pseudo ANOVA table for the mean flood model for Tasmania (PRT, fixed region 

and ROI) 

 

 

 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI Equations Fixed 
region 

ROI 

Model k=3 k=3 n )( 22

0    =  34.3 37.5 

Model error  
n-k-1=48 n-k-1=30 

n )( 2

 =  15.5 12.2 
 

Sampling error  N = 52 N = 34 )]ˆ([ ytr   =  2.08 1.99 

Total 
2n-1 = 103 2n-1 = 67 

Sum of the 
above = 

51.9 51.7 

   EVR 0.13 0.16 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  30.7 34.1 

Model error  n-k-1=48 n-k-1=20  19.0 15.7 

Sampling error  N = 52 N = 52  3.3 3.13 

Total 
2n-1 = 103 2n-1 = 103 

Sum of the 
above = 

53.0 52.9 

   EVR 0.17 0.2 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3 n )( 22

0    =  30.5 54.6 

Model error  n-k-1=48 n-k-1=24 n )( 2

 =  17.8 7.1 

Sampling error  N = 52 N = 28 )]ˆ([ ytr   =  1.13 1.02 

Total 
2n-1 = 103 2n-1 = 55 

Sum of the 
above = 49.4 63 

   EVR 0.06 0.2 
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Table 4.5.5 Pseudo ANOVA table for the standard deviation model for Tasmania (PRT, fixed 

region and ROI) 

 

 

Table 4.5.6 Pseudo ANOVA table for the skew model for Tasmania (PRT, fixed region and 

ROI) 

 

 

To assess the underlying model assumptions (i.e. the normality of residuals), the plots of the 

standardised residuals vs. predicted values were examined. The predicted values were 

obtained from one-at-a-time cross validation. Figures 4.5.3 to 4.5.5 show the plots for the Q20 

and the mean flood models with the fixed region and ROI. The underlying model 

assumptions are satisfied to a large extent, as 95% of the standardised residuals values fall 

between the limits of ± 2. The ROI shows standardised residuals closer to the ± 2 limits. The 

results in Figures 4.5.3 to 4.5.5 reveal that the developed equations satisfy the normality of 

residual assumption quite satisfactorily. Also no specific pattern (heteroscedasicity) can be 

identified, with the standardised values being almost equally distributed below and above 

zero. Similar results were obtained for the skew, standard deviation and other flood quantile 

models.  

 

 

 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  
Fixed 
region ROI 

Model k=2 k=2  3.6 3.5 

Model error  n-k-1=49 n-k-1=33  3.6 3.3 

Sampling error  N = 52 N = 52  1.9 2.2 

Total 2n-1 = 103 2n-1 = 103 
Sum of the 

above = 9.1 9.0 

   EVR 0.54 0.66 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  0.62 1.80 

Model error  n-k-1=48 n-k-1=46  1.74 1.54 

Sampling error  N = 52 N = 50  15.5 14.4 

Total 2n-1 = 103 2n-1 = 99 
Sum of the 

above = 17.8 17.7 

   EVR 9.0 9.3 
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Figure 4.5.3 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, fixed region, Tasmania) 

 

 

 

 

 

 

 

 

 

Figure 4.5.4 plot of standardised residuals vs. predicted values for the mean flood (PRT, 

fixed region, ROI, Tasmania) 

 

 

 

 

 

 

 

 

Figure 4.5.5 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, ROI, Tasmania) 
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The QQ-plots of the standardised residuals (Equation 4.2.13) vs. normal score (Equation 

4.2.14) for the fixed region (based on one-at-a-time cross validation) and ROI were 

examined. Figures 4.5.6 to 4.5.8 present results for the Q20 and the skew models, which 

show that all the points closely follow a straight line. This indicates that the assumption of 

normality and the homogeneity of variance of the standardised residuals have largely been 

satisfied. The standardised residuals are indeed normally and independently distributed 

N(0,1) with mean 0 and variance 1 as the slope of the best fit line in the QQ-plot, which can 

be interpreted as the standard deviation of the normal score (Z score) of the quantile, should 

approach 1 and the intercept, which is the mean of the normal score of the quantile should 

approach 0 as the number of sites increases. It can be observed from Figures 4.5.6 to 4.5.8 

that the fitted lines for the developed models pass through the origin (0, 0) and have a slope 

approximately equal to one. The ROI approach approximates the normality of the residuals 

slightly better (i.e. a better match with the fitted line) than the fixed region approach. Similar 

results were also found for the mean, standard deviation and other flood quantile models.  

 

 

 

 

 

 

 

 

 

Figure 4.5.6 QQ-plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, fixed region, Tasmania) 

 

 

 

 

 

 

 

 

Figure 4.5.7 QQ-plot of the standardised residuals vs. Z score for the skew model (PRT, 

fixed region, ROI, Tasmania) 
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Figure 4.5.8 QQ-plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, ROI, Tasmania) 

 

The summary of various regression diagnostics (the relevant equations are described in 

Section 4.2.2) is provided in Table 4.5.7. This shows that for the mean flood model, the 

model error variance (MEV) and average standard error of prediction (SEP) are much higher 

than those of the standard deviation and skew models. This indicates that the mean flood 

model exhibits a higher degree of heterogeneity than the standard deviation and skew 

models, this result is also supported by the ANOVA analysis. Indeed the issue here is that 

sampling error becomes larger as the order of the moment increases, therefore, in case of 

the skew, the spatial variation is a second order effect that is not really detectable. For the 

mean flood model, the ROI shows a model error variance which is 11% smaller than for the 

fixed region. Also, the R2GLS value for the mean flood model with the ROI is 2% higher than 

for the fixed region. The reasonable reduction in MEV alone indicates that the ROI should be 

preferred over the fixed region analysis for developing the mean flood model. For the 

standard deviation model, ROI also shows 8% smaller SEP and 5% higher R2GLS values. 

This indicates that the ROI is preferable to the fixed region for the standard deviation model. 

What is also noteworthy (as seen from Table 4.5.7) is that the SEP% for the skew model is 

slightly larger for the ROI than the fixed region analysis. This may be due to the fact that, if 

the number of sites are reduced (smaller ROI), the predictive variance may be slightly 

inflated in the skew region.  The R2GLS values for the skew models are similar for the fixed 

region and ROI, with the latter providing only a 2% increase. 

 

One can see from Table 4.5.7 that the SEP values for all the flood quanitle models are 2% to 

11% smaller for the ROI cases than the fixed region; the best result is obtained for ARI = 2 
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years. Also, the R2GLS values for ROI cases are 3% to 6% higher than the fixed region. 

These results show that the ROI generally outperforms the fixed region approach. 

 

Table 4.5.7 Regression diagnostics for fixed region and ROI for Tasmania 

Model Fixed region ROI 

 
MEV AVP SEP (%) R2

GLS (%) 
 MEV AVP SEP (%) R2

GLS (%) 
Mean 

0.35 0.37 67 86 0.24 0.27 56 88 
Stdev 

0.071 0.076 28 51 0.042 0.046 20 56 
Skew 

0.034 0.050 22 52 0.031 0.050 23 54 
Q2 0.55 0.59 83 76 0.38 0.419 72 79 
Q5 0.33 0.36 61 82 0.25 0.28 57 86 
Q10 0.30 0.32 58 84 0.23 0.26 54 87 
Q20 0.30 0.33 58 83 0.23 0.26 55 87 
Q50 0.34 0.37 62 82 0.27 0.30 60 86 
Q100 0.37 0.40 66 79 0.30 0.34 64 85 

 

Table 4.5.8 shows number of sites and associated model error variances for the ROI and 

fixed region models. This shows that the ROI mean flood model has fewer sites on average 

(28 out of 52 i.e. 54%) than the standard deviation and skew models. The ROI skew model 

has the highest number of sites which includes nearly all the sites in Tasmania (50 out of 52 

i.e. 96%). The model error variances for all the ROI models (except the skew model) are 

smaller than the fixed region models. This shows that the fixed region models experience a 

greater heterogeneity than the ROI. If the fixed regions are made too large, the model error 

will be inflated by heterogeneity that will go unaccounted for by the catchment 

characteristics. Figure 4.5.9 shows the resulting sub-regions in Tasmania (with minimum 

model error variances) for the ROI mean flood and skew models. For the mean flood and 

skew models, there are two distinct sub-regions. The regions can be classified as east and 

west Tasmania for which there are two distinct types of rainfall regimes and districts.  

 
Table 4.5.8 Model error variances associated with fixed region and ROI for Tasmania (n = 

number of sites in the region) 

 
Parameter/ 
Quantiles 

Mean Stdev Skew Q2 Q5 Q10 Q20 Q50 Q100 

ROI (n)  
 2ˆ

  
28 

0.24 
36 

0.042 
50 

0.031 
30 

0.38 
35 

0.25 
35 

0.23 
34 

0.23 
33 

0.27 
33 

0.30 
Fixed 
region (n) 

2ˆ
  

52 
0.35 

52 
0.067 

52 
0.034 

52 
0.55 

52 
0.33 

52 
0.30 

52 
0.30 

52 
0.34 

52 
0.37 
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Figure 4.5.9 Binned minimum model error variance for Tasmania (a) mean flood model and 

(b) skew model  

 

Table 4.5.9 presents the root mean square error (RMSE) (Equation 4.2.16) and relative error 

(RE) (Equation 4.2.15) values for the PRT and QRT models with both the fixed region and 

ROI. In terms of RMSE, ROI gives smaller values than the fixed regions for all the ARIs. The 

PRT-ROI shows smaller RMSE values than the ROI for all the ARIs, however for ARIs of 5, 

10 and 20 years the increase is negligible (i.e. 1 to 2 %). In terms of RE, ROI gives 0 to 9% 

smaller values than the fixed regions. The PRT-ROI gives larger values of RE (by 13%) for 

(a) 

(b) 
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both the 50 and 100 years ARIs. For ARIs of 2 to 20 years, the QRT-ROI gives smaller RE 

values (by 1% to 13%) than the PRT-ROI.   

 

Finally the results of counting the Qpred/Qobs ratios for the QRT and PRT for the ROI and fixed 

regions are provided in Tables 4.5.10 and 4.5.11. The QRT-ROI has 85% ratio values in the 

desirable range, compared to 81% for the QRT-fixed region. The PRT-ROI has 78% ratio 

values in the desirable range, compared to 74% for the PRT-fixed region. These results 

show that ROI performs better than the fixed regions with both the QRT and PRT. The PRT-

ROI shows 16% underestimation as compared to 8% for the QRT-ROI. The cases for 

overestimation were very similar for both the methods.  

 

Table 4.5.9 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for 

Tasmania 

Model RMSE (%) RE (%) 
 PRT QRT PRT QRT 
 Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI 

Q2 11 10 16 12 33 31 38 30 
Q5 9 7 11 8 35 30 34 25 
Q10 10 7 11 8 34 37 30 24 
Q20 10 7 13 9 36 37 27 27 
Q50 11 7 13 10 39 41 29 28 
Q100 12 7 13 10 49 42 33 29 

 

Table 4.5.10 Summary of counts/percentages based on Qpred/Qobs ratio values for QRT and 

PRT for Tasmania (fixed region). “U” = gross underestimation, “D” = desirable range  and “O” 

= gross overestimation  

 

Model Count (QRT) Percent 
(QRT) 

Count (PRT) Percent 
(PRT) 

U D O U D O U D O U D O 
Q2 2 41 9 4 79 17 5 41 6 10 79 12 
Q5 2 44 6 4 85 12 6 41 5 12 79 10 
Q10 3 46 3 6 88 6 6 41 5 12 79 10 
Q20 4 45 3 8 87 6 9 37 6 17 71 12 
Q50 6 40 6 12 77 12 10 36 6 19 69 12 
Q100 9 38 5 17 73 10 10 36 6 19 69 12 

Sum / 
average 26 254 32 8 81 10 46 232 34 15 74 11 
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Table 4.5.11 Summary of counts/percentages based on Qpred/Qobs ratio values for QRT and 

PRT for Tasmania (ROI). “U” = gross underestimation, “D” = desirable range and “O” = gross 

overestimation  

 

ARI 
(years) 

Count (QRT) Percent 
(QRT) 

Count (PRT) Percent 
(PRT) 

U D O U D O U D O U D O 
2 3 45 4 6 87 8 6 43 3 12 83 6 
5 2 45 5 4 87 10 7 42 3 13 81 6 

10 3 45 4 6 87 8 9 41 2 17 79 4 
20 4 45 3 8 87 6 9 40 3 17 77 6 
50 6 42 4 12 81 8 9 39 4 17 75 8 
100 6 42 4 12 81 8 9 39 4 17 75 8 

Sum / 
average 24 264 24 8 85 8 49 244 19 16 78 6 

 

 

4.5.2 PRT – fixed region (Tasmania considered having two regions) 

 

Based on the region-of-influence (ROI) approach, prominent spatial variations were found in 

the model error variance for the mean flood model. This can be seen in Figure 4.5.9a. The 

much greater spatial variability of the mean is dominated by local factors (as compared to the 

higher moments).  

 

The results of this analysis concur with previous studies (McConachy et. al., 2003, Gamble 

et. al., 1998, Xuereb et. al, 2001) which showed that large rainfalls over Tasmania are not 

meteorologically homogeneous. In the east of the state, the largest rainfall events occur in 

the warmer spring and summer months when low pressure systems in the Tasman Sea can 

direct an easterly onshore flow over Tasmania. The heaviest rainfalls in the west of the state 

are due to the passage of fronts, sometimes associated with an intense extratropical cyclone 

with a westerly or southwesterly airstream (Xuereb et.al., 2001). 

 

Based on this finding and on past results, as described above, it was decided to treat 

Tasmania as two different regions (i.e. east and west) and apply the Parameter Regression 

Technique (PRT) to both these regions. This analysis is discussed below. 

 

A total of 32 catchments were located in west Tasmania and 21 stations in east Tasmania. 

The locations of these catchments are shown in Figure 4.5.9a. The annual maximum flood 

series record lengths for west Tasmania range from 20 to 58 years (mean 31 years, median 

28 years and standard deviation 9.75 years). The catchment areas of these 32 stations 
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range from 4.5 to 1600 km2 (mean 353 km2, median 184 km2 and standard deviation of 418 

km2). For east Tasmania the record lengths range from 19 to 74 years (mean 28 years, 

median 27 years and a standard deviation 11 years). The catchment areas of these 21 

stations range from 1.3 to 1900 km2 (mean 276 km2, median 136 km2 and standard deviation 

of 420 km2) 

 

In the fixed region approach, all the 32 catchments in west Tasmania were considered to 

have formed one region; however, one catchment was left out for cross-validation and the 

procedure was repeated 32 times to implement one-at-a-time cross validation. A similar 

approach was adopted for east Tasmania. For this analysis no predictor variable was used 

for the standard deviation and skew models (e.g. a regional average value was used, which 

is the skew values weighted by the error covariance matrix). For the mean flood model, 

predictor variables were selected as explained below.   

 

Table 4.5.1 shows different combinations of predictor variables used in the mean flood 

model. Figures 4.5.10 and 4.5.11 show example plots of the statistics used in selecting the 

best set of predictor variables for the mean flood models of west Tasmania and east 

Tasmania. According to the model error variance, combinations 5 and 6 were potentially the 

best sets of predictor variables for mean flood models for both west Tasmania and east 

Tasmania. Indeed combination 5 with two predictor variables (area and design rainfall 

intensity 2I12) showed the lowest model error variance and the highest R2
GLS. The AVPO, 

AVPN, AIC and BIC values favour combination 5 as well. We also compared combination 5 

to combination 6 (also two predictor variables, area and design rainfall intensity 50I12). The 

regression coefficient for the variable 50I12 was 6 times the posterior standard deviation away 

from zero as compared to 7.2 times for 2I12. Hence, combination 5 was finally selected as the 

best set of predictor variables for the mean flood model. The BPVs for the predictor variables 

for the mean model were smaller than 0.5% for both the predictor variables (area and 2I12) for 

both west Tasmania and east Tasmania.  
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Figure 4.5.10 Selection of predictor variables for the BGLS regression model for the mean 

flood in west Tasmania – (Note R2 GLS uses the right hand axis) 

 

 

Figure 4.5.11 Selection of predictor variables for the BGLS regression model for the mean 

flood in east Tasmania – (Note R2 GLS uses the right hand axis) 

 

Regression equations developed for the mean flood for the two fixed regions in Tasmania 

are given by Equations 4.5.10 to 4.5.12 for west Tasmania and 4.5.13 to 4.5.15 for east 

Tasmania 
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west Tasmania:   

M = 4.32 + 0.95[ln(area) - 5.00] + 3.47[ln(I12,2) - 1.55]                                    (4.5.10) 

stdev =  0.42                                                                                                             (4.5.11) 

skew =  0.022                                                                                                            (4.5.12) 

 

east Tasmania: 

M = 3.44 + 0.77[ln(area) - 4.74] + 4.03[ln(I12,2) - 1.40]                                    (4.5.13) 

stdev =  0.98                                                                                                             (4.5.14) 

skew =  - 0.25                                                                                                            (4.5.15) 

 

 

The Pseudo Analysis of Variance (ANOVA) tables for west Tasmania and east Tasmania for 

the parameters of the LP3 distribution are presented in Tables 4.5.12 – 4.5.14. 

 

For the LP3 parameters, the sampling error increases as the order of moment increases i.e. 

the EVR increases with the order of moments. The model error dominates the regional 

analysis for the mean flood and the standard deviation models for both west Tasmania and 

east Tasmania. For the mean flood model the EVR is 0.03 for west Tasmania and 0.09 for 

east Tasmania (Table 4.5.12). For the standard deviation model the EVR is 0.16 for west 

Tasmania and 0.11 for east Tasmania. 

 

The EVR values for the skew models are 3.8 and 4.7 for west Tasmania and east Tasmania 

respectively (Table 4.5.14), which are much higher than the recommended limit of 0.20.  

Given that the skew has a high sampling error component, an OLS model would give 

misleading results. These results are consistent with the other states in that the mean flood 

model always shows a much higher model error variance than those of the standard 

deviation and skew models. These results indicate that the mean flood has the greater level 

of heterogeneity associated with it compared to the standard deviation and skew. 
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Table 4.5.12 Pseudo ANOVA table for the mean flood model (PRT, fixed region for west 

Tasmania and east Tasmania) 

 

Table 4.5.13 Pseudo ANOVA table for the standard deviation model (PRT, fixed region for 

west Tasmania and east Tasmania) 

 

 

Table 4.5.14 Pseudo ANOVA table for the skew model (PRT, fixed region for west Tasmania 

and east Tasmania) 

 

To assess the underlying model assumptions (i.e. the normality of residuals), the plots of 

standardised residuals vs. predicted values were examined for west Tasmania and east 

Tasmania. The predicted values were obtained from one-at-a-time cross validation. Figures 

Source Degrees of Freedom Sum of Squares 

 West Tasmania East 
Tasmania 

 West 
Tasmania 

East 
Tasma

nia 

Model k=3 k=3 n )( 22

0    =  21 8.5 

Model error  n-k-1=28 n-k-1=17 n )( 2

 =  8.5 10 

Sampling error  N = 32 N = 21 )]ˆ([ ytr   =  0.27 0.91 

Total 
2n-1 = 63 2n-1 = 41 

Sum of the 
above = 30 19.45 

   EVR 0.03 0.09 

Source Degrees of Freedom Sum of Squares 

 

West Tasmania East 
Tasmania 

 West 
Tasmania 

East 
Tasma

nia 

Model k=1 k=1  0.0 0.0 

Model error  n-k-1=30 n-k-1=19  4.8 3.9 

Sampling error  N = 32 N = 21  0.75 0.42 

Total 2n-1 = 63 2n-1 = 41 
Sum of the 

above = 
5.54 4.35 

   EVR 0.16 0.11 

Source Degrees of Freedom Sum of Squares 

 West Tasmania East 
Tasmania 

 West 
Tasmania 

East 
Tasmani

a 

Model k=1 k=1  0.0 0.0 

Model error  n-k-1=30 n-k-1=19  2.37 1.45 

Sampling error  N = 32 N = 21  9.0 6.9 

Total 2n-1 = 63 2n-1 = 41 
Sum of the 

above = 
11.3 8.3 

   EVR 3.8 4.7 
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4.5.12 and 4.5.13 show the plots for Q20 predicted from PRT and the mean flood models for 

west Tasmania and east Tasmania. The underlying model assumptions are satisfied to a 

large extent as 95% of the standardised residual values fall between the magnitudes of ± 2. 

The results in Figures 4.5.12 to 4.5.13 reveal that the developed equations satisfy the 

normality of residual assumption quite satisfactorily. Also no specific pattern  

(heteroscedasicity) can be identified with the standardised values being almost equally 

distributed below and above zero. Similar results were obtained for the skew, standard 

deviation and other flood quantiles estimated from PRT. This result indicates that there is no 

major issue with treating Tasmania as two different regions and that no true outlier sites 

occur with this subdivision. 

 

 

 

 

 

 

 

 

 

Figure 4.5.12 Plot of standardised residuals vs. predicted values for ARI of 20 years (PRT, 

west Tasmania and east Tasmania) 

 

 

 

 

 

 

 

 

 

Figure 4.5.13 Plot of standardised residuals vs. predicted values for the mean flood (PRT, 

west Tasmania and east Tasmania) 

 

The QQ-plots of the standardised residuals (Equation 4.2.13) vs. normal score (Equation 

4.2.14) for west Tasmania and east Tasmania (based on one-at-a-time cross validation) 
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were examined. Figure 4.5.14 presents the result for the Q20 model, which shows that all the 

points closely follow a straight line. This indicates that the assumption of normality and the 

homogeneity of variance of the standardised residuals have largely been satisfied. The 

standardised residuals are indeed normally and independently distributed N(0,1) with mean 0 

and variance 1, as the slope of the best fit line in the QQ-plot, which can be interpreted as 

the standard deviation of the normal score (Z score) of the quantile, should approach 1 and 

the intercept, which is the mean of the normal score of the quantile should approach 0 as the 

number of sites increases. It can be observed from Figure 4.5.14 that the fitted lines for the 

developed models pass through the origin (0, 0) and it has a slope approximately equal to 

one. Similar results were also found for the mean, standard deviation and other flood quantile 

models. This result indicates that there is no major issue with treating Tasmania as two 

different regions and that no true outlier sites occur with this subdivision, as found with the 

standardised residuals vs. predicted values plot. 

 

 

 

 

 

 

 

 

 

 

Figure 4.5.14 QQ-plot of the standardised residuals vs. Z score for ARI of 20 years (PRT, 

west Tasmania and east Tasmania) 

 

The summary of various regression diagnostics for west Tasmania and east Tasmania (the 

relevant equations are described in Section 4.2.2) is provided in Table 4.5.15. This shows 

that for the mean flood model (for both west Tasmania and east Tasmania) the model error 

variance (MEV) and average standard error of prediction (SEP) are much higher than those 

of the standard deviation and skew models. This indicates that the mean flood model exhibits 

a higher degree of heterogeneity than the standard deviation and skew models, this result 

also supports the ANOVA analysis. Indeed the issue here is that sampling error becomes 

larger as the order of the moment increases, therefore, in case of the skew, the spatial 

variation is a second order effect that is not really detectable. For the mean flood model, west 

Tasmania shows a model error variance which is 29% smaller than east Tasmania. Also, the 

Q20

y = 1.0628x - 0.0344

R2 = 0.9668 (BGLS-PRT, WTAS)

y = 0.9725x + 6E-17
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R2GLS value for west Tasmania mean flood model is 18% higher than east Tasmania. The 

notable difference in MEV for the mean flood model indicates that it is justified to treat west 

Tasmania and east Tasmania as two separate regions. For the standard deviation and skew 

models, west Tasmania has very similar SEP values to east Tasmania, i.e. 41% and 48% 

respectively for the standard deviation model, and 31% and 30% respectively for the skew 

model. The R2GLS values for the standard deviation and skew models for west Tasmania 

and east Tasmania are zero as no explanatory variables are used. 

 

Table 4.5.15 Regression diagnostics for west Tasmania and east Tasmania 

Model 

 

West Tasmania East Tasmania 

 
MEV AVP SEP (%) R2

GLS (%) 
 MEV AVP SEP (%) R2

GLS (%) 
Mean 

0.28 0.30 60 89 0.50 0.59 89 71 
Stdev 

0.14 0.15 41 0 0.20 0.22 48 0 
Skew 

0.076 0.091 31 0 0.073 0.090 30 0 

 

 

Table 4.5.16 presents the root mean square error (RMSE) (Equation 4.2.16) and relative 

error (RE) (Equation 4.2.15) values for the flood quantiles estimated by PRT with both west 

Tasmania and east Tasmania. In terms of RMSE, west Tasmania gives smaller values than 

east Tasmania for most of the ARIs. In terms of RE, west Tasmania provides smaller values 

than east Tasmania over all the ARIs by 17 to 27%.  

 

Finally the results of counting the Qpred/Qobs ratios for the PRT (for west Tasmania and east 

Tasmania) are provided in Table 4.5.17. It was found that west Tasmania provided relatively 

better results with 81% of the ratio values in the desirable range, which is 62% for east 

Tasmania.  
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Table 4.5.16 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for 

west Tasmania and east Tasmania 

Model RMSE (%) RE (%) 
 PRT PRT 
 West Tasmania East Tasmania West Tasmania East 

Tasmania 
Q2 8.8 12.3 29 49 
Q5 8.6 8.2 28 55 
Q10 8.5 8.4 31 54 
Q20 8.4 9.0 35 52 
Q50 8.3 9.7 40 59 
Q100 8.2 10.2 40 63 

 

 
 
 
 
 

Table 4.5.17 Summary of counts based on Qpred/Qobs ratio values for PRT for west Tasmania 

and east Tasmania.  “U” = gross underestimation, “D” = desirable and “O” = gross 

overestimation  

 

Model Count (West 
Tasmania) 

Percent 
(West 

Tasmania) 

Count (East 
Tasmania) 

Percent (East 
Tasmania) 

U D O U D O U D O U D O 
Q2 3 27 2 9 84 6 3 15 3 14 71 14 
Q5 3 27 2 9 84 6 3 15 3 14 71 14 
Q10 3 27 2 9 84 6 4 13 4 19 62 19 
Q20 4 25 3 13 78 9 4 12 5 19 57 24 
Q50 4 25 3 13 78 9 4 12 5 19 57 24 
Q100 5 24 3 16 75 9 5 11 5 24 52 24 

Sum / 
average 22 155 15 11 81 8 23 78 25 18 62 20 
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4.6 Results for Queensland 

 

A total of 172 catchments were used from Queensland for the analyses presented here. 

These catchments are listed in the appendix. The locations of these catchments are shown 

in Figure 2.14. The annual maximum flood series record lengths of these 172 stations range 

from 25 to 94 years (mean 40 years, median 36 years and a standard deviation 14.5 years). 

The catchment areas of these 172 stations range from 7 to 963 km2 (mean 325 km2, median 

254 km2 and standard deviation of 252 km2).  

 

In the fixed region approach, all the 172 catchments were considered to have formed one 

region, however, one catchment was left out for cross-validation and the procedure was 

repeated 172 times to implement one-at-a-time cross validation. In the region-of-influence 

(ROI) approach, an optimum region was formed for each of the 172 catchments by starting 

with 15 stations and then consecutively adding 5 stations at each iteration. 

 

Table 4.6.1 shows different combinations of predictor variables for the Q10 QRT model and 

the models for the first three moments of the LP3 distribution. Figure 4.6.1 and 4.6.2 show 

example plots of the statistics used in selecting the best set of predictor variables for Q10 and 

the skew models. According to the model error variance, combinations 8, 9 and 18 were the 

top 3 potential sets of predictor variables for the Q10 model. Combination 18 contained 5 

predictor variables while combinations 8 and 9 each contained 2 predictor variables. Indeed 

combination 8 with the 2 predictor variables (area and design rainfall intensity 50I72) showed 

the lowest model error variance (and the lowest standard error of MEV) and the highest 

R2
GLS. The AVPO, AVPN, AIC and BIC values favour combination 8 as well. We also 

compared combination 8 to combination 10 (the latter contained 2 predictor variables, area 

and design rainfall intensity Itc,10). Combination 8 had a smaller model error variance, while 

both the variables (50I72 and Itc,10) were at least 10 times the posterior standard deviation away 

from zero. Overall, given that there was not an overly large difference in R2
GLS and model 

error variance and for consistency with the other eastern states (NSW and Victoria), 

combination 10 was finally selected as the best set of predictor variables for the Q10 model.  

 

For the skew model, combination 13 showed the lowest model error variance (0.0152) and 

the highest R2
GLS (46%) (see Figure 4.6.2) as well as the lowest AIC and BIC. Combination 1 

without any explanatory variables ranked 4 out of the 16 possible combinations (model error 

variance of 0.0159); the AVPO and AVPN as compared to combination 13 were quite 
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comparable. In this case, given the relatively small difference in model error variance, it may 

be argued that a regional average skew may be applicable for Queensland.   

A similar procedure was adopted in selecting the best set of predictor values for other 

models with the QRT and PRT. The sets of predictor variables selected as above were used 

in the one-at-a-time cross validation with the fixed regions and region-of-influence (ROI) 

approaches. 

 

To see how statistically significant the variables were for the regression equations, the BPV 

values for the regression coefficients were calculated. For the QRT over all the ARIs, the 

BPV values were 0% for both the variables area and design rainfall intensity Itc,ARI.. This 

justifies the inclusion of predictor variables area and Itc,ARI  in the prediction equations for 

QRT. The BPVs for the skew model were 8% and 4% for 50I72 and rain, respectively 

indicating that rain is a good predictor (5% level of significance) for skew in Queensland. The 

BPVs for the mean flood model were 0% for both the predictor variables 50I72 and rain. For 

the standard deviation model, the BPVs for the predictor variables area and 2I1 were 42% 

and 2% respectively which indicates that area is not a good predictor for the standard 

deviation model in Queensland. 

 

Regression equations developed for the QRT and PRT for the fixed region are given by 

Equations 4.6.1 to 4.6.9.  
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Table 4.6.1 Different combinations of predictor variables considered for the QRT models and 

the parameters of the LP3 distribution for Queensland (QRT and PRT fixed region) 

Combination Combinations for mean, 

standard deviation & skew 

models 

Combinations for flood quantile 

model 

1 Const Const 

2 Const, area Const, area 

3 Const, area, 2I1 Const, area, 2I1 

4 Const, area, 50I1 Const, area, 2I12 

5 Const, area, 50I12 Const, area, 50I1 

6 Const, area, 2I12 Const, area, 50I12 

7 Const, area, rain Const, area, rain 

8 Const, area, 50I72 Const, area, 50I72 

9 Const, area, evap Const, area, 50I72, evap 

10 Const, area, S1085 Const, area, Itc,ARI 

11 Const, area, SL* Const, area, evap 

12 Const, SL, rain Const, area, S1085 

13 Const, 50I72, rain Const, area, SL 

14 Const, S1085, 50I72 Const, SL, rain 

15 Const, evap Const, 50I72, rain 

16 Const, rain, evap Const, area, 50I12, rain  

17 - Const, area, 50I12, SL 

18 - Const, area, 50I12, rain, evap 

19 - Const, area, 50I12, Itc,ARI, evap 

20 - Const, area, 50I12, Itc,ARI, rain, 

evap 

21 - Const, area, 50I12, Itc,ARI, SL 

22 - Const, area, Itc,ARI, S1085 

23 - Const, area, Itc,ARI, evap 

24 - Const, area, Itc,ARI, rain 

25 - Const, area, 2I1, Itc,ARI 

* SL = Stream Length 
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Figure 4.6.1 Selection of predictor variables for the BGLS regression model for Q10  

(QRT, fixed region Queensland), MEV = model error variance, AVPO = average variance of 

prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information 

criterion, BIC = Bayesian information criterion 
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Figure 4.6.2 Selection of predictor variables for the BGLS regression model for skew 

 

 

ln(Q2) = 4.80 + 1.35(zarea) + 2.57(zItc,ARI)                                                                  (4.6.1) 

ln(Q5) =  5.77+ 1.16(zarea) + 1.95(zItc,ARI)                                                                  (4.6.2) 

ln(Q10) = 6.25 + 1.00(zarea) + 1.67(zItc,ARI)                                                                 (4.6.3) 

ln(Q20) = 6.59 + 0.98(zarea) + 1.42(zItc,ARI)                                                                 (4.6.4) 

ln(Q50) = 6.97 + 0.91(zarea) + 1.19(zItc,ARI)                                                                 (4.6.5) 

ln(Q100) = 7.23 + 0.86(zarea) + 1.01(zItc,ARI)                                                                (4.6.6) 

M = 4.71 + 0.74(zarea) + 1.97(zI12,50)                                                                         (4.6.7) 

stdev =  1.37 – 0.03(zarea) – 1.41(zI1,2)                                                                     (4.6.8) 

skew =  - 0.63 – 0.32(zI72,50) + 0.36(zrain)                                                                  (4.6.9) 

 

where z() is explained by Equation 4.3.10. 

 

It is reassuring to observe that the regression coefficients in the QRT set of equations vary in 

a regular fashion with increasing ARI. 

 

The Pseudo Analysis of Variance (ANOVA) tables for Q20 and Q100 models and the 

parameters of the LP3 distribution are presented in Tables 4.6.2 – 4.6.6 for the fixed regions 

and ROI. 
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For the LP3 parameters, the sampling error increases as the order of moment increases i.e. 

the EVR increases with the order of moments. The ROI in each case of the LP3 parameters 

shows a reduced model error variance (i.e. a reduced heterogeneity) as compared to the 

fixed regions as fewer sites have been used. The model error dominates the regional 

analysis for the mean flood and the standard deviation models for both the fixed regions and 

ROI. The ROI for the mean flood shows a higher EVR than the fixed regions e.g. the EVR is 

0.40 for the ROI and 0.26 for the fixed region (Table 4.6.4) which is a 14% increase. For the 

standard deviation model, the EVR values are 0.36 and 0.73 for the ROI and fixed region 

(Table 4.6.5). This indicates that EVR is almost double for the ROI as compared to the fixed 

region, which means that the ROI procedure deals better with the heterogeneity than the 

fixed region. 

 

The EVR values for the skew model are 17 and 19 for the fixed regions and ROI respectively 

(Tables 4.6.6), which are much higher than those of the mean flood and standard deviation 

models. Hence, GLS regression should be the preferred modeling choice for all the three 

parameters of the LP3 distribution, especially for the skew where the EVR is very high. The 

ROI combined with GLS is also advantageous as there is certainly a reduction in the model 

error variance.  The EVR for ROI as compared to the fixed region for the skew model is 

slightly higher, as the reduction in the number sites (172 to 150) has slightly decreased the 

overall heterogeneity in the model. In any case the skew model tends to include more 

stations in the regional analysis, due to the fact that most of the error in the regional model is 

sampling error. These results indicate, as found for NSW, Victoria and Tasmania, that the 

mean flood shows greater levels of heterogeneity when compared to the standard deviation 

and skew. 

 

Pseudo ANOVA tables were also prepared for the flood quantile models. Tables 4.6.2 and 

4.6.3 show the results for Q20 and Q100 models, respectively. Here the ROI shows a higher 

EVR (nearly double) than the fixed region. This suggests that the BGLS regression and ROI 

should be the preferred modeling approach in developing the flood quantile models, 

especially as the ARI increases. 
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Table 4.6.2 Pseudo ANOVA table for Q20 model of Queensland (QRT, fixed region and ROI) 

 

Table 4.6.3 Pseudo ANOVA table for Q100 model of Queensland (QRT, fixed region and ROI) 

 

 

Table 4.6.4 Pseudo ANOVA table for the mean flood model of Queensland (PRT, fixed 

region and ROI) 

 

 

 

 

 

 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI Equations Fixed 
region 

ROI 

Model k=3 k=3 n )( 22

0    =  46 59 

Model error  n-k-1=168 n-k-1=77 n )( 2

 =  25 12 

Sampling error  N = 172 N = 81 )]ˆ([ ytr   =  13 12 

Total 
2n-1 = 343 2n-1 = 161 

Sum of the 
above = 

84 83 

   EVR 0.53 0.97 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  44 59 

Model error  n-k-1=168 n-k-1=92  35 20 

Sampling error  N = 172 N = 96  19 17 

Total 
2n-1 = 343 2n-1 = 191 

Sum of the 
above = 

98 97 

   EVR 0.54 0.86 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3 n )( 22

0    =  105 122 

Model error  n-k-1=168 n-k-1=34 n )( 2

 =  39 22 

Sampling error  N = 172 N = 38 )]ˆ([ ytr   =  10.2 9.0 

Total 
2n-1 = 343 2n-1 = 75 

Sum of the 
above = 

155 154 

   EVR 0.26 0.40 
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Table 4.6.5 Pseudo ANOVA table for the standard deviation model of Queensland (PRT, 

fixed region and ROI) 

 

 

Table 4.6.6 Pseudo ANOVA table for skew model of Queensland (PRT, fixed region & ROI) 

 

The underlying model assumptions are examined (i.e. the normality of residuals), using the 

plots of the standardised residuals vs. predicted values. The predicted values were obtained 

from one-at-a-time cross validation. Figures 4.6.3 to 4.6.5 show the plots for the Q20 and the 

mean flood models with the fixed region and ROI. It can be seen that most of the 

standardised residuals fall between the magnitudes of ± 2, hence the underlying model 

assumptions are satisfied quite well. The ROI in each case shows standardised residuals 

closer to the ± 2 limits indicating that ROI deals better with the sites that may be outliers. The 

results in Figures 4.6.3 to 4.6.5 reveal that the developed equations satisfy the normality of 

residual assumption quite satisfactorily. Also no specific pattern (heteroscedasicity) can be 

identified with the standardised values being almost equally distributed below and above 

zero. Similar results were obtained for the skew, standard deviation and other flood quantile 

models.  

 

 

 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  
Fixed 
region ROI 

Model k=3 k=3  9 21 

Model error  n-k-1=168 n-k-1=47  22 9.7 

Sampling error  N = 172 N = 51  7.9 7.1 

Total 2n-1 = 343 2n-1 = 93 
Sum of the 

above = 
39 38 

   EVR 0.36 0.73 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  0.11 0.65 

Model error  n-k-1=168 n-k-1=146  2.6 2.1 

Sampling error  N = 172 N = 150  45 40 

Total 2n-1 = 343 2n-1 = 299 
Sum of the 

above = 
48 43 

   EVR 17 19 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  128 

 

 

 

 

 

 

 

 

Figure 4.6.3 Plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, fixed region, Queensland) 

 

 

 

 

 

 

 

 

Figure 4.6.4 Plot of standardised residuals vs. predicted values for the mean flood (PRT, 

fixed region, ROI, Queensland) 

 

 

 

 

 

 

 

 

 

 

Figure 4.6.5 Plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, ROI, Queensland) 
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The QQ-plots of the standardised residuals (Equation 4.2.13) vs. normal score (Equation 

4.2.14) for the fixed region (based on one-at-a-time cross validation) and ROI were 

examined. Figures 4.6.6 to 4.6.8 present the results for the Q20 and skew models, which 

show that all the points closely follow a straight line. This indicates that the assumption of 

normality and the homogeneity of variance of the standardised residuals have largely been 

satisfied. The standardised residuals are indeed normally and independently distributed 

N(0,1), with mean 0 and variance 1, as the slope of the best fit line in the QQ-plot, which can 

be interpreted as the standard deviation of the normal score (Z score) of the quantile, should 

approach 1 and the intercept, which is the mean of the normal score of the quantile should 

approach 0 as the number of sites increases. It can be observed from Figures 4.6.6 to 4.6.8, 

that the fitted lines for the developed models pass through the origin (0, 0) and have a slope 

approximately equal to one. The ROI approach approximates the normality of the residuals 

slightly better (i.e. a better match with the fitted line) than the fixed region approach. Similar 

results were also found for the mean, standard deviation and other flood quantile models.  

 

 

 

 

 

 

 

 

Figure 4.6.6 QQ plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, fixed region, Queensland) 

 

 

 

 

 

 

 

 

Figure 4.6.7 QQ plot of the standardised residuals vs. Z score for the skew model (PRT, 

fixed region, ROI, Queensland) 
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Figure 4.6.8 QQ plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, ROI, Queensland) 

 

The summary of various regression diagnostics (the relevant equations are described in 

Section 4.2.2) is provided in Table 4.6.7. This shows that for the mean flood model the model 

error variance (MEV) and average standard error of prediction (SEP) are much higher than 

those of the standard deviation and skew models. This indicates that the mean flood model 

exhibits a higher degree of heterogeneity than the standard deviation and skew models; this 

result is also supported by the ANOVA analysis. Indeed the issue here is that sampling error 

becomes larger as the order of the moment increases, therefore, in case of the skew model, 

the spatial variation is a second order effect that is not really detectable. For the mean flood 

model, the ROI shows a model error variance which is 35% smaller than for the fixed region. 

The R2GLS value for the mean flood model with the ROI is only 1% higher than that for the 

fixed region, which is negligible. Given that the model error dominates the regional analysis 

for the mean flood, it would be preferable that ROI be used over a fixed region analysis for 

developing the mean flood model for Queensland. For the standard deviation model, ROI 

also shows 14% smaller and 12% higher SEP and R2GLS values, respectively, again 

indicating the relative advantage of ROI. Again, ROI should be preferred over the fixed 

region analysis for the standard deviation model. From Table 4.6.7 the SEP% for the skew 

model is the same for ROI and the fixed region analysis. This is attributed to the fact that the 

skew model tends to include more sites due to the very low model error, for a big region like 

Queensland ROI is very close to including all the sites in region to capture the variability not 

accounted for by the catchment characteristics, hence in this case the model error variance 

is similar, leading to similar SEP values. The R2GLS values for the skew models are also the 

same for both the ROI and fixed region. 
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One can see from Table 4.6.7 that the SEP values for all the flood quanitle models are 5% to 

13% smaller for the ROI cases than the fixed region; the best results are obtained for ARIs of   

2 and 10 years (i.e. 13% and 12% reduction respectively). Also, the R2GLS values for ROI 

cases are 1% to 5% higher than the fixed region. These results support the use of the ROI 

approach over a fixed region. 

 

Table 4.6.7 Regression diagnostics for fixed region and ROI for Queensland 

Model Fixed region ROI 

 
MEV AVP SEP (%) R2

GLS (%) 
 MEV AVP SEP (%) R2

GLS (%) 
Mean 

0.23 0.24 52 77 0.14 0.15 40 78 
Stdev 

0.13 0.14 38 34 0.056 0.061 24 46 
Skew 

0.015 0.024 16 44 0.014 0.026 16 44 
Q2 0.26 0.27 56 75 0.15 0.18 43 79 

Q5 0.17 0.18 44 79 0.08 0.11 34 83 

Q10 0.18 0.19 45 74 0.07 0.11 33 79 

Q20 0.15 0.16 41 77 0.07 0.13 36 80 

Q50 0.17 0.19 45 72 0.10 0.14 39 77 

Q100 0.20 0.22 49 72 0.12 0.16 40 73 

 

 

Table 4.6.8 shows number of sites and associated model error variances for the ROI and 

fixed region models. This shows that the ROI mean flood model has fewer sites (42 out of 

172 i.e. 24%) than the standard deviation and skew models. The ROI skew model has the 

highest number of sites which includes nearly all the sites in Queensland (150 out of 172 i.e. 

87%). The model error variances for all the ROI models (including the skew model) are 

smaller than the fixed region models. This shows that the fixed region models experience a 

greater heterogeneity than the ROI. If the fixed regions are made too large, the model error 

will be inflated by heterogeneity that will go unaccounted for by the catchment 

characteristics, this is especially the case for the flood quantile and mean flood models. 

Figure 4.6.9 shows the resulting sub-regions in Queensland (with minimum model error 

variances) for the ROI mean flood and standard deviation models. For the mean flood some 

of the stations have overlapping regions, these are the sites that showed very similar model 

error variances, therefore they are flexible sites and can be included in either region for 

estimating the mean flood. For the mean flood model there are sites that do not belong to 

any region as they had relatively different model error variances from the rest of the sites 

(these are the sites that are enclosed by a rectangle). For the standard deviation model there 
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are some overlapping sites but fewer outlying sites, as the standard deviation model can 

include more sites in the region.  

 

Table 4.6.8 Model error variances of the parameters and flood quantiles associated with 

fixed region and ROI for Queensland (n = number of sites)  

 
Parameter/ 
Quantiles 

Mean Stdev Skew Q2 Q5 Q10 Q20 Q50 Q100 

ROI (n)  
 2ˆ

  
42 

0.15 
65 

0.056 
150 

0.014 
60 

0.14 
65 

0.08 
74 

0.07 
80 

0.07 
88 

0.10 
90 

0.12 
Fixed 
region (n) 

2ˆ
  

172 
0.23 

172 
0.14 

172 
0.015 

172 
0.26 

172 
0.17 

172 
0.18 

172 
0.15 

172 
0.17 

172 
0.20 
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(b) 

Figure 4.6.9 Binned minimum model error variance for (a) mean flood model and (b) 

standard deviation model for Queensland 

(b) 
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Table 4.6.9 presents the root mean square error (RMSE) (Equation 4.2.16) and relative error 

(RE) (Equation 4.2.15) values for the PRT and QRT models with both the fixed region and 

ROI. In terms of RMSE, ROI gives smaller values than the fixed regions for all the ARIs. The 

QRT-ROI shows smaller RMSE values than the PRT-ROI for all the ARIs. The best result 

was found for the 2-year ARI for PRT-ROI and the 20-year ARI for the QRT-ROI. In terms of 

RE, ROI gives 0 to 5% smaller values than the fixed regions. The PRT-ROI gives larger 

values of RE (by 5 and 9%) for both the 50 and 100 years ARIs respectively. For the ARI of 2 

years the PRT-ROI gives a smaller RE value (by 4%) than the QRT-ROI. These results 

suggest modest differences between the performances of the QRT and PRT for Queensland 

(similar to NSW & ACT and Victoria).  

 

Finally the results of counting the Qpred/Qobs ratios for the QRT and PRT (for both the ROI and 

fixed regions) are provided in Tables 4.6.10 and 4.6.11. The QRT-ROI had 89% ratio values 

in the desirable range, compared to 84% for the QRT-fixed region. The PRT-ROI had 85% 

ratio values in the desirable range, compared to 79% for the PRT-fixed region. These results 

show that ROI performs better than the fixed regions with both the QRT and PRT. The PRT-

ROI shows 4% underestimation as compared to 6% for the QRT-ROI. The cases for 

overestimation are 11% and 4% for PRT-ROI and QRT-ROI, respectively. These results 

favour the PRT-ROI, as slight over-estimation is preferable to underestimation. 

  

Table 4.6.9 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for 

Queensland 

Model RMSE (%) RE (%) 
 PRT QRT PRT QRT 
 Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI 

Q2 8.2 6.9 6.1 5.6 39 35 39 39 
Q5 6.8 6.0 4.8 4.4 33 34 34 32 
Q10 6.9 6.0 5.2 4.7 34 30 32 31 
Q20 7.2 6.5 5.0 4.4 35 33 31 29 
Q50 7.8 6.8 5.3 4.9 37 36 32 31 
Q100 8.5 7.9 5.8 5.3 41 40 36 31 
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Table 4.6.10 Summary of counts based on Qpred/Qobs ratio values for QRT and PRT for 

Queensland (fixed region). “U” = gross underestimation, “D” = desirable range and “O” = 

gross overestimation  

 

Model Count (QRT) Percent 
(QRT) 

Count (PRT) Percent 
(PRT) 

U D O U D O U D O U D O 
Q2 20 139 13 12 81 8 19 129 24 11 75 14 
Q5 9 154 9 5 90 5 9 141 22 5 82 13 
Q10 17 143 12 10 83 7 10 141 21 6 82 12 
Q20 13 149 10 8 87 6 11 143 18 6 83 10 
Q50 18 141 13 10 82 8 17 132 23 10 77 13 
Q100 20 138 14 12 80 8 24 125 23 14 73 13 

Sum / 
average 97 864 71 9 84 7 90 811 131 9 79 13 

 

 

 
Table 4.6.11 Summary of counts based on Qpred/Qobs ratio values for QRT and PRT for 

Queensland (ROI). “U” = gross underestimation, “A” = desirable range and “O” = gross 

overestimation  

 
ARI 

(years) 
Count (QRT) Percent 

(QRT) 
Count (PRT) Percent 

(PRT) 

U D O U D O U D O U D O 
2 21 140 11 12 81 6 1 144 27 1 84 16 
5 11 157 4 6 91 2 3 149 20 2 87 12 

10 11 155 6 6 90 3 5 149 18 3 87 10 
20 9 157 6 5 91 3 6 147 19 3 85 11 
50 6 156 10 3 91 6 11 145 16 6 84 9 
100 5 158 9 3 92 5 11 145 16 6 84 9 

Sum / 
average 63 923 46 6 89 4 37 879 116 4 85 11 
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4.7 Results for the NT 

 

From the NT, a total of 55 catchments were selected; 51 of these catchments were located in 

Drainage Division VIII (Timor Sea Division), the remaining 4 catchments were from Drainage 

Division IX. Here, the 51 catchments are used to develop the RFFA model, which is 

applicable to north-western NT i.e. the part of Drainage Division VIII (Timor Sea Division) 

falling in the NT. The locations of these 51 stations are shown in Figure 4.7.1.  

 

The annual maximum flood series record lengths of these 51 stations range from 19 to 54 

years (mean 35 years, median 37 years and standard deviation 11.5 years). The catchment 

areas of these 51 stations range from 1.4 to 4325 km2 (mean 581 km2, median 352 km2 and 

standard deviation of 782 km2).  

 

 
 

Figure 4.7.1 Geographical distributions of the selected 51 catchments from the NT 

                                 (Drainage Division VIII -Timor Sea Division) 

 

In the fixed region approach, a parameter regression technique is used, all the 51 

catchments were considered to have formed one region, however, one catchment was left 

out for cross-validation and the procedure was repeated 51 times to implement the one-at-a-

time cross validation. No region-of-influence (ROI) approach was used for the NT as the total 

number of stations is too small with a highly sparse desnsity for the ROI application. 

 

Table 4.7.1 shows different combinations of predictor variables for first three moments of the 

LP3 distribution. Figures 4.7.2 and 4.7.3 show example plots of the statistics used in 

selecting the best set of predictor variables for the mean flood and the skew models. 
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According to the model error variance, combinations 2 to 11 were the top potential sets of 

predictor variables for the mean flood model. Combination 2 only contained 1 predictor 

variable area, while combinations 3, 4, 5, 6 and 7 contained 2 predictor variables: area and 

basic design rainfall intensity. Combinations 3, 4, 5, 6 and 7 showed no significant difference 

in R2
GLS.  There are also negligible differences in the model error variances. Combinations 3, 

4, 5 and 6 all had negative coefficients of design rainfall intensity, therefore it was decided to 

go for combination 7 (area and rain). The AVPO, AVPN, AIC and BIC for combination 7 was 

comparable to combinations 3, 4, 5 and 6. The regression coefficient for the variable rain 

was approximately 2 times the posterior standard deviation away from zero compared to 1 

time for the design rainfall intensity.  

 

This suggested that mean annual rainfall (rain) is preferable to design rainfall intensity, unlike 

other Australian states. It should also be noted here that design rainfall intensity does not 

show any relationship with the mean flood or other flood quantiles (see Rahman et al., 2011), 

which is somewhat unexpected, as for all other Australian states, rainfall intensity has 

appeared to be the 2nd most important predictor variable after area (Rahman et al., 2009; 

Haddad et al., 2009; Rahman 2005). The study by Weeks and Rajaratnam (2005) also found 

that design rainfall intensity does not appear in the prediction equations in the NT. It appears 

that there might be some problems with the ARR87 design rainfall data for the NT, it may be 

that only few stations were used to derive ARR87 design rainfall data for the NT. Once the 

updated design rainfall intensity data are available with the 4th edition of the ARR, the 

regional flood frequency analysis methods developed here for the NT need to be updated, 

which might include design rainfall intensity as a predictor variable, similar to the other 

Australian states.  

  

For the skew model, combination 1 with no explanatory variables showed one of the lowest 

model error variances (0.0286) and the lowest AVPO and AVPN (see Figure 4.7.3). The next 

best combination was 15 with a slightly smaller model error variance; however the R2
GLS was 

very poor (smaller than 24%). Therefore there was enough evidence to stay with combination 

1, as the other models did not show major improvement in model error variance with the 

added explanatory variables. In this case, given the relatively small difference in model error 

variance, it may be argued that a regional average skew is applicable for the NT. A similar 

outcome was obtained for the standard deviation model. 

 

The set of predictor variables selected as above was used in the fixed region regression with 

one-at-a-time cross validation approach. The BPVs for the mean flood model were 0% and 

31% for both the predictor variables (area and rain respectively). This does suggest that rain 
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is not a particularly good descriptor in this case. For the design rainfall intensities the BPVs 

ranged from 31% to 59%, thus rain was the better alternative. Indeed there could be some 

problem with the design rainfall intensities data for the NT, as discussed before. Regression 

equations developed for the PRT for the fixed region are given by Equations 4.7.1 to 4.7.3.  

 

Table 4.7.1 Different combinations of predictor variables considered for the the parameters of 

the LP3 distribution for the NT (PRT fixed region) 

Combination Combinations for mean, standard 

deviation & skew models 

1 Const 

2 Const, area 

3 Const, area, 2I1 

4 Const, area, 50I1 

5 Const, area, 50I12 

6 Const, area, 2I12 

7 Const, area, rain 

8 Const, area, S1085 

9 Const, area, evap 

10 Const, area, E85* 

11 Const, area, SL* 

12 Const, SL, rain 

13 Const, S1085, rain 

14 Const, E85, S1085 

15 Const, evap 

16 Const, rain, evap 

* E85 = Slope S1085 

* SL = Stream Length 

 

 

 

 

 

 

 

 

 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  139 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.2 Selection of predictor variables for the BGLS regression model for the mean 

flood (PRT, fixed region NT), MEV = model error variance, AVPO = average variance of 

prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information 

criterion, BIC = Bayesian information criterion 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure 4.7.3 Selection of predictor variables for the BGLS regression model for skew (R-sqd 

GLS uses right hand axis) 
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M =  4.40 + 0.61[ln(area) - 5.41] + 0.43[ln(rain) - 7.17]                                                    (4.7.1) 

stdev =  1.04                                                                                                                     (4.7.2) 

skew = - 0.90                                                                                                                    (4.7.3) 

 

The Pseudo Analysis of Variance (ANOVA) tables for the parameters of the LP3 distribution 

are presented in Tables 4.7.2 and 4.7.4. For the LP3 parameters, the sampling error 

increases as the order of moment increases, i.e. the EVR (sampling error to model error 

ratio) increases with the order of moments. The model error dominates the regional analysis 

for the mean flood and the standard deviation models; this is more pronounced for the mean 

flood model (0.09 compared to 0.28). The EVR value for the skew model is 12 (Table 4.7.4) 

which is much higher than that of the mean flood and standard deviation models. This 

indicates that the skew model is dominated by sampling error and in this case the GLS 

regression modeling framework should be the preferred. These results indicate, as found for 

NSW, Victoria, Tasmania and Queensland, that the mean flood shows greater levels of 

heterogeneity when compared to the standard deviation and skew models. 

 

Table 4.7.2 Pseudo ANOVA table for the mean flood model of the NT (PRT)  

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

26.0 

Model error  
n-k-1=47 

22.0 

Sampling error  
N = 51 

2.05 

Total 
2n-1 = 101 

50.05 

 
EVR 0.09 

 

Table 4.7.3 Pseudo ANOVA table for the standard deviation model of the NT (PRT)  

Source Degrees of Freedom Sum of Squares 

Model 
k=1 

0.0 

Model error  
n-k-1=49 

4.7 

Sampling error  
N = 51 

1.32 

Total 
2n-1 = 101 

5.98 

 
EVR 0.28 
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Table 4.7.4 Pseudo ANOVA table for the skew model of the NT (PRT)  

Source Degrees of Freedom Sum of Squares 

Model 
k=1 

0.0 

Model error  
n-k-1=49 

1.46 

Sampling error  
N = 51 

17.5 

Total 
2n-1 = 101 

18.99 

 
EVR 12.0 

 

The underlying model assumptions are examined (i.e. the normality of residuals), using the 

plots of the standardised residuals vs. predicted values. The predicted values were obtained 

from one-at-a-time cross validation. Figure 4.7.4 shows the plots for Q20 and Q50 estimated by 

PRT. It can be seen that most of the standardised residuals fall between the magnitudes of ± 

2, hence the underlying model assumptions are satisfied satisfactorily. The result in Figure 

4.7.4 reveals that the developed equations satisfy the normality of residual assumption quite 

satisfactorily. Also no specific pattern (heteroscedasicity) can be identified, with the 

standardised values being almost equally distributed below and above zero. Similar results 

were obtained for the mean, standard deviation, skew and other flood quantile models 

estimated by PRT. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.4 plots of standardised residuals vs. predicted values for ARI of 20 and 50 years 

(PRT, NT) 

 

The QQ-plots of the standardised residuals (Equation 4.2.13) vs. normal score (Equation 

4.2.14) for the one-at-a-time cross validation were examined. Figures 4.7.5 and 4.7.6 present 

the results for Q20, Q50 and the mean flood models, which show that most of the points 

closely follow a straight line, while some points also fall away from the line. This indicates 
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that the assumption of normality and the homogeneity of variance of the standardised 

residuals have been satisfied to some degree. The standardised residuals are approximately  

normally and independently distributed N(0,1) (with mean 0 and variance 1) as the slope of 

the best fit line in the QQ-plot, which can be interpreted as the standard deviation of the 

normal score (Z score) of the quantile, should approach 1 and the intercept, which is the 

mean of the normal score of the quantile should approach 0 as the number of sites 

increases. It can be observed from Figures 4.7.5 and 4.7.6 that the fitted lines for the 

developed models pass through the origin (0, 0) and have a slope approximately equal to 

one. Similar results were also found for the standard deviation and skew models and for 

other flood quantiles estimated from the PRT. 

 

 

 

 

 

 

 

 

 

 

Figure 4.7.5 QQ plot of the standardised residuals vs. Z score (ARI of 20 and 50 years, PRT) 

 

 

 

 

 

 

 

 

 

Figure 4.7.6 QQ plot of the standardised residuals vs. Z score for the mean flood model 

(PRT) for the NT 
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error variance (MEV) and average standard error of prediction (SEP) are much higher than 

those of the standard deviation and skew models. The large model error variance for the 

mean flood model indicates a higher degree of heterogeneity than the standard deviation and 

skew models; this result is in line with the ANOVA analysis and results for other Australian 

states. For the standard deviation and skew models, the SEP was 32% and 20% 

respectively, again indicating that both the standard deviation and skew may be regionalised 

more accurately than the mean flood. The R2GLS values for the standard deviation and 

skew models were 0%, as no variables were used, i.e. a regional average value is adopted. 

The regional average in this case is not the simple arithmetic average, but it is the regional 

average skew weighted by the error covariance matrix. 

 

Table 4.7.5 Regression diagnostics for fixed region analysis for NT 

Model Fixed region 

 
MEV AVP SEP (%) R2

GLS (%) 
 

Mean 
0.45 0.49 79 68 

Stdev 
0.093 0.097 32 0 

Skew 
0.029 0.040 20 0 

 

Table 4.7.6 presents the values of root mean square error (RMSE) (Equation 4.2.16) and 

relative error (RE) (Equation 4.2.15) for the quantiles estimated by the PRT. In terms of 

RMSE, the 2 years ARI shows the highest value. The smallest value is found for the 100-

year ARI. The RE values range from 36% to 54%, the smallest value being for the 5 years 

ARI. Again, the RE values are considered to be in a reasonable range for the ARIs 

considered in this study and compare reasonably well with the other Australian states. 

 

Table 4.7.7 shows the results of counting the Qpred/Qobs ratios for the PRT method. There are 

on average 75% of cases in the desirable estimation range. The cases for overestimation on 

average are 7%, while the underestimation is 18% on average. 
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Table 4.7.6 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for NT 

Model RMSE (%) RE (%) 
 PRT PRT 

Q2 20 42 
Q5 16 36 
Q10 13 39 
Q20 11 42 
Q50 9 48 
Q100 8 54 

 

 

Table 4.7.7 Summary of counts based on Qpred/Qobs ratio values for PRT for NT (fixed 

region). “U” = gross underestimation, “D” = desirable range and “O” = gross overestimation  

 

Model Count (PRT) Percent 
(PRT) 

U D O U D O 
Q2 7 39 5 14 76 10 
Q5 7 39 5 14 76 10 
Q10 7 41 3 14 80 6 
Q20 8 40 3 16 78 6 
Q50 11 37 3 22 73 6 
Q100 14 35 2 27 69 4 

Sum / 
average 54 231 21 18 75 7 
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4.8 Results for Western Australia 

 

The WA was divided into three distinct regions in consultation with the WA state team. This 

was done since WA is too large and there are concentrations of stream gauging stations in 

three parts of WA, which are separated by long distances. These three regions are: 

 

Kimberley region: 14 stations (top part of WA from Drainage Division VIII) 

Pilbara region: 12 stations (middle western part of WA, Drainage Division VII) 

South-west WA: 120 stations (Drainage Division VI) 

 

The locations of these stations can be seen in Figure 2.17 and their details can be found in 

Appendix. The RFFA methods are developed separately for each of these three regions, as 

detailed below. 

 

 

4.8.1 Kimberley region 

 

A total of 14 catchments were used from the Kimberley region. The annual maximum flood 

series record lengths of these 14 stations range from 23 to 42 years (mean 33 years, median 

31 years and standard deviation 6 years). The catchment areas of these 14 stations range 

from 30.6 to 7405.70 km2 (mean 1739 km2, median 701 km2 and standard deviation of 2343 

km2).  

 

A fixed region approach was considered, due to the small number of stations in the region, 

i.e. all the 14 catchments are considered to have formed one region. One catchment at a 

time was left out for cross-validation; the procedure was repeated 14 times so that each of 

the 14 catchments is tested independently. No region-of-influence (ROI) approach was used 

for the Kimberley region. 

 

Table 4.8.1 shows different combinations of predictor variables for the Q10 QRT model and 

for models of the first three moments of the LP3 distribution. Figures 4.8.1 and 4.8.2 show 

example plots of the statistics used in selecting the best set of predictor variables for the Q10 

flood quantile and the skew. The model error variance shows that combinations 3, 4, 5, 6, 7 

and 8 are the top potential sets of predictor variables for the Q10 model. All these 

combinations did not differ greatly in model error variance and R2
GLS values. The AVPO, 

AVPN, AIC and BIC were also very similar. In this case combination 6 with variables area 
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and 2I12 was adopted, similar to most other Australian states. It was also found that the 

variable 2I12 was significant in the regression analysis, with the regression coefficient being 

greater than three times the posterior standard deviation away from zero.  

 

For the skew model, combination 1 with no explanatory variable had the lowest model error 

variance of 0.0858. The AVPO and AVPN values were also lowest with combination 1 (see 

Figure 4.8.2). There is enough evidence to stay with combination 1 (it may be argued that a 

regional average skew maybe applicable), as the increase in R2
GLS value for combination 7 

was insignificant. Also the variables with combination 7 are not highly significant as the 

regression coefficients with both area and rain were less than two standard deviations away 

from zero. In this case, combination 1 was adopted. A similar outcome was obtained for the 

standard deviation model. 

 

A similar procedure as discussed above was adopted in selecting the best set of predictor 

values for other models with the QRT and PRT. The set of predictor variables selected as 

above were used in the one-at-a-time cross validation approach. 

 

To assess statistical significance of the variables, the BPV values for the regression 

coefficients were calculated. For the QRT (for all the ARIs) the BPV values were smaller than 

0.000 and 1% for area and rainfall intensity (2I12) respectively. Hence, the inclusion of 

predictor variables area and rainfall intensity in the prediction equations for the QRT was 

justified. Regression equations developed for the QRT and PRT for the fixed region are given 

by Equations 4.8.1 to 4.8.9.  
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Table 4.8.1 Different combinations of predictor variables considered for the QRT models and 

the parameters of the LP3 distribution (QRT and PRT fixed region, Kimberley region WA) 

Combination Combinations for mean, standard deviation, 

skew and Flood Quantile Models 

1 Const 

2 Const, area 

3 Const, area, (2I1) 

4 Const, area, (50I1) 

5 Const, area, (50I12) 

6 Const, area, (2I12) 

7 Const, area, rain 

8 Const, area, evap 

9 Const,  rain 

10 Const, rain, evap 

11 Const, evap 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.1 Selection of predictor variables for the BGLS regression model for Q10 (QRT, 

fixed region, Kimberley region WA), MEV = model error variance, AVPO = average variance 

of prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information 

criterion, BIC = Bayesian information criterio 
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Figure 4.8.2 Selection of predictor variables for the BGLS regression model for skew 

 

Equations for QRT: 

ln(Q2) = 5.93 + 0.48[ln(area) - 6.46] + 0.93[ln(I12,2) - 1.87]                                            (4.8.1) 

ln(Q5) = 6.71 + 0.53[ln(area) - 6.46] + 1.44[ln(I12,2) - 1.87]                                            (4.8.2) 

ln(Q10) = 7.09 + 0.56[ln(area) - 6.46] + 1.66[ln(I12,2) - 1.87]                                           (4.8.3) 

ln(Q20) = 7.39 + 0.57[ln(area) - 6.46] + 1.83[ln(I12,2) - 1.87]                                           (4.8.4) 

ln(Q50) = 7.72 + 0.59[ln(area) - 6.46] + 1.98[ln(I12,2) - 1.87]                                           (4.8.5) 

ln(Q100) = 7.94 + 0.60[ln(area) - 6.46] + 2.08[ln(I12,2) - 1.87]                                           (4.8.6) 

 

Equations for PRT: 

M = 5.79 + 0.48[ln(area) - 6.46] + 0.75[ln(I12,2) - 1.87]                                                  (4.8.7) 

stdev = 1.05                                                                                                                   (4.8.8) 

skew = - 0.88                                                                                                                  (4.8.9) 

 

The Pseudo Analysis of Variance (ANOVA) tables for the Q2, Q20 and Q100 models and the 

parameters of the LP3 distribution are presented in Tables 4.8.2 and 4.8.7. 

 

For the LP3 parameters, the sampling error increases as the order of moment increases i.e. 

the EVR (sampling error to model error ratio) increases with the order of the moment. The 

model error dominates the regional analysis for the mean flood and the standard deviation 

models; this is more pronounced for the mean flood model (EVR = 0.46 compared to EVR = 
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0.95, mean and standard deviation repectively). However these results also indicate that the 

sampling error has had a slight effect on the analysis, as the EVR values are larger than 0.2. 

The EVR value for the skew model is 4.0 (Table 4.8.7) which is much higher than that of the 

mean flood and standard deviation models. The GLS regression modeling framework in this 

case has performed quite well in the estimation of the parameters of the LP3 distribution. It 

should be remembered, however, that there are only 14 stations in this region, thus the 

sampling error might be overestimated in this case.  

 

Pseudo ANOVA tables were also prepared for the flood quantile models. Tables 4.8.2 to 

4.8.4 show the results for the Q2, Q20 and Q100 models, respectively. What is clear is that the 

model errors are relatively high. The Q2 model has shown the highest heterogeneity in this 

case (EVR = 0.42). The Q100 model shows the highest EVR, as expected (EVR = 0.90). 

 

Table 4.8.2 Pseudo ANOVA table for Q2 model of Kimberley Region WA (QRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

n )( 22

0    = 6.4 

Model error  
n-k-1=10 

n )( 2

 = 1.0 

Sampling error  
N = 14 

)]ˆ([ ytr   = 0.4 

Total 
2n-1 = 27 

Sum of the above = 7.8 

 EVR 0.42 

 

Table 4.8.3 Pseudo ANOVA table for Q20 model of Kimberley Region WA (QRT)  

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

8.25 

Model error  
n-k-1=10 

0.8 

Sampling error  
N = 14 

0.6 

Total 
2n-1 = 27 

9.7 

 EVR 
0.75 
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Table 4.8.4 Pseudo ANOVA table for Q100 model of Kimberley Region WA (QRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

8.6 

Model error  
n-k-1=10 

0.9 

Sampling error  
N = 14 

0.8 

Total 
2n-1 = 27 

10.4 

 EVR 
0.90 

 

Table 4.8.5 Pseudo ANOVA table for mean flood model of Kimberley Region WA (PRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

6.2 

Model error  
n-k-1=10 

1.0 

Sampling error  
N = 14 

0.48 

Total 
2n-1 = 27 

7.7 

 
EVR 0.46 

 

 

Table 4.8.6 Pseudo ANOVA table for standard deviation model, Kimberley Region WA (PRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=1 

0.0 

Model error  
n-k-1=12 

0.5 

Sampling error  
N = 14 

0.35 

Total 
2n-1 = 27 

0.89 

 
EVR 0.65 

 

 

Table 4.8.7 Pseudo ANOVA table for skew model of Kimberley Region WA (PRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=1 

0.0 

Model error  
n-k-1=12 

1.16 

Sampling error  
N = 14 

4.6 

Total 
2n-1 = 27 

5.8 

 
EVR 4.0 
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The underlying model assumptions are examined (i.e. the normality of residuals), using the 

plots of the standardised residuals vs. predicted values (see below). The predicted values 

were obtained from one-at-a-time cross validation. Figures 4.8.3 and 4.8.4 show the plots for 

Q20 and Q100. It can be seen that most of the standardised residuals fall between the 

magnitudes of ± 2 for Q20 and Q100 respectively, hence the underlying model assumptions are 

satisfied satisfactorily for both QRT and PRT. Also no specific trend can be identified, with 

the standardised values being almost equally distributed below and above zero. Similar 

results were obtained for the mean, standard deviation, skew and other flood quantile 

models. 

 

 

 

 

 

 

 

 

 

Figure 4.8.3 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, Kimberley Region, WA) 

 

 

 

 

 

 

 

 

 

Figure 4.8.4 plots of standardised residuals vs. predicted values for ARI of 100 years (QRT 

and PRT, Kimberley Region, WA) 
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The summary of various regression diagnostics (the relevant equations are described in 

Section 4.2.2) is provided in Table 4.8.8. One can see from Table 4.8.8 that the SEP values 

for all the flood quanitle models ranged from 31% to 33%, which are quite reasonable as 

compared to the other Australian states/regions. While the sampling error has had a slight 

impact on the analysis (see ANOVA results), the moderately large model errors have still 

dominated the regional analysis; this has been reflected in the moderately high AVPs and 

SEPs (see Table 4.8.8). The lowest SEP was found for the ARIs of 5, 10 and 20 years. The 

highest R2GLS value was found for the 20 and 50 years ARIs (93%). Overall, the R2GLS 

values obtained (88% to 93%) seem to be relatively high when compared to the other states 

of Australia. In saying this, however, it must be kept in mind that the analysis has been 

undertaken on a small sample with only 14 stations; thus little confidence can be placed on 

the above statistics. 

 

Table 4.8.8 Regression diagnostics for fixed region analysis for Kimberly (14 stations) 

Model Fixed region 

 
MEV AVP SEP (%) R2

GLS (%) 
 

Q2 0.076 0.10 33 88 
Q5 0.069 0.093 31 91 
Q10 0.066 0.091 31 92 
Q20 0.063 0.091 31 93 
Q50 0.066 0.097 32 93 
Q100 0.071 0.11 33 92 

 

Table 4.8.9 presents the root mean square error (RMSE) (Equation 4.2.16) and relative error 

(RE) (Equation 4.2.15) values for the PRT and QRT models. In terms of RMSE, PRT over all 

the ARIs provides negligibly higher values as compared to QRT (A difference of 0.1% to 

0.9% over all the ARIs). In terms of RE, PRT gives 1 to 4% smaller values than the QRT, 

except for the 100-year ARI, where QRT is smaller by 3%. Overall it can be seen that QRT 

and PRT perform similarly over all the ARIs considered here. 

 

Table 4.8.10 shows the results of counting the Qpred/Qobs ratios for the QRT and PRT. The 

use of this ratio has been discussed in Section 4.2.4. There are more desirable cases on 

average for the QRT than the PRT, i.e. 95% vs. 87%. The PRT and QRT on average show 

similar gross underestimation (i.e. 6% and 4%, PRT and QRT respectively). The PRT shows 

slightly more cases of overestimation on average as compared to QRT (7% and 1% for PRT 
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and QRT respectively). Overll, there are only modest differences between the performances 

of the QRT and PRT (similar to other states). 

 

Table 4.8.9 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for the 

Kimberley Region, WA 

Model RMSE (%) RE (%) 
 PRT QRT PRT QRT 
 Fixed region 

 
Fixed region 

 
Fixed region 

 
Fixed region 

 
Q2 4.3 4.2 22 23 
Q5 4.6 3.7 20 22 
Q10 4.4 3.5 18 21 
Q20 4.3 3.4 21 25 
Q50 4.3 3.6 30 33 
Q100 4.4 3.8 38 35 

 

 
Table 4.8.10 Summary of counts based on Qpred/Qobs ratio values for QRT and PRT for 

Kimberley Region, WA (fixed region). “U” = gross underestimation, “D” = desirable range and 

“O” = gross overestimation  

 

Model Count (QRT) Percent 
(QRT) 

Count (PRT) Percent 
(PRT) 

U D O U D O U D O U D O 
Q2 0 13 1 0 93 7 0 13 1 0 93 7 
Q5 1 13 0 7 93 0 1 12 1 7 86 7 
Q10 1 13 0 7 93 0 1 12 1 7 86 7 
Q20 1 13 0 7 93 0 1 12 1 7 86 7 
Q50 0 14 0 0 100 0 1 12 1 7 86 7 
Q100 0 14 0 0 100 0 1 12 1 7 86 7 

Sum / 
average 3 80 1 4 95 1 5 73 6 6 87 7 
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4.8.2 Pilbara region 

 

A total of 12 catchments were used from the Pilbara region (details can be found in the 

Appendix). The annual maximum flood series record lengths of these 12 stations range from 

20 to 34 years (mean 28 years, median 28 years and standard deviation 4.5 years). The 

catchment areas of these 12 stations range from 0.1 to 1000 km2 (mean 347 km2, median 

205 km2 and standard deviation of 366 km2).  

 

A fixed region approach was considered due to the small number of stations in the region, 

i.e. all the 12 catchments are considered to have formed one region. One catchment at a 

time was left out for cross-validation; the procedure was repeated for 12 times so that each 

of the 12 catchments is tested independently. No region-of-influence (ROI) approach was 

used for the Pilbara region. 

 

Table 4.8.11 shows different combinations of predictor variables for the Q10 QRT model and 

the models of the first three moments of the LP3 distribution. Figures 4.8.5 and 4.8.6 show 

example plots of the statistics used in selecting the best set of predictor variables for the Q10 

flood quantile and the skew. The model error variance shows that combinations 11, 3, 4 and 

25 are the top 4 potential sets of predictor variables for the Q10 model. Combination 25 

contained 3 predictor variables, two of them being rainfall intensity. Combinations 11 (area 

and evap), 3 (area and rainfall intensity 2I1) and 4 (area and 2I12) were compared to 

combination 10 (area and Itc,10 ). Combinations 11, 4 and 3 clearly had smaller model error 

variances than combination 10; however the standard error of the model error variances did 

not differ greatly. Also there was no significant difference in the R2
GLS values over the three 

combinations. The AVPO, AVPN, AIC and BIC were the lowest with combination 11. In any 

case combination 4 with variables area and 2I12 was adopted as it contained the design 

rainfall intensity which is the most accurately estimated of all the basic design durations. 

 

For the skew model, combination 11 with two explanatory variables (area and sden) showed 

the lowest model error variance (0.080) and an R2
GLS value of 57%, while showing the lowest 

AIC and BIC. (see Figure 4.8.6). The next best combination was 12 with a slightly higher 

model error variance, with a R2
GLS value of 50%. Combination 1 with no explanatory variables 

had a model error variance of 0.085 which is comparable to combination 11. The AVPO and 

AVPN values were also smaller with combination 1 (see Figure 4.8.6). While there is enough 

evidence to stay with combination 1 (it may be argued that a regional average skew is 

applicable), the increase in R2
GLS value for combination 11 was significant. In this case 
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combination 11 was adopted. A similar outcome was obtained for the standard deviation 

model. 

 

A similar procedure, as discussed above, was adopted in selecting the best set of predictor 

values for other models with the QRT and PRT. The set of predictor variables selected as 

above were used in the one-at-a-time cross validation approach. 

 

To assess the statistical significance of the predictor variables, BPV values for the regression 

coefficients were calculated. For the QRT (for all the ARIs), the BPV values were 0% for area 

and rainfall intensity (2I12). Hence, the inclusion of these predictor variables is justified. The 

BPVs for the skew model were 30% and 8% for area and sden, respectively, indicating that 

area and sden may not be good predictors for skew in this case. The BPVs for the mean 

flood model were 0% for both the predictor variables (area and 2I12). For the standard 

deviation model, the BPVs for the predictor variables area and forest were 10%, indicating 

the potential of adopting a constant standard deviation, similar to other states. Regression 

equations developed for the QRT and PRT for the fixed region are given by Equations 4.8.10 

to 4.8.18.  
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Table 4.8.11 Different combinations of predictor variables considered for the QRT models 

and the parameters of the LP3 distribution (QRT and PRT fixed region: Pilbara region, WA) 

Combination Combinations for mean, standard 

deviation & skew models 

Combinations for flood quantile 

model 

1 Const Const 

2 Const, area Const, area 

3 Const, area, (2I1) Const, area, 2I1 

4 Const, area, (50I1) Const, area, 2I12 

5 Const, area, (2I12) Const, area, 50I1 

6 Const, area, (50I12) Const, area, 50I12 

7 Const, area, rain Const, area, rain 

8 Const, area, for Const, area, for 

9 Const, area, evap Const, area, forest, evap 

10 Const, area, S1085 Const, area, Itc,ARI 

11 Const, area, sden Const, area, evap 

12 Const, sden, rain Const, area, S1085 

13 Const, for, rain Const, area, sden 

14 Const, S1085, for Const, sden, rain 

15 Const, evap Const, for, rain 

16 Const, rain, evap Const, area, 50I12, rain  

17 - Const, area, 50I12, sden 

18 - Const, area, 50I12, rain, evap 

19 - Const, area, 50I12, Itc,ARI, evap 

20 - Const, area, 50I12, Itc,ARI, rain, 

evap 

21 - Const, area, 50I12, Itc,ARI, sden 

22 - Const, area, 50I12, Itc,ARI, S1085 

23 - Const, area, Itc,ARI, evap 

24 - Const, area, Itc,ARI, rain 

25 - Const, area, 2I1, Itc,ARI 
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Figure 4.8.5 Selection of predictor variables for the BGLS regression model for Q10 of Pilbara 

Region, WA (QRT, fixed region), MEV = model error variance, AVPO = average variance of 

prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information 

criterion, BIC = Bayesian information criterion 
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Figure 4.8.6 Selection of predictor variables for the BGLS regression model for skew 

 

Prediction equations for QRT: 

ln(Q2) = 2.66 + 0.51[ln(area) - 4.71] + 8.08[ln(I12,2) - 1.47]                                           (4.8.10) 

ln(Q5) = 3.90 + 0.48[ln(area) - 4.71] + 7.20[ln(I12,2) - 1.47]                                           (4.8.11) 

ln(Q10) = 4.51 + 0.45[ln(area) - 4.71] + 6.74[ln(I12,2) - 1.47]                                          (4.8.12) 

ln(Q20) = 5.01 + 0.44[ln(area) - 4.71] + 6.19[ln(I12,2) - 1.47]                                          (4.8.13) 

ln(Q50) = 5.59 + 0.41[ln(area) - 4.71] + 5.66[ln(I12,2) - 1.47]                                          (4.8.14) 

ln(Q100) = 5.87 + 0.39[ln(area) - 4.71] + 5.34[ln(I12,2) - 1.47]                                         (4.8.15) 

 

Prediction equations for PRT: 

M =  2.54 + 0.52[ln(area) - 4.71] + 8.08[ln(I12,2) - 1.47]                                                 (4.8.16) 

stdev =  1.45 + 0.10(zarea) + 0.07(zforest)                                                                  (4.8.17) 

skew = - 0.49 – 0.08(zarea) – 0.64(zsden)                                                                   (4.8.18) 

 

where z () is explained by Equation 4.3.10.  

 

It is reassuring to observe that the regression coefficients in the QRT set of equations vary in 

a regular fashion with increasing ARI. 

 

The Pseudo Analysis of Variance (ANOVA) tables for Q2, Q20 and Q100 models and the 

parameters of the LP3 distribution are presented in Tables 4.8.12 and 4.8.17. 
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For the LP3 parameters, the sampling error increases as the order of moment increases i.e. 

the EVR (sampling error to model error ratio) increases with the order of the moment. The 

model error dominates the regional analysis for the mean flood and the standard deviation 

models; this is more pronounced for the mean flood model (0.47 compared 0.68). However 

these results also indicate that the sampling error has had a slight effect on the analysis as 

the EVR values are larger than 0.2. The EVR value for the skew model is 4.2 (Table 4.8.17) 

which is much higher than that of the mean flood and standard deviation models. The GLS 

regression modeling framework in this case has performed quite well in the estimation of the 

parameters of the LP3 distribution. It should be remembered however that there is only 12 

stations in this region, thus the sampling error might be over estimated in this case.  

 

The pseudo ANOVA tables were also prepared for the flood quantile models. Tables 4.8.12 

and 4.8.14 show the results for Q2, Q20 and Q100 models, respectively. What is clear is that 

the model errors are relatively high as all the EVRs are below 0.5. The Q2 model has shown 

the highest heterogeneity in this case (i.e. EVR 0.39). The Q100 shows the highest EVR as 

expected. 

Table 4.8.12 Pseudo ANOVA table for Q2 model of Pilbara Region, WA (QRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

n )( 22

0    = 8.9 

Model error  
n-k-1=8 

n )( 2

 = 2.4 

Sampling error  
N = 12 

)]ˆ([ ytr   = 0.9 

Total 
2n-1 = 23 

Sum of the above = 12.2 

 EVR 0.39 

 

Table 4.8.13 Pseudo ANOVA table for Q20 model of Pilbara Region, WA (QRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

7.2 

Model error  
n-k-1=8 

3.5 

Sampling error  
N = 12 

1.6 

Total 
2n-1 = 23 

12.3 

 EVR 0.47 
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Table 4.8.14 Pseudo ANOVA table for Q100 model of Pilbara Region, WA (QRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

4.9 

Model error  
n-k-1=8 

5.1 

Sampling error  
N = 12 

2.5 

Total 
2n-1 = 23 

12.5 

 EVR 0.49 

 

Table 4.8.15 Pseudo ANOVA table for mean flood model of Pilbara Region, WA (PRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

9.2 

Model error  
n-k-1=8 

2.2 

Sampling error  
N = 12 

1 

Total 
2n-1 = 23 

12.4 

 
EVR 

0.47 

 

 

Table 4.8.16 Pseudo ANOVA table for standard deviation model: Pilbara Region, WA (PRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

0.4 

Model error  
n-k-1=8 

1.6 

Sampling error  
N = 12 

1.1 

Total 
2n-1 = 23 

3.1 

 
EVR 

0.68 

 

Table 4.8.17 Pseudo ANOVA table for skew model of Pilbara Region, WA (PRT) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

0.06 

Model error  
n-k-1=8 

0.96 

Sampling error  
N = 12 

4.1 

Total 
2n-1 = 23 

5.1 

 
EVR 

4.2 
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The underlying model assumptions are examined (i.e. the normality of residuals), using the 

plots of the standardised residuals vs. predicted values (see below). The predicted values 

were obtained from one-at-a-time cross validation. Figures 4.8.7 and 4.8.8 show the plots for 

Q20 and Q100. It can be seen that most of the standardised residuals fall between the 

magnitudes of ± 2 for Q20 and Q100 respectively, hence the underlying model assumptions are 

satisfied for both QRT and PRT. Also no specific pattern can be identified, with the 

standardised values being almost equally distributed below and above zero. Similar results 

were obtained for the mean, standard deviation, skew and other flood quantile models. 

 

 

 

 

 

 

 

 

 

Figure 4.8.8 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, Pilbara Region, WA) 

 

 

 

 

 

 

 

 

 

Figure 4.8.7 plots of standardised residuals vs. predicted values for ARI of 100 years (QRT 

and PRT, Pilbara Region, WA) 

 

The summary of various regression diagnostics (the relevant equations are described in 

Section 4.2.2) is provided in Table 4.8.18. This shows that for the mean flood model the 

model error variance (MEV) and average standard error of prediction (SEP) are relatively 

higher than those of the standard deviation and skew models. For the standard deviation and 
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skew models, the SEP was 43% and 45% respectively again indicating that both the 

standard deviation and skew may be regionalised more accurately than the mean flood. 

 

One can see from Table 4.8.18 that the SEP values for all the flood quanitle models ranged 

from 59% to 96%, which are quite large compared to the east coast of Australia. Again this 

indicates that the Pilbara region estimates are subject to greater uncertainty, due to the 

possible higher heterogeneity in the region. While the sampling error has had a slight impact 

on the analysis (see ANOVA results), the very large model errors have still dominated the 

regional analysis; this has been reflected in the very high AVPs and SEPs (see Table 

4.8.18). The lowest SEP was found for the ARI of 2 years which subsequently has the 

highest R2GLS value (94%). Overall the R2GLS values obtained (80% to 94%) seem to be 

reasonable, however it must be kept in mind that the analysis has been undertaken on only 

12 stations, thus little confidence can be placed on the above statistics (Table 4.8.18). 

 

Table 4.8.18 Regression diagnostics for fixed region analysis: Pilbara Region, WA (12 

stations) 

Model Fixed region 

 
MEV AVP SEP (%) R2

GLS (%) 
 

Mean 
0.18 0.25 54 95 

Stdev 
0.13 0.17 43 31 

Skew 
0.080 0.18 45 57 

Q2 0.22 0.30 59 94 
Q5 0.25 0.34 64 92 
Q10 0.27 0.38 68 91 
Q20 0.32 0.45 75 88 
Q50 0.40 0.56 87 84 
Q100 0.47 0.66 96 80 

 

 

Table 4.8.19 presents the root mean square error (RMSE) (Equation 4.2.16) and relative 

error (RE) (Equation 4.2.15) values for the PRT and QRT models. In terms of RMSE, PRT 

over all the ARIs provides relatively smaller values as compared to QRT. The best result was 

found for the 2-year ARI for QRT and PRT. In terms of RE, PRT gives 4 to 15% smaller 

values than the QRT. Overall it can be seen that PRT performs slightly better over all the 

ARIs. 
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Table 4.8.20 shows the results of counting the Qpred/Qobs ratios for the QRT and PRT. The 

use of this ratio has been discussed in Section 4.2.4. The desirable cases on average for the 

PRT and QRT are the same i.e. 86%. The PRT shows slightly more gross underestimation 

on average than the QRT (i.e. 6% and 3%, PRT and QRT respectively). The QRT shows 

more cases of overestimation on average as compared to PRT (11% and 7% for QRT and 

PRT respectively); however, these differences are relatively modest. 

 

Table 4.8.19 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for 

Pilbara Region, WA 

Model RMSE (%) RE (%) 
 PRT QRT PRT QRT 
 Fixed region 

 
Fixed region 

 
Fixed region 

 
Fixed region 

 
Q2 4.7 5.5 35 39 
Q5 5.6 5.7 25 40 
Q10 6.4 7.3 21 33 
Q20 6.6 7.4 24 34 
Q50 6.3 6.5 31 39 
Q100 5.9 7.1 36 41 

 

Table 4.8.20 Summary of counts based on Qpred/Qobs ratio values for QRT and PRT for 

Pilbara Region, WA (fixed region). “U” = gross underestimation, “D” = desirable range and 

“O” = gross overestimation  

 

Model Count (QRT) Percent 
(QRT) 

Count (PRT) Percent 
(PRT) 

U D O U D O U D O U D O 
Q2 0 10 2 0 83 17 0 12 0 0 100 0 
Q5 1 10 1 8 83 8 0 11 1 0 92 8 
Q10 1 10 1 8 83 8 1 10 1 8 83 8 
Q20 0 10 2 0 83 17 1 10 1 8 83 8 
Q50 0 11 1 0 92 8 1 10 1 8 83 8 
Q100 0 11 1 0 92 8 1 9 2 8 75 8 

Sum / 
average 2 62 8 3 86 11 4 62 5 6 86 7 
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4.8.3 South-west region of WA (Drainage Division VI) 

 

A total of 120 catchments were used from the south-west region of WA; these stations fall in 

Drainage Division VI (details can be found in the Appendix). This region has the best quality 

streamflow data, as well as a higher density of stations than the two other WA regions 

presented before. The annual maximum flood series record lengths of these 120 stations 

range from 20 to 56 years (mean 31 years, median 29 years and standard deviation 8 years). 

The catchment areas of these 120 stations range from 0.2 to 983 km2 (mean 156 km2, 

median 48 km2 and standard deviation of 235 km2).  

 

In the fixed region approach, all the 120 catchments were considered to have formed one 

region, however, one catchment was left out for cross-validation and the procedure was 

repeated 120 times to implement one-at-a-time cross validation. In the region-of-influence 

(ROI) approach, an optimum region was formed for each of the 120 catchments by drawing 

an appropriate number of neighbouring stations based on the minimum model error variance. 

 

Table 4.8.21 shows different combinations of predictor variables for the Q10 QRT model and 

the models for the first three moments of the LP3 distribution. Figure 4.8.8 and 4.8.9 show 

example plots of the statistics used in selecting the best set of predictor variables for the Q10 

and skew models. All the model error variances for the different combinations are quite high, 

indicating the high heterogeneity of this region. For the Q10 model, combinations 20 and 18 

have the lowest model error variances. However combinations 20 and 18 contained 4 to 5 

predictor variables which in practice would not be practical. What is clear is all the 

combinations had very similar R2
GLS values.  Combination 10 with 2 predictor variables (area 

and Itc,ARI) showed a smaller standard error of the model error variance as compared to the 

other combinations, indicating better accuracy with the model error variance estimate. The 

regression coefficients for the combination 10 variables were 4 and 5 times the posterior 

standard deviation away from zero, which was the best among all the combinations. The 

AVPO, AVPN, AIC and BIC values were not that different between combinations 20, 18 and 

10, hence combination 10 was finally selected as the best set of predictor variables for the 

Q10 mode, which includes area and design rainfall intensity Itc,10. 

 

For the skew model, combination 16 showed the lowest model error variance and the highest 

R2
GLS (see Figure 4.8.9) as well as the lowest AIC and BIC. Combination 1 without any 

explanatory variables showed higher AVPO and AVPN as compared to combination 16.  
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A similar procedure was adopted in selecting the best set of predictor values for other 

models with the QRT and PRT. The sets of predictor variables selected as above were used 

in the one-at-a-time cross validation (with fixed regions) and the region-of-influence (ROI) 

approach. 

 

The significance of the estimated regression coefficient values shown in Equations 4.8.19 to 

4.8.27 was evaluated using the Bayesian plausibility value (BPV). The BPVs for the 

regression coefficients associated with variables area and design rainfall intensity Itc,ARI for 

the QRT over all the ARIs ranged from 0% to 8%. The BPVs for the skew model were 2% 

and 1% for rain and evaporation, respectively, indicating that these are reasonably good 

predictors for skew in this application. The BPVs for the mean flood model were 0% and 1% 

for both the predictor variables respectively (area and 2I12). For the standard deviation model, 

the BPVs for the predictor variables area and 2I12 were greater than 10%, indicating that 

these variables are not good predictors of the standard deviation of annual maximum floods 

in this application.   

 

Regression equations developed for the QRT and PRT for the fixed region are given by 

Equations 4.8.19 to 4.8.27. 
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Table 4.8.21 Different combinations of predictor variables considered for the QRT models 

and the parameters of the LP3 distribution of the South-west Region of WA (QRT and PRT 

fixed region) 

Combination Combinations for mean, standard 

deviation & skew models 

Combinations for flood quantile 

model 

1 Const Const 

2 Const, area Const, area 

3 Const, area, 2I1 Const, area, 2I1 

4 Const, area, 50I1 Const, area, 2I12 

5 Const, area, 50I12 Const, area, 50I1 

6 Const, area, 2I12 Const, area, 50I12 

7 Const, area, rain Const, area, rain 

8 Const, area, forest Const, area, for 

9 Const, area, evap Const, area, forest, evap 

10 Const, area, sden Const, area, Itc,ARI 

11 Const, area, S1085 Const, area, evap 

12 Const, rain, S1085 Const, area, sden 

13 Const, forest, rain Const, area, S1085 

14 Const, sden, forest Const, sden, rain 

15 Const, evap Const, for, rain 

16 Const, rain, evap Const, area, 50I12, rain  

17 - Const, area, 50I12, S1085 

18 - Const, area, 50I12, rain, evap 

19 - Const, area, 50I12, Itc,ARI, evap 

20 - Const, area, 50I12, Itc,ARI, rain, 

evap 

21 - Const, area, 50I12, Itc,ARI, S1085 

22 - Const, area, 50I12, Itc,ARI, sden 

23 - Const, area, Itc,ARI, evap 

24 - Const, area, Itc,ARI, rain 

25 - Const, area, 2I1, Itc,ARI 
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Figure 4.8.8 Selection of predictor variables for the BGLS regression model for Q10 of the 

South-west Region of WA (QRT, fixed region), MEV = model error variance, AVPO = 

average variance of prediction (old), AVPN = average variance of prediction (new) AIC = 

Akaike information criterion, BIC = Bayesian information criterion 
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Figure 4.8.9 Selection of predictor variables for the BGLS regression model for skew 

 

Regression equations for the QRT method: 

 

ln(Q2) = 0.33 + 1.01(zarea) + 0.90(zItc,2)                                                                   (4.8.19) 

ln(Q5) =  1.07+ 1.02(zarea) + 0.79(zItc,5)                                                                   (4.8.20) 

ln(Q10) = 1.42 + 0.86(zarea) + 0.23(zItc,10)                                                                (4.8.21) 

ln(Q20) = 1.83 + 0.54(zarea) – 0.96(zItc,20)                                                                 (4.8.22) 
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ln(Q50) = 2.23 + 0.48(zarea) – 1.28(zItc,50)                                                                 (4.8.23) 

ln(Q100) = 2.47 + 0.48(zarea) – 1.35(zItc,100)                                                              (4.8.24) 

 

Regression equations for the PRT method: 

M = 0.32 + 0.82(zarea) + 1.19(zI12,2)                                                                         (4.8.25) 

stdev =  0.80 – 0.01(zarea) – 1.17(zI12,2)                                                                   (4.8.26) 

skew =  – 0.08 – 0.37(zrain) + 1.70(zevap)                                                               (4.8.27) 

 

where z () is explained in Equation 4.3.10.   

 

It is reassuring to observe that the regression coefficients in the QRT set of equations vary in 

a regular fashion with increasing ARI. 

 

The Pseudo Analysis of Variance (ANOVA) tables for the Q20 and Q100 models and the 

parameters of the LP3 distribution are presented in Tables 4.8.22 – 4.8.26 for the fixed 

regions and ROI. A Pseudo ANOVA presented here is an extension of the ANOVA in the 

OLS regression which does not recognize and correct for the expected sampling variance 

(Reis et al., 2005). 

 

For the LP3 parameters, the EVR (i.e. the sampling error) increases with the order of the 

moments. The ROI shows a reduced model error variance (i.e. a reduced heterogeneity) as 

compared to the fixed regions, if only just slightly. The model error has clearly dominated the 

regional analysis for the mean flood and the standard deviation models for both the fixed 

regions and ROI. This is more pronounced for the mean flood. The ROI shows a slightly 

higher EVR than the fixed regions, e.g. for the mean flood model the EVR is 0.04 for the ROI 

and 0.03 for the fixed region (Table 4.8.24). For the standard deviation model the increase in 

EVR is more pronounced for ROI (0.36) compared to 0.25 for the fixed region (Table 4.8.25). 

These results indicate that the mean flood has the greater level of heterogeneity associated 

with it compared to the standard deviation and skew.   

 

The EVR values for the skew model are 7 and 7.2 for the fixed regions and ROI respectively 

(Tables 4.8.26), which are much higher than the recommended limit of 0.20. This clearly 

indicates that the GLS regression is the preferred modeling choice for the skew model. An 

OLS model would have clearly given misleading results, as the sampling error has clearly 

dominated the regional analysis. As far as the ROI is concerned, there is little change in the 

EVR compared to the fixed region, as the skew model tends to include more stations in the 

regional analysis because of the low model error variance and higher sampling error. 
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Pseudo ANOVA tables were also prepared for the flood quantile models. Tables 4.8.22 and 

4.8.23 show the results for the Q20 and Q100 models, respectively. Here the ROI shows a 

slight improvement in EVR over the fixed region. 

 

Table 4.8.22 Pseudo ANOVA table for Q20 model of the South-west Region of WA  

(QRT, fixed region and ROI) 

 

Table 4.8.23 Pseudo ANOVA table for Q100 model of the South-west Region of WA  

(QRT, fixed region and ROI) 

 

 

Table 4.8.24 Pseudo ANOVA table for mean flood model of the South-west Region of WA 

(PRT, fixed region and ROI) 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI Equations Fixed 
region 

ROI 

Model k=3 k=3 n )( 22

0    =  23 23 

Model error  n-k-1=116 n-k-1=61 n )( 2

 =  25 67 

Sampling error  N = 120 N = 65 )]ˆ([ ytr   =  6.7 6 

Total 
2n-1 = 239 2n-1 = 130 

Sum of the 
above = 

114 95 

   EVR 0.08 0.10 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  14.6 14.6 

Model error  n-k-1=116 n-k-1=67  97 72 

Sampling error  N = 120 N = 71  10.5 9.3 

Total 
2n-1 = 239 2n-1 = 142 

Sum of the 
above = 

121 96 

   EVR 0.11 0.13 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  43 78 

Model error  n-k-1=116 n-k-1=38  105 71 

Sampling error  N = 120 N = 42  3.5 3 

Total 
2n-1 = 239 2n-1 = 84 

Sum of the 
above = 

151 151 

   EVR 0.03 0.04 
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Table 4.8.25 Pseudo ANOVA table for the standard deviation model of the South-west 

Region of WA (PRT, fixed region and ROI) 

 

 

Table 4.8.26 Pseudo ANOVA table for the skew model of the South-west Region of WA 

(PRT, fixed region and ROI) 

 

 

To assess the underlying model assumptions (i.e. the normality of residuals), the plots of 

standardised residuals vs. predicted values were examined. The predicted values were 

obtained from one-at-a-time cross validation. Figures 4.8.10 and 4.8.11 show the plots for 

the Q20 flood models with the fixed region and ROI. If the underlying model assumption is 

satisfied to a large extent, the standardised residual values should not be of greater 

magnitude than ± 2; in practice, 95% of the standardised residuals should fall between ± 2. 

The results in Figures 4.8.10 and 4.8.11 reveal that the developed equations satisfy the 

normality of residual assumption quite satisfactorily. Also no specific pattern 

(heteroscedasicity) can be identified, with the standardised values being almost equally 

distributed below and above zero. Similar results were obtained for the mean flood, skew, 

standard deviation and other flood quantile models. 

 

 

 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  0.13 2.9 

Model error  n-k-1=116 n-k-1=73  8.0 5.3 

Sampling error  N = 120 N = 77  2 1.9 

Total 
2n-1 = 239 2n-1 = 154 

Sum of the 
above = 

10 10 

   EVR 0.25 0.36 

Source Degrees of Freedom Sum of Squares 

 Fixed region ROI  Fixed 
region 

ROI 

Model k=3 k=3  2.6 3.3 

Model error  n-k-1=116 n-k-1=93  4.8 4.2 

Sampling error  N = 120 N = 97  34 30 

Total 
2n-1 = 239 2n-1 = 184 

Sum of the 
above = 

41 38 

   EVR 7 7.2 
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Figure 4.8.10 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, fixed region, WA– south-west region) 

 

 

 

 

 

 

 

 

Figure 4.8.11 plots of standardised residuals vs. predicted values for ARI of 20 years (QRT 

and PRT, ROI, WA– south-west region) 

 

The QQ-plots of the standardised residuals (Equation 4.2.13) vs. normal score (Equation 

4.2.14) for the fixed region (based on one-at-a-time cross validation) and ROI were 

examined. Figures 4.8.12 to 4.8.14 present results for the Q20 and skew models, which show 

that all the points closely follow a straight line. This indicates that the assumption of normality 

and the homogeneity of variance of the standardised residuals have largely been satisfied. If 

the standardised residuals are indeed normally and independently distributed N(0,1) with 

mean 0 and variance 1, then the slope of the best fit line in the QQ-plot, which can be 

interpreted as the standard deviation of the normal score (Z score) of the quantile, should 

approach 1 and the intercept, which is the mean of the normal score of the quantile should 

approach 0 as the number of sites increases. Figures 4.8.12 to 4.8.14 indeed show that the 

fitted lines for the developed models pass through the origin (0, 0) and have a slope 

approximately equal to one. The ROI approach approximates the normality of the residuals 
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slightly better (i.e. a better match with the fitted line) than the fixed region approach. Similar 

results were also found for the mean, standard deviation and other flood quantile models.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8.12 QQ plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, fixed region, WA– south-west region) 

 

 

 

 

 

 

 

 

 

Figure 4.8.13 QQ plot of the standardised residuals vs. Z score for the skew model (PRT, 

fixed region, ROI, WA – south-west region) 
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Figure 4.8.14 QQ plot of the standardised residuals vs. Z score for ARI of 20 years (QRT and 

PRT, ROI, WA– south-west region) 

 

The summary of various regression diagnostics (the relevant equations are described in 

Section 4.2.2) is provided in Table 4.8.27. This shows that for the mean flood model the 

model error variance (MEV) and average standard error of prediction (SEP) are much higher 

than those of the standard deviation and skew models, as expected. For the mean flood 

model, the ROI shows smaller model error variance than the fixed region. Also, the R2GLS 

value for the mean flood model with the ROI is 2% higher than the fixed region. These 

indicate that the ROI should be preferred over the fixed region for developing the mean flood 

model. For the standard deviation model, ROI shows no difference in SEP, while a 2% 

increase in R2GLS is gained. The SEP and R2GLS values for the skew model are the same 

for the fixed region and ROI, as the number of sites in the skew model is nearly all the sites 

in the region (i.e. 97 from 120 sites). There was also no notable difference in the model error 

and sampling error variances. 

 

Interestingly one can see from Table 4.8.27 that the SEP values for all the flood quanitle 

models are 16% to 24% smaller for the ROI cases than the fixed region, the lowest SEP% 

results being for the 10 and 20 years ARIs. The R2GLS values for ROI cases are much the 

same as the fixed region ones. These show that the ROI approach performs better than the 

fixed region approach in terms of reducing the SEP% in estimates (i.e. heterogeneity). 
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Table 4.8.27 Regression diagnostics for fixed region and ROI for WA– south-west region 

Model Fixed region ROI 

 
MEV AVP SEP (%) R2

GLS (%) 
 MEV AVP SEP (%) R2

GLS (%) 
Mean 

0.88 0.91 122 80 0.59 0.66 96 82 
Stdev 

0.050 0.052 23 65 0.044 0.056 23 67 
Skew 

0.041 0.048 22 42 0.035 0.045 22 42 
Q2 0.90 0.92 123 80 0.61 0.68 99 81 

Q5 0.80 0.82 113 82 0.56 0.61 92 83 

Q10 0.73 0.75 106 82 0.55 0.59 89 82 

Q20 0.71 0.74 105 82 0.55 0.59 89 82 

Q50 0.76 0.79 110 81 0.58 0.62 93 82 

Q100 0.81 0.84 115 80 0.60 0.65 96 81 

 

 

Table 4.8.28 shows number of sites and associated model error variances for the ROI and 

fixed region models. This shows that the ROI mean flood model has fewer sites (42 out of 

120 i.e. 35%) than the standard deviation and skew models. The ROI skew model has the 

highest number of sites, which includes nearly all the sites in WA. The model error variance 

for the fixed region mean flood model is 33% higher than the corresponding ROI model. The 

model error variances for all the ROI models are smaller than the fixed region models. This 

shows that the fixed region models experience a greater heterogeneity than the ROI. If the 

fixed regions are made too large, the model error will be inflated by heterogeneity 

unaccounted for by the catchment characteristics. Figure 4.8.15 shows the resulting spatial 

variation in the mean flood for the minimum model error variances from the ROI analysis. 

The significance of this finding is that if sub-regions do exist, they are most likely to be 

captured by the ROI. Interestingly enough, these spatial variations compare well to the 

regions formed for the south west WA region in ARR 1987. This may allow for more efficient 

design flood estimation based on local information surrounding the ungauged catchment in 

question. 
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Table 4.8.28 Model error variances associated with fixed region and ROI for WA – south-

west region (n = number of sites of the parameters and flood quantiles 

 

Parameter/ 
Quantiles 

Mean Stdev Skew Q2 Q5 Q10 Q20 Q50 Q100 

ROI (n)  
 2ˆ

  
42     

0.59 
77 

0.044 
97  

0.035 
37 

0.61 
51  

0.56  
62  

0.55 
65  

0.55 
67  

0.58  
71  

0.60  
Fixed 
region (n) 

2ˆ
  

120  
0.88      

120  
0.050  

120  
0.041  

120  
0.90  

120  
0.80  

120  
0.73  

120 
 0.71  

120  
0.76  

120  
0.81  

 
 

 

 

 

Figure 4.8.15 Binned minimum model error variance for the mean flood model 
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Table 4.8.29 presents the root mean square error (RMSE) (Equation 4.2.16) and relative 

error (RE) (Equation 4.2.15) values for the PRT and QRT models with both the fixed region 

and ROI. In terms of RMSE, ROI always gives smaller values than the fixed regions for all 

the ARIs. The QRT-ROI shows smaller RMSE values (2% to 9%) than the PRT-ROI for all 

the ARIs. In terms of RE, ROI gives 0 to 9% smaller values than the fixed regions. The QRT-

ROI gives smaller values of RE (by 2% to 3%) for ARIs of 2 and 5 years than the PRT-ROI. 

For the 10-year ARI, both QRT-ROI and PRT-ROI perform very similarly. However, for ARIs 

of 20 to 100 years, the PRT-ROI gives smaller RE values (by 2% to 6%) than the QRT-ROI. 

These results show that there are only modest differences between the performances of the 

QRT and PRT.  

 

Table 4.8.30 shows the results of counting the Qpred/Qobs ratios for the QRT and PRT ROI. 

The use of this ratio has been discussed in Section 4.2.4. There are slightly more desirable 

cases for the PRT on average (PRT 62% and QRT 61%). The QRT method shows gross 

underestimation with a greater number of cases, on average i.e. 24% for QRT as compared 

to 20% for PRT. There is also slightly more gross overestimation on average with the PRT 

(i.e. 19% for PRT and 15% for QRT). 

 

Table 4.8.29 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for the 

South-west Region of WA 

Model RMSE (%) RE (%) 
 PRT QRT PRT QRT 
 Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI Fixed 

region 
ROI 

Q2 30 19 34 15 46 46 46 43 

Q5 28 17 28 8 51 44 43 41 

Q10 23 15 23 10 50 41 43 41 

Q20 22 15 23 12 52 43 52 49 

Q50 19 14 22 12 52 47 54 50 

Q100 16 13 19 10 54 51 60 53 
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Table 4.8.30 Summary of counts based on Qpred/Qobs ratio values for QRT and PRT for the 

South-west Region of WA (ROI). “U” = gross underestimation, “D” = desirable range and “O” 

= gross overestimation  

 

Model Count (QRT) Percent 
(QRT) 

Count (PRT) Percent 
(PRT) 

U A O U A O U A O U A O 
Q2 25 65 30 21 54 25 19 72 29 16 60 24 
Q5 29 79 12 24 66 10 23 74 23 19 62 19 
Q10 33 71 16 28 59 13 26 74 20 22 62 17 
Q20 28 76 16 23 63 13 25 75 20 21 63 17 
Q50 29 75 16 24 63 13 25 75 20 21 63 17 
Q100 31 74 15 26 62 13 25 73 22 21 61 18 

Sum / 
average 175 440 105 24 61 15 143 443 134 20 62 19 
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4.9 Results from South Australia 

 

4.9.1 Preliminary investigation by SA team 

 

The SA team developed preliminary prediction equations for SA using GLS regression. 

These equations contained two predictor variables, catchment area (AREA) and design 

rainfall intensity as shown in Table 4.9.1. The R2 values of these equations range from 0.30 

to 0.42, which appear to be quite low as compared to other Australian states.  

 
Table 4.9.1 Preliminary regional prediction equations developed for SA by SA team (Hewa et 

al. ) (Here area is catchment area in km2 and I is design rainfall intensity in mm/h for various 

ARIs and durations) 

 

Model R2 Adjusted R2 

Q100 = 0.69(area) + 7.58 (100I24) 0.42 0.36 

Q50 = 0.53(area) + 12.68 (50I48) 0.42 0.35 

Q20 = 0.36(area) + 8.04 (20I24) 0.43 0.37 

Q10 = 0.25(area) + 8.24 (10I24) 0.40 0.32 

Q5 = 0.17(area) + 4.47 (5I12) 0.38 0.31 

Q2 = 0.065(area) + 3.3 (2I12) 0.30 0.20 

 

 

4.9.2 Development of RFFA method for SA by UWS team 

 

For the SA stations, an LP3-Bayesian parameter fitting procedure (FLIKE) was applied 

similar to other Australian states to estimate flood quantiles for ARIs of 2 to 100 years. Out of 

the 30 catchments, one catchment was located far north and was removed from this data set 

and was placed in the SA arid-region. These catchments are listed in Table A3 in the 

appendix. The locations of these catchments are shown in Figure 2.8. The annual maximum 

flood series record lengths of these 29 stations range from 17 to 67 years (mean 35 years, 

median 34 years and standard deviation 10 years). The catchment areas of these 29 stations 

range from 0.6 to 708 km2 (mean 170 km2, median 77 km2 and standard deviation of 202 

km2).  

 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  180 

The Bayesian GLS regression was adopted to develop the prediction equations based on the 

Parameter Regression Technique (PRT). A fixed region approach was used to form the 

region where all the 29 catchments were considered to have formed one region, however, 

one catchment was left out for cross-validation and the procedure was repeated 29 times to 

implement the one-at-a-time cross validation. No region-of-influence (ROI) approach was 

used for SA as the sample size was too small to apply the ROI approach. 

 

Table 4.9.2 shows different possible combination of predictor variables for the first three 

moments of the LP3 distribution. Figures 4.9.1 and 4.9.2 show example plots of the statistics 

used in selecting the best set of predictor variables for the mean flood and the skew models. 

According to the model error variance, combinations 4 and 6 (with catchment area and 

design rainfall intensities) were the top 2 potential sets of predictor variables for the mean 

flood model. Combinations 4 and 6 showed no significant difference in R2
GLS. The AVPO, 

AVPN, AIC and BIC for combinations 4 and 6 were very comparable. The regression 

coefficients for both the intensities (50I1 and 
2I12) were approximately 4 times the posterior 

standard deviation away from zero. Finally combination 6 (area and 2I12) was selected to be 

consistent with other Australian states. 

 

For the skew model, combination 1 with no explanatory variables showed one of the lowest 

model error variances (0.037) and the lowest AVPO and AVPN. (see Figure 4.9.2). The next 

best combination was 15 with a slightly smaller model error variance; however the R2
GLS was 

very poor (< 14%). Therefore there was enough evidence to stay with combination 1 as the 

other models did not show major improvement in model error variance with the additional 

explanatory variables. In this case given the relatively small differences in the model error 

variance, it may be argued that a regional average skew is applicable for SA. A similar 

outcome was obtained for the standard deviation model. 

 

The set of predictor variables selected as above were used in the one-at-a-time cross 

validation approach. The BPVs for the mean model were 0% for both the predictor variables 

area and 2I12. Regression equations developed for the PRT for the fixed region are given by 

Equations 4.9.1 to 4.9.3. 
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Table 4.9.2 Different combinations of predictor variables considered for the  parameters of 

the LP3 distribution (PRT fixed region SA) 

Combination Combinations for mean, 

standard deviation & skew 

models 

1 Const 

2 Const, area 

3 Const, area, 2I1 

4 Const, area, 50I1 

5 Const, area, 50I12 

6 Const, area, 2I12 

7 Const, area, rain 

8 Const, area, SL* 

9 Const, area, evap 

10 Const, area, sden 

11 Const, area, S1085 

12 Const, S1085, rain 

13 Const, SL, rain 

14 Const, sden, SL 

15 Const, evap 

16 Const, rain, evap 

* SL = Stream length 
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Figure 4.9.1 Selection of predictor variables for the BGLS regression model for the mean 

model (PRT, fixed region SA), MEV = model error variance, AVPO = average variance of 

prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information 

criterion, BIC = Bayesian information criterion 

 

 

  

 

 

 

 

 

 

 

 

Figure 4.9.2 Selection of predictor variables for the BGLS regression model for skew (R-sqd 

GLS uses right hand axis) 
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The developed prediction equations are: 

M = 1.40 + 1.15[ln(area) - 4.14] + 5.75[ln(I12,2) - 1.26]                       (4.9.1) 

stdev = 1.36                                                                                                                   (4.9.2) 

skew = - 0.75                                                                                                                 (4.9.3) 

 

The Pseudo Analysis of Variance (ANOVA) tables for the parameters of the LP3 distribution 

are presented in Tables 4.9.3 to 4.9.5. For the LP3 parameters, the sampling error increases 

as the order of moment increases i.e. the EVR (sampling error to model error ratio) increases 

with the order of moments. The model error dominates the regional analysis for the mean 

flood and the standard deviation models; this is more pronounced for the mean flood model 

(0.09 compared to 0.18). The EVR value for the skew model is 8.4 (Table 4.9.4) which is 

much higher than that of the mean flood and standard deviation models. This indicates that 

the skew model is dominated by sampling error and in this case the GLS regression 

modeling framework should be the preferred. These results indicate as found for all the 

Australian states that the mean flood shows greater levels of heterogeneity when compared 

to the standard deviation and skew models. 

 

Table 4.9.3 Pseudo ANOVA table for the mean flood model (PRT, SA) 

Source Degrees of Freedom Sum of Squares 

Model 
k=3 

5.0 

Model error  
n-k-1=25 

21.8 

Sampling error  
N = 29 

2.02 

Total 
2n-1 =57 

28.8 

 
EVR 0.09 

 

Table 4.9.4 Pseudo ANOVA table for the standard deviation model (PRT, SA) 

Source Degrees of Freedom Sum of Squares 

Model 
k=1 

0.0 

Model error  
n-k-1=27 

13.1 

Sampling error  
N = 29 

2.32 

Total 
2n-1 = 57 

15.4 

 
EVR 0.18 
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Table 4.9.5 Pseudo ANOVA table for the skew model (PRT, SA) 

Source Degrees of Freedom Sum of Squares 

Model 
k=1 

0.0 

Model error  
n-k-1=27 

1.07 

Sampling error  
N = 29 

9.0 

Total 
2n-1 = 57 

10.1 

 
EVR 8.4 

 

 

The underlying model assumptions are examined (i.e. the normality of residuals) using the 

plots of the standardised residuals vs. predicted values. The predicted values were obtained 

from one-at-a-time cross validation. Figure 4.9.3 shows the plots for the Q20 and Q50 

estimated by the PRT. It can be seen that most of the standardised residuals fall between the 

magnitudes of ± 2, hence the underlying model assumptions are satisfied satisfactorily. Also 

no specific pattern (heteroscedasicity) can be identified with the standardised values being 

almost equally distributed below and above zero. Similar results were obtained for the mean, 

standard deviation, skew and other flood quantiles estimated by the PRT. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.3 plots of standardised residuals vs. predicted values for ARI of 20 and 50 years 

(PRT, SA) 

 

The QQ-plots of the standardised residuals (Equation 4.2.13) vs. normal score (Equation 

4.2.14) for the one-at-a-time cross validation were examined. Figures 4.9.4 and 4.9.5 present 

the results for Q20, Q50 and the mean flood models, which show that most of the points 

closely follow a straight line, while some points also fall away from the line. This indicates 
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that the assumption of normality and the homogeneity of variance of the standardised 

residuals have been satisfied reasonably well. The standardised residuals are indeed 

normally and independently distributed N(0,1) (with mean 0 and variance 1) as the slope of 

the best fit line in the QQ-plot, which can be interpreted as the standard deviation of the 

normal score (Z score) of the quantile, should approach 1 and the intercept, which is the 

mean of the normal score of the quantile should approach 0 as the number of sites 

increases. It can be observed from Figures 4.9.4 and 4.9.5 show that the fitted lines for the 

developed models pass through the origin (0, 0) and they have a slope approximately equal 

to one. Similar results were also found for the standard deviation and skew models and other 

flood quantiles estimated by the PRT. 

 

 

 

 

 

 

 

 

 

Figure 4.9.4 QQ plot of the standardised residuals vs. Z score for ARI of 20 and 50 years 

(PRT, SA) 

 

 

 

 

 

 

 

 

 

 

Figure 4.9.5 QQ plot of the standardised residuals vs. Z score for the mean flood model 

(PRT, SA) 
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The summary of various regression diagnostics (the relevant equations are described in 

Section 4.2.2) is provided in Table 4.9.6. This shows that for the mean flood model the model 

error variance (MEV) and average standard error of prediction (SEP) are much higher than 

those of the standard deviation and skew models. The large model error variance indicates 

that the mean flood model has the highest uncertainty associated with its estimation; this was 

found with all other Australian states as well. The result is inline with the ANOVA analysis. 

For the standard deviation and skew models, the SEP was 79% and 25% respectively again 

indicating that both the standard deviation and skew may be regionalised more accurately 

than the mean flood.  

 

Table 4.9.6 Regression diagnostics for fixed region analysis for SA 

Model Fixed region 

 
MEV AVP SEP (%) R2

GLS (%) 
 

Mean 
0.78 0.88 119 74 

Stdev 
0.47 0.49 79 0 

Skew 
0.038 0.062 25 0 

 

 

Table 4.9.7 presents the root mean square error (RMSE) (Equation 4.2.16) and relative error 

(RE) (Equation 4.2.15) values for the quantiles estimated by the PRT. In terms of RMSE, the 

100 year ARI shows the highest value (19%). The smallest values are found for the 5 and 10 

years ARIs. South Australia showed some of the highest RMSE as compared to the other 

Australian states. The RE values ranged from 54% to 73%, the smallest value being for the 5 

year ARI, while the highest being for the 100 year ARI. Again, the RE values are considered 

reasonable for the ARIs considered in this study. However they are a bit larger as compared 

to the RE values for the other Australian states. 

 

Table 4.9.8 shows the results of counting the Qpred/Qobs ratios for the PRT method. The use 

of this ratio has been discussed in Section 4.2.4. There are on average 57% of cases that 

are in the desirable estimation range. The cases for overestimation and underestimation on 

average are 26% and 16% respectively. 
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Table 4.9.7 Evaluation statistics (RMSE and RE) from one-at-a-time cross validation for SA 

Model RMSE (%) RE (%) 
 PRT PRT 

Q2 17 58 
Q5 15 54 
Q10 15 57 
Q20 16 57 
Q50 18 66 
Q100 19 73 

 

 

Table 4.9.8 Summary of counts based on Qpred/Qobs ratio values for PRT for SA (fixed 

region). “U” = gross underestimation, “D” = desirable and “O” = gross overestimation  

 

Model Count (PRT) Percent 
(PRT) 

U D O U D O 
Q2 6 18 5 21 62 17 
Q5 4 18 7 14 62 24 
Q10 5 17 7 17 59 24 
Q20 5 17 7 17 59 24 
Q50 4 15 10 14 52 34 
Q100 4 15 10 14 52 34 

Sum / 
average 28 100 46 16 57 26 
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4.10 Summary 

 

In this chapter, fixed region and the region-of-influence (ROI) approach has been compared 

for various Australian states (Victoria, NSW, Qld, WA (south west region)). It has been found 

that ROI outperforms the fixed region for all the states tested.  

 

The QRT and PRT based on Bayesian GLS regression have been applied to all the 

Australian states to develop prediction equations for 2 to 100 years flood quantiles. It has 

been found that the QRT and PRT provide very similar results. Since the PRT offers 

additional advantages over the QRT, it should be preferable to the QRT.  

 

In the PRT methods, prediction equations for mean flood have been developed for various 

states/regions, which require two predictor variables, catchment area (area) and design 

rainfall intensity except for the NT where design rainfall intensity is replaced by the mean 

annual rainfall (rain). Also, for the PRT method it has been shown that no separate prediction 

equation needs to be developed for estimating standard deviation and skew of ln(Q), instesd 

the regional average values weighted by error covariance matrix can be adopted. 

 

For Victoria, NSW and Qld the state boundaries should be removed and the data of these 

states are to be combined to apply the Bayesian GLS PRT method; for this, the coefficients 

of the prediction equations should be derived at about 10km grid intervals and tabulated for 

industry use. A software can be developed to facilitate easy application of this technique, 

which will be discussed in more detail in Chapter 11.  

 

For some regions, fixed region-PRT methods have been developed which include west 

Tasmania, east Tasmania, SA, NT, WA (Pilbara region) and WA (Kimberley region).  

 

To apply the developed prediction equations developed here the predictor variables need to 

be standardised using the data shown in Table 4.10.1. A natural logarithm transformation 

has been used for developing the prediction equations and the predictor variables were 

centred around the mean as explained in Equation 4.3.10. 
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Table 4.10.1 RFFA methods for various states/regions and data needed for standardising the 

predictor variables 

State Region Mean of 

ln(area) 

Mean of 

ln(2
I12) 

Mean of 

ln(rain) 

Mean of 

ln(12
I50) 

NSW & 

ACT 

ROI 5.43 1.77   

Victoria ROI 5.37 1.46   

SA Fixed region 4.14 1.26   

Tasmania east Tasmania 

Fixed region 

4.74 1.40   

west Tasmania 

Fixed region 

5.00 1.55   

Qld ROI 5.38   2.90 

Western 

Australia 

South west region 

(Drainage Division 

VI) (ROI) 

3.39 1.41   

Kimberley (Drainage 

Division VIII) Fixed 

region 

6.46 1.87   

Pilbara (Drainage 

Division VII) Fixed 

region 

4.71 1.47   

NT North-western part 

(Drainage Division 

VIII) 

Fixed region 

5.41  7.17  
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5. Applicability of regional flood prediction equations to 

small catchments 

 

5.1 General 
 
Most RFFA techniques are developed based on small to medium sized catchments where 

sufficiently long streamflow records are available; however, these techniques are often 

applied to very small catchments as well. The question then arises whether the regional 

prediction equations developed based on small to medium sized catchments (5 to 1000 km2) 

are at all applicable to very small catchments say down to 0.1 km2. This has been 

investigated in this chapter. Firstly, the applicability of the QRT and PRT methods in the 

range of smaller catchments within the available data set is investigated. Secondly, the 

possibility of extrapolating the developed RFFA methods to very small catchments beyond 

the available data set is explored. 

 

 

5.2 Performances of the QRT and PRT for small catchments 
 

 

The performances of the Bayesian-GLS-PRT method in predicting flood quantiles for smaller 

catchments (having good streamflow record lengths) are investigated in this section. These 

catchments form part of the database used to develop and test the RFFA method as 

presented in Chapter 4. The error statistics presented here are based on the one-at-a-time 

cross validation method discussed in Chapter 4.  

 

The plot of absolute relative error vs. catchment size (Figure 5.2.1) did not show any 

evidence that the Bayesian-GLS-PRT method performs more poorly for smaller catchments 

in the database than for the medium and larger catchments – the RE does not show any 

noticeable increase for smaller catchments. The median relative error values (for Q20) for 

different catchment sizes for different states are presented in Table 5.2.1, which show that 

except for SA, the relative error values for catchments smaller than 50 km2 are not noticeably 

higher than for the medium and larger catchments in the database (in fact the medium sized 

catchments tend to have the highest median RE values).  

 

The plots of predicted vs. observed flood quantiles for smaller catchments (examples shown 

in Figures 5.2.2 to 5.2.4) generally show quite satisfactory results, with the NSW catchments 

showing the best results.  
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The overall conclusion from these investigations is that there is no evidence from the 

catchments in the dataset to indicate inferior performance of the derived regional flood 

estimation models for the smaller catchments (2 to 50 km2)  
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Figure 5.2.1 Plot of relative error (RE %) vs. catchment size (Q20, NSW) 

 

 

 

 
Table 5.2.1 Median relative error (RE) values for different catchment sizes in different states 

(Q20) 
 

Catchment 
area (km2) 

Median RE (%) 

NSW VIC Qld TAS NT 
WA (south-
west region) 

SA 

≤ 50 km2 42 26 28 45 44 50 71 

51 to 200 km2 45 50 36 54 41 58 70 

> 201 km2 32 43 33 40 41 45 53 

All data 33 43 35 44 41 52 57 
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Figure 5.2.2 Comparison of Q20 flood quantiles for smaller catchments (NSW) 
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Figure 5.2.3 Comparison of Q20 flood quantiles for smaller catchments (Vic) 
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Figure 5.2.4 Comparison of Q20 flood quantiles for smaller catchments (Qld) 

 

 

 
5.3 Extrapolation of the regional flood estimation methods to very 
small catchments 
 

5.3.1 General 

There is a notion that smaller catchments produce a higher unit area runoff than the larger 

catchments, which should be accounted for by the exponent of catchment area (area) in the 

regression equation (this exponent is generally smaller than 1 in the log domain regression 

model). This observation gets complicated when additional predictor variables are added to 

the prediction equation. The question though is whether the exponent with catchment area 

should remain constant for all the area ranges or should vary with catchment area, i.e. 

whether smaller catchment ranges should have a higher exponent value in the prediction 

equations. These issues are investigated in this section using data from eastern Australia. 

 

5.3.2 Data used  
 
A total of 429 catchments were selected for this investigation from the eastern part of 

Australia i.e. from states of New South Wales (NSW), Victoria and Queensland, as shown in 

Figure 5.3.1. These catchments are mainly unregulated with no major known land use 

changes over the period of streamflow records. The distribution of catchment areas shown in 

Figure 5.3.2 indicates that most of the selected catchments are smaller than 400 km2. The 

range of catchment areas is 2.3 km2 to 1010 km2, with a mean and median value of 309 km2 

and 241 km2, respectively. About 1.2% of catchments are smaller than 5 km2, 3.1% are 

smaller than 10 km2 and 7% are smaller than 20 km2, which implies that the data set 

contains only a small proportion of very small catchments. The record length of the annual 
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maximum flood series ranges from 20 to 94 years with mean and median values of 36 and 

33 years respectively. The distribution of streamflow record lengths of the selected 429 

stations is shown in Figure 5.3.3. 

 

The streamflow data of these stations were prepared for RFFA through a stringent 

procedure, e.g. gaps were filled, outliers were detected, rating curves error was detected and 

accounted for in at-site flood frequency analysis and trend analysis was conducted, as 

detailed in Haddad et al. (2010). Two predictor variables are used for this investigation 

(Table 5.3.1). 

 

 

 

Figure 5.3.1 Locations of catchments used for scaling study 

 

 

Table 5.3.1 Catchment characteristics variables used 

Catchment Characteristics 

1. area: Catchment area (km2) 

2. I: Design rainfall values in mm/h: Itc_Y  (where Y = 2, 5, 10, 20, 50 and 100 years and  

and tc = time of concentration (hours), estimated from tc = 0.76(area)0.38)  
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                 Figure 5.3.2 Distribution of catchment sizes in selected data set 
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                   Figure 5.3.3 Distribution of streamflow record lengths of the selected stations 

 

5.3.3 Method 

 

To account for the effects of catchment size on flood quantile estimates, development of a 

simple scale correction factor (SCF) is adopted here. The method assumes that flood 

quantiles estimated from the QRT/PRT can be corrected by applying a simple SCF: 
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area
SCF

1
                                                                                   (5.1) 

 

To apply Equation 5.1, regional flood prediction equations are developed using QRT. An 

empirical analysis is then undertaken to evaluate Equation 5.1, as discussed in Section 

5.3.4. 

 

5.3.4 Results 

 

To visualize the scaling property between the flood quantiles and the catchment size, a 

preliminary data analysis was carried out, which involved grouping the selected catchments 

into three class intervals based on catchment size: up to 100 km2, between 101 km2 and 400 

km2, and above 400 km2. The median standardised peak discharge per unit area 

corresponding to each class interval was calculated for various ARIs and plotted against 

catchment area, as shown in Figure 5.3.4. This figure shows a clear pattern, i.e. smaller 

catchments produce greater discharge per unit area, which is more prominent as the ARI 

increases. Figure 5.3.5 shows that smaller catchments generally produce larger unit 

discharges. Some of these smaller catchments showing higher unit discharge might be 

located in the wetter parts of the region but the general trend that the smaller the catchment 

the greater the unit discharge is clearly evident in Figures 5.3.4 and 5.3.5.  

 

Each of the flood quantiles Q2, Q5, Q10, Q20, Q50 and Q100 was regressed (using ordinary least 

squares regression) against 2 predictor variables (A and Itc_Y) using statistical package 

SPSS. A number of alternative models were developed for each of the quantiles and the 

ones showing the highest coefficient of determination (R2) and satisfying the model 

assumptions quite closely were selected as the final models (Equations 5.2 to 5.7). The 

regression coefficients in the prediction equations were found to be significantly different 

from zero (at significance level of 0.05 or less). The values of R2 are reasonably high (range: 

0.68-0.80) for Australian conditions.  

 

The selected prediction equations are given below: 

 

)(log103.2)(log186.1055.3)(log 2,1010210 tcIAQ                           (5.2)  

R2 = 0.78, adjusted R2= 0.779  

   

)(log089.2)(log182.1847.2)(log 5,1010510 tcIAQ      (5.3) 
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R2 = 0.805, adjusted R2= 0.804 

 

)(log932.1)(log13.1476.2)(log 10,10101010 tcIAQ      (5.4) 

R2 = 0.764, adjusted R2= 0.763 

 

)(log108.2)(log173.1766.2)(log 20,10102010 tcIAQ      (5.5) 

R2 = 0.763, adjusted R2= 0.762 

 

)(log132.2)(log169.1793.2)(log 50,10105010 tcIAQ      (5.6) 

 R2 = 0.722, adjusted R2= 0.720 

 

)(log135.2)(log159.1789.2)(log 100,101010010 tcIAQ      (5.7) 

R2 = 0.684, adjusted R2= 0.682 
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Figure 5.3.4 Relationship between median standardised discharge per unit area and 
catchment size  
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Figure 5.3.5 Peak discharge per unit area for catchments of various size 

 

To account for the scaling factor, i.e. to adjust the flood quantile estimates obtained from 

Equations 5.3 to 5.8, the following equation is proposed: 

 

QT scale corrected = QT × SCF        (5.8) 

 

where QT is to be obtained from developed RFFA models like Equations 5.2 to 5.7 and the 

scale correction factor (SCF) is to be estimated from following equation: 

 

careabaSCF )(           (5.9) 

 

where a, b and c are coefficients to be estimated from empirical analysis of the at-site flood 

quantiles and catchment size data; these coefficients may be used as estimators of the scale 

corrected values of QT. In this study, the values of a, b and c have been estimated using data 

from 429 catchments from Victoria, NSW and Qld and are presented in Table 5.3.2. Equation 

5.9 is plotted in Figure 5.3.6 for various ARIs and catchment size. Figure 5.3.6 shows that 

the proposed SCF increases as the catchment area decreases and SCF = 1 for area =200 

km2. This implies that for catchments greater than 200 km2, no scale correction is needed. 
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Figure 5.3.6 Relationship between scale correction factor (SCF) and catchment area   
 
 

Table 5.3.2 Values of a, b and c (Equation 5.9) for different ARIs 
 

ARI (years) 
Estimated coefficients 

a b c 

2 1.813 14.43 -0.1108 

5 1.842 15.29 -0.1136 

10 1.859 15.78 -0.1152 

20 1.89 16.02 -0.1182 

50 1.952 16.82 -0.1241 

100 2.07 16.00 -0.1349 

 

 

A total of 33 catchments were selected randomly from the database of the 429 catchments 

and the scale correction factors (Equations 5.8 and 5.9) were applied and the median relative 

error values were estimated with respect to at-site flood frequency estimates, as shown in 

Table 5.3.3. It is seen that application of the scale correction factor has reduced the median 

relative error in the estimation. The plots of uncorrected and corrected flood quantile 

estimates in Figures 5.3.7 and 5.3.8 demonstrate the improvement in the corrected flood 

quantiles as compared to the observed flood quantiles. 
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Table 5.3.3 Median relative error (RE) for uncorrected and corrected flood quantiles for 
different area range (Q20) 

Catchment area range 
(km2) 

RE (%) 
Uncorrected quantiles 

RE (%) 
Scale corrected quantiles 

2 - 5 21 19 

6 - 10 49 34 

11 - 50 31 27 

51 - 200 37 34 
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Figure 5.3.7 Comparison of scale corrected flood quantiles with observed flood quantiles 

(Q20, catchment area range: 2.3 km2 to 20 km2) 
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Figure 5.3.8 Comparison of scale corrected flood quantiles with observed flood quantiles 

(Q20, catchment area range: 21 km2 to 200 km2) 

  

5.4 Sensitivity analysis 

 

To carry out a sensitivity analysis on how the estimated flood quantiles may vary with 

catchment size, two different regression models are considered: Model 1 contains the two 

predictor variables of catchment area (area) and rainfall intensity for 12 hours duration and 2 

years ARI (I12_2), while Model 2 contains catchment area (area) and design rainfall intensity 

Itc_ARI. The objective of using two different types of prediction equations as mentioned above 

is to assess how predicted flood quantiles reduce with catchment size. For Model 1, the 

design rainfall intensity (I12_2) does not change with catchment area, i.e. it has fixed duration 

of 12 hours; however, for Model 2, the design rainfall intensity Itc_ARI changes with tc, where tc 

varies with catchment size according to tc = 0.76(area)0.38, i.e. as catchment size reduces, 

Itc_ARI increases. The use of these two types of prediction equations allows examining the 

nature of variation in the predicted flood quantiles when catchment size is reduced 

progressively from a high value to a very small value. 

 

To carry out the sensitivity how estimated flood quantiles may vary with catchment size, two 

different regression models are considered: Model 1 contains two predictor variables, 

catchment area (area) and rainfall intensity for 12 hours duration and 2 years ARI (I12_2), and 

Model 2 contains catchment area (area) and design rainfall intensity Itc_ARI. The objectives of 
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using two different types of prediction equations as mentioned above are to assess how 

predicted flood quantiles reduce with catchment size. For Model 1, the design rainfall 

intensity (I12_2) does not change with catchment area i.e. it has fixed duration of 12 hours; 

however, for Model 2, the design rainfall intensity Itc_ARI changes with tc, where tc varies with 

catchment size according to Equation 5.2 i.e. as catchment size reduces Itc_ARI increases. 

The use of these two types of prediction equations allows examining the nature of variation in 

the predicted flood quantiles when catchment size is reduced progressively from a high value 

to a very small value. 

 

To develop Model 1 and Model 2, we used data from the 96 NSW catchments (these have 

been used to develop RFFA models for NSW in Chapter 4). Here, we considered Q20 and 

prediction equations were developed using OLS regression procedure in the SPSS software. 

The developed prediction equations are shown in Table 5.4.1. The R2 values of these 

equations are 0.70 and 0.71, which are comparable to the results from the Bayesian GLS 

regression in Chapter 4. The Durbin-Watson statistic values are 1.84 and 1.96 for the two 

predictor variables, which are close to 2; this indicates that the predictor variables are not 

highly correlated. 

 

To examine the effects of reduced catchment size on predicted flood quantile, Models 1 and 

2 were applied to two NSW catchments (412063 & 419054) having catchment areas of 570 

km2 and 391 km2 respectively. The catchment area is reduced progressively from 570 km2 

(or 391 km2) to 0.1 km2; the corresponding Itc,20 values are extracted for each of the reduced 

catchment sizes from ARR Volume 2 (using the BOM IFD calculator and AUS-IFD software). 

The predicted flood quantiles for 20 years ARI (Qpred) based on Models 1 and 2 are then 

plotted against the catchment size in Figures 5.4.1 and 5.4.2. From these two figures it is 

clearly found that Model 1 exhibits a much smoother curve than Model 2 when catchment 

size is progressively reduced to 0.10 km2. The discontinuities in flood estimates in Figures 

5.4.1 and 5.4.2 are due to the fact that the IFD values have only been defined for a discrete 

set of durations. While they could be interpolated for any tc value, the routine application by 

practitioners would result in the step function as shown in Figure 5.4.1 and 5.4.2. This in 

essence indicates that for developing scaling factors for smaller catchments, use of Model 1 

(which includes area and I12_2 as predictor variables) would be preferable. 

 

 

 

 

 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  203 

Table 5.4.1 Model 1 and Model 2 for Q20 based on 96 NSW catchments 

 

Region 

Prediction equation (Q20 in m3/s, area = catchment 

area in km2 and I12,2 = design rainfall intensity for 2 

years ARI and 12 hours duration in mm/h, Itc,20 = 

design rainfall intensity in mm/h for 20 years ARI and 

duration of tc hours) 

R2 

Durbin-

Watson 

statistic 

NSW 

(96 stations) 

Model 1 : )ln(856.1)ln(692.0054.1)ln( 2_1220 IareaQ    0.70 1.84 

Model 2 : )ln(828.1)ln(127.1128.5)ln( 20,20 tcIareaQ   0.71 1.96 
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Figure 5.4.1 Plot of Qpred vs. catchment area for two different types of model forms (Station 

412063 NSW) (Q20)  

 

 

 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  204 

Station 419054

0

10

20

30

40

50

60

70

80

90

100

9
7
.8

8

7
5
.7

4

5
8
.6

1

4
5
.3

5

3
5
.0

9

2
7
.1

5

2
1
.0

1

1
6
.2

6

1
2
.5

8

9
.7

3

7
.5

3

5
.8

3

4
.5

1

3
.4

9

2
.7

0

2
.0

9

1
.6

2

1
.2

5

0
.9

7

0
.7

5

0
.5

8

0
.4

5

0
.3

5

0
.2

7

0
.2

1

0
.1

6

0
.1

2

Catchment Area (km
2
)

Q
p

re
d
 (

m
3
/s

)

Q20_pred_Model 1

Q20_pred_Model 2

 

Figure 5.4.2 Plot of Qpred vs. catchment area for two different types of model forms (Station 

419054 NSW) (Q20)  

 

5.5 Summary 

 

From the investigations presented in this chapter, based on a data set that includes only a 

limited number of small catchments, it has been found that the Bayesian-GLS-PRT based 

predictions equations developed in Chapter 4 can provide design flood estimates for smaller 

catchments (in the range of 2 to 50 km2) with the same level of accuracy as for the medium 

to larger size catchments.  

 

However, it has further been found that smaller catchments in general produce a larger unit 

area flood discharge, and this increase is only partly covered by the exponent for area in the 

regression equations. A method has been explored here to demonstrate how this finding 

could possibly be considered in the prediction equations developed using a quantile 

regression technique.  

 

A scale correction factor is proposed to account for the effects of scale on flood quantile 

estimates to be applied to smaller catchments. The application of this scale correction factor 

shows that this provides more accurate flood quantiles for smaller catchments.  

 

Prediction equations with two different design rainfall variables have been applied to examine 

how smoothly the predicted flood quantiles vary with reduced catchment size. It has been 

found that the model with fixed design rainfall intensity (e.g. I12,2) produces a smoother 
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variation of flood estimates with catchment area than the model with design rainfall intensity 

that varies with catchment size and ARI (e.g. Itc,ARI). 

 

Further investigation is needed to find whether the RFFA models developed in Chapter 4 can 

be applied to very small catchments (e.g. smaller than 3 km2) or if the estimates obtained 

from these models need to be scaled up for smaller catchments using some empirical 

relationship, as proposed in this chapter. This has been left for future research, as a part of 

Stage III of Project 5. 

 

Also it should be noted here that equations 5.2 to 5.7 have been developed using the current 

IFD data (ARR87). A check will need to be made if the revised IFD data (up-coming ARR 4th 

edition) will change the nature and magnitude of the correction needed for small catchments. 
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6. Regional flood estimation technique for major floods: 

Applicability of a simple Large Flood Regionalisation Model 

(LFRM) 

 

6.1 Introduction 

 

Estimation of major floods is a necessity in the design of large water infrastructure such as 

large detention basins, urban trunk drainage, large bridges, dam spillways and other major 

hydraulic structures. This problem in the past has been addressed by many researchers (e.g. 

Pilgrim, 1986, Rowbottom et al., 1986; Pilgrim & Rowbottom, 1987; Stedinger et al., 1992; 

Nathan & Weinmann, 1995). Book VI of Australian Rainfall and Runoff (ARR) was upgraded 

in 1999 with guidance for estimation of large to probable maximum floods (PMF); in this 

context, the term „large‟ floods refers to floods with 50 to 100 years average recurrence 

intervals (ARIs) (Nathan & Weinmann, 2001). Floods in the range from 100 years ARI to the 

„credible limit of extrapolation‟ (ARI in the order of 2000 years) are referred to as „rare‟ floods, 

while floods from the credible limit of extrapolation to the PMF are termed „extreme‟ floods. 

The procedures outlined in ARR2001 include flood frequency analysis and various rainfall-

based methods. For flood frequency estimates in the range of „rare‟ floods, use of regional 

information plus paleohydrological information was suggested and for rainfall-based 

methods, an annual exceedance probability (AEP) neutral approach was recommended 

(Nathan & Weinmann, 2001).  

 

In Project 5, Stage I report (Rahman et al., 2009) and in Haddad, Rahman and Weinmann 

(2010), a simple Probabilistic Model was presented that can exploit regional flood information 

over a large region when developing „easy to apply‟ prediction equations to estimate major 

floods. The Probabilistic Model is referred in this report as Large Flood Regionalisation 

Model (LFRM). The proposed method was intended to offer an alternative flood estimation 

approach that can be applied for feasibility studies and the design of hydraulic structures in 

situations where a slightly larger degree of uncertainty in the flood estimates is acceptable. 

The regionalisation procedure adopted by the Probabilistic Model /LFRM (Majone & 

Tomirotti, 2004; Majone et al., 2007; Haddad, Rahman and Weinmann, 2010) is based on 

the assumption that the standardised maximum values of the annual maximum flood series 

from a large number of individual sites in a region can be pooled (after standardising to allow 

for the across-sites variations in the mean and coefficient of variation (CV) values of annual 

maximum floods). The concept is similar to the CRC-FORGE method (Nandakumar et al., 
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1997) where design rainfall estimates are based on pooled standardised rainfall extremes 

from a large region that includes up to several hundred gauges. The particular advantage of 

the LFRM is that, in contrast to the „index flood method‟ approach, it does not assume a 

constant CV across the sites. This feature, in particular, allows the LFRM to pool data more 

effectively over a very large region.  

 

The main focus of the LFRM being investigated in ARR Project 5 is to couple this approach 

with Generalised Least Squares (GLS) regression so that the method can be applied to 

ungauged catchments. The advantages of GLS regression are that this approach accounts 

for the variation in flood record lengths across various sites in the region, inter-site 

correlations of the concurrent flood records and cross-correlated residuals. As a result, GLS 

estimators are more efficient than those of the ordinary least squares (OLS) and provide 

more realistic measures of estimation. 

  

 

6.2 Independence of the data in the simple Large Flood 
Regionalisation Model  
 
The Probabilistic Model/Large Flood Regionalisation Model (LFRM) (referred to LFRM here) 

presented by Majone et al. (2007) and applied by Haddad, Rahman and Weinmann (2010) 

ignores the cross-correlation of the pooled standardised data, where the highest data point 

from each station‟s annual maximum (AM) flood series (after standardisation) is combined 

with all the stations in the region to form a database referred to as „LFRM data series‟. It was 

assumed that the individual values in the LFRM data series are independent. This 

assumption may be valid if the data being pooled come from stations that are spread over a 

large region. However, examination shows (Figure 6.1) that values in the LFRM data series 

used in Project 5 tend to cluster in some years, with very few events in other years. This 

appears to violate the assumption of independent distribution of the events in time and 

indicates that some of the events occurring in the same year might have resulted from the 

same hydro-meteorological events. However, if the events are separated by at least a few 

months, they may be treated as being independent.   

 

Significant correlation between events in the pooled series of maxima used for regional flood 

frequency analysis will result in the effective size of the sample being over-estimated, and 

the exceedance probabilities of given flood magnitudes being underestimated. The testing of 

the PM/ LFRM by Haddad, Rahman and Weinmann (2010) has demonstrated that if the 

LFRM data series is assumed to be independent, the LFRM underestimates the at-site flood 

frequency estimates, as shown in Table 6.1. Here, 17 out of the 18 test catchments show an 
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underestimation by 7% to 40%. This result indicates that the issue of cross-correlation needs 

to be addressed for successful application of the LFRM in Australia.   

 

The cross-correlation among the concurrent annual maximum flood series of all the possible 

pairs of sites (irrespective of their ranks) (these data have been prepared as a part of ARR 

Project 5) was examined and it was found that the cross-correlation coefficients are quite 

high for the nearby pairs of sites. An example is shown in Figure 6.2 where two nearby 

Victorian stations (Stations 221201 and 221207) show a cross-correlation coefficient of 0.96). 

The correlations vs. distance between pairs of stations in south-east Australia is shown in 

Figure 6.3, which indicates that AM flood series have cross-correlation close to 1 for some 

nearby stations, but cross-correlation reduces with distance sharply. Also high correlation is 

a dominant issue only for a limited number of pairs of stations. 

  

The cross-correlation between two stations based on all the concurrent AM flood data has 

little relevance to the LFRM model as this model uses only rank 1 data i.e. the highest flood 

value from the AM series of each station. A viable approach would be to use average cross-

correlation considering all the concurrent AM data from all the possible pairs of stations in the 

database and develop a spatial dependence model similar to CRC FORGE method 

(Nandakumar et al., 1997). This model can then be used to account for the cross-correlation 

in the LFRM data series in flood quantile estimates using the Large Flood Regionalisation 

Model.  

 

Another approach might be to examine the starts of the individual events which contain the 

annual maxima for all the sites plotted against the same year (e.g. as in Figure 6.1); if the 

starts of the events are a few months apart from each other they may be treated 

independent. If they have resulted from the events which have occurred in the same day or 

week, only one data point from these can be retained to establish an independent series. 

Here, if the stations are far away (e.g. one station from Victoria and another from Qld) they 

can be treated independent, although plotted against the same year, as they are most likely 

resulted from different hydro-meteorological events. This approach requires the examination 

of the distances between pairs of stations and the start and end of the individual events, 

which is time demanding. 

 

Any significant degree of correlation between the events in a regional sample reduces the 

effective sample size drastically, so the most productive approach might be to establish 

essentially independent networks of stations (perhaps by using the concept of de-correlation 

distance as an indicator) and then only pool the maxima from such a network of stations. 
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Some form of constrained random sampling may need to be used to establish a number of 

alternative networks of independent stations. 
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Figure 6.1 Occurrences of the highest floods – data from NSW, Qld, Vic and Tasmania are 

combined (only the highest value from each station‟s AM series is taken to form the LFRM 

data series) 
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Figure 6.2 Cross-correlation between two nearby Victorian Stations 221201 and 221207  

 (considering all concurrent AM flood data over the period of records – only 21 data points 

are concurrent for the pair of stations) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3 Relationship between the cross-correlations among AM data and distance 

between pairs of stations in south - east Australia 
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Table 6.1 Comparison of predicted flood quantiles by the AM/LFRM with at-site flood 

frequency analysis (FFA) estimates for ARI = 100 years (CLL and CLU refer respectively to 

lower and upper 90% confidence limits of at-site FFA, RE refers to relative error) (Haddad, 

Rahman and Weinmann, 2010) 

Test Catchment / Area (km2) LFRM (m3/s) CLL (m3/s) FFA (m3/s) CLU (m3/s) RE % 

TC4 / 18 50 33 67 217 -25.4 

TC12 / 20 150 133 234 497 -35.9 

TC16 / 23 68 65 92 233 -26.1 

TC5 / 36 50 42 75 283 -33.3 

TC6 / 95 200 133 333 981 -39.9 

TC15 / 105 830 629 917 1004 -9.5 

TC8 / 108 165 94 177 459 -6.8 

TC10 / 141 94 71 82 118 14.6 

TC11 / 200 118 106 165 400 -28.5 

TC3 / 214 59 71 80 118 -26.3 

TC13 / 395 990 683 1294 1388 -23.5 

TC17 / 402 779 542 1129 1393 -31.0 

TC7 / 407 157 189 251 313 -37.5 

TC9 / 629 379 375 438 813 -13.5 

TC18 / 829 688 500 1000 2875 -31.2 

TC1 / 837 1500 1313 2063 3688 -27.3 

TC14 / 900 2813 2000 3250 3788 -13.4 

TC2 / 943 375 250 438 1063 -14.4 

 

 

 

 

 

 

 

(a) 
(a) 
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Table 6.2 Concurrent peaks in the top 50% events for Victorian Stations 221201 and 221207 

Year 
Station 221201,  

Q (ML/day) 
Station 221207,  

Q (ML/day) Rank 

1998 32909 20118 1 

1978 23901 12980 2 

1992 8624 5464 11 

1994 7682 4733 14 
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Figure 6.4 Cross-correlation of AM floods between two nearby Victorian Stations 221201 and 

221207(considering the top 50% of the concurrent data points) 

 

6.3 Summary 
 
The development of a simple Large Flood Regionalisation Model (LFRM) for regional flood 

estimation in the major flood range for Australian catchments needs consideration of the 

cross-correlations among the highest data points from each station‟s AM series, which 

however appears to be a difficult task. A number of possible ways to deal with this problem 

have been discussed in this chapter but additional research and development work is 

required to identify the most effective approach for practical application to estimate large/rare 

floods in Australia.. This is left for future research as a part of Project 5 Stage III.  

 

The possible future research tasks on the LFRM are outlined below: 

 

 Form a LFRM data series using the data from all Australian states and territories. 
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 Assess the degree of dependence of the LFRM data series. 

 Develop a method to account for any significant cross-correlation of the LFRM data 

series, either by an appropriate probability adjustment or by identifying essentially 

independent maximum events for inclusion in the LFRM data series. 

 Develop and test the updated LFRM for flood quantile estimation in the range of 100 

to 2000 years ARIs. 

 Compare the updated LFRM with alternative methods. 

Recommend a preferred method for application in Australia and state its limits of 

application in terms of catchment size, location and ARI. 
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7. Development of regional flood estimation methods for 

arid and semi-arid regions in Australia  

 

7.1 General  
 
Arid and semi-arid regions are characterised by low mean annual rainfall in relation to mean 

annual potential evaporation (UNESCO, 1999). Rainfall events tend to be infrequent and 

their occurrence and severity are highly variable. Typically dry antecedent conditions may 

result in many rainfall events not producing any significant runoff. However, severe rainfall 

events can still result in significant flooding with serious consequences for a range of 

activities. Large transmission losses may also results in discharge reducing in a downstream 

direction, particularly in the lower river reaches of larger catchments in arid regions (Costello 

et al., 2003). The special flooding characteristics of catchments in arid and semi-arid regions 

make it desirable to treat them separately form catchments in more humid regions. 

 

Design flood estimation in arid and semi-arid region is a difficult task due to the episodic 

nature of flood events and the limitations of recorded streamflow data of acceptable quality. 

In ARR87, only few catchments were used from arid and semi-arid regions to develop RFFA 

methods, which had a lower degree of accuracy and limited applicability. 

 

Since the publication of ARR87 (I. E. Aust., 1987), there has been little improvement in terms 

of streamflow data availability in most of the arid and semi-arid regions of Australia. In the 

preparation of regional flood estimation database for Australia as a part of Project 5 

„Regional flood methods in Australia‟, only a handful of catchments from the arid and semi-

arid regions satisfy the selection criteria (see in Rahman et al., 2009; Haddad et al., 2010). 

To increase the number of stations from the arid and semi-arid regions to develop a 

„reasonably meaningful‟ RFFA method, the selection criteria were relaxed i.e. the threshold 

streamflow record length was reduced from 25 years to 10 years and the limit of catchment 

size was increased from 1000 km2 to 6000 km2. These criteria resulted in the selection of 45 

catchments from the arid and semi-arid regions of Australia. Based on this limited data set, 

approximate RFFA methods are developed for arid and semi-arid regions of Australia, as 

discussed in this chapter. This method will need further development and testing before this 

can be recommended for inclusion in the revised ARR.    
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7.2 Special issues for consideration in the arid and semi-arid 
regions 
 
In the arid and semi-arid regions, most of the streams are ill-defined and non-perennial. The 

geomorphology of arid and semi-arid regions is notably different from coastal Australia e.g.:  

 the river is shallow and lacks a defined channel;  

 transmission loss is very high; 

 a tendency of the river to shift its course remarkably during high flow;  

 lack of vegetation in the catchment; and  

 excessive erosion rate in the catchment and stream.  

 

Another problem in arid regions is the difficulty in measuring the flood flow (Parks and 

Sutcliffe, 1987) because floods are in general flashy, and the problem of defining the peak 

level accurately by water level recorder or maximum level gauge is aggravated by siltation of 

the channel. The difficulty of establishing a reasonable rating, particularly at high flow levels, 

is made worse by the problems of access for gauging near the peak of a short flood (as arid 

and semi-arid regions are located far from major Australian cities), the long periods without 

flow, and the instability of the channel control and cross-section area due to the scouring 

effects of floods. 

 

Floods in arid regions are generally caused by storms of high intensity and are often of 

relatively limited extent where rainfall rates exceed the infiltration capacity of at least part of 

the catchment. Thus, the variability in flood magnitude from year to year and from site to site 

in arid areas is much greater than non-arid areas. This implies that a longer record length 

would be needed in arid regions to estimate the flood frequency curve with reasonable 

accuracy; however, in the arid regions of Australia, streamflow record lengths are even 

shorter than those of coastal Australia.   

 

Some catchments in the arid and semi-arid regions (e.g. the NT) may have a significant 

proportion of karst geology which can cause the disappearance and reappearance of the 

stream channel within a short distance, thus affecting the flood flow. It is often quite difficult 

to define the catchment boundary, and the contributing catchment area for a particular flood 

event may be very small compared to the whole of the catchment. 

 

In arid regions, annual maximum flood series generally contain many zero values and hence 

it is more appropriate to use the partial duration series in flood frequency analysis, which has 

been adopted in this chapter. 
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There have been only few previous RFFA studies in arid and semi-arid regions. Farquharson 

et al. (1992) presented a study which uses 162 catchments from 12 countries of the world 

including 30 catchments from Queensland. Their catchments were located in the regions with 

an average annual rainfall of 600 mm or less, and with catchment areas in the range of 1 to 

357,000 km2. The use of very large catchments by Farquharson et al. (1992) limits the 

application of their method to small and medium sized catchments. It is expected that the 

growth curves in the arid region will show greater uncertainty and steeper slopes compared 

to those of the coastal regions.  

 

7.3 Method 
 
The application of QRT and PRT seem to be difficult in arid regions as these techniques 

require relatively longer periods of streamflow data. It appears that a simpler RFFA method 

will be more appropriate for the arid regions. Here, an index type approach as suggested by 

Farquharson et al. (1992) is adopted. In the index flood method, the mean annual flood ( Q ) 

and a dimensionless growth factor is used to estimate QT: 

 

TT XQQ                  (7.1) 

 

where QT is the flood quantile for an ARI of T years, Q  = the mean annual flood based on 

the partial duration series, XT = the regional growth factor. In this study, a prediction equation 

is developed for Q  as a function of catchment characteristics and regional growth factors 

are developed based on the observed partial duration series data. In the application, partial 

series–based QT  estimates may need to be converted to annual maximum flood series 

estimates using the Langbein transformation. 

 

7.4 Data 
 
The UNESCO (1999) has suggested the ratio of precipitation (P) to potential 

evapotranspiration (ET) as an aridity index: 

 

             P/PET < 0.03               hyper-arid zone 

             0.03 < P/PET < 0.2      arid zone 

    0.2 < P/PET < 0.5         semi-arid zone 
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A total of 45 catchments were selected from arid and semi-arid regions of Australia, with 

locations shown in Figure 7.1. Based on the above criteria by UNSECO (1999), 90% of the 

selected catchments are classified as semi-arid (0.2 < P/PET <0.5) and the remaining 10% 

as arid (0.03 < P/PET < 0.2).        

 

The selected catchments have average annual rainfall in the range of 209 mm to 454 mm 

(Table 7.1). The catchment areas range from 3.8 to 5,975 km2 (mean: 1152 km2 and median: 

360 km2). Streamflow record lengths range from 10 to 46 years (mean: 25 years and median: 

22 years); these are the partial series maximum flood data, with one event per year on 

average being selected.  

 

 

Figure 7.1 Locations of the selected catchments from the arid and semi-arid regions of 

Australia 
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Table 7.1 Selected stations for arid and semi-arid regions of Australia 

State 
Number of stations 

selected 

Range of 
catchment 

areas 
(km2) 

Range of 
streamflow 

record length 
(partial series) 

(years) 

Range of mean 
annual rainfall 

(mm) 

NSW 4 15 to 4660 
(Median: 175) 

16 to 35 243 to 434 

Vic 5 32 to 4740 
(Median: 1629) 

16 to 41 407 to 453 

Qld 16 6 to 5975 
(Median: 757) 

17 to 38 393 to 454 

SA 6 170 to 448 
(Median: 275) 

10 to 36 209 to 302 

NT 14 3.8 to 4360 
(Median: 141) 

10 to 46 290 to 429 

   

 

7.5 Results 
 

7.5.1 Selection of regions 
 
The formation of sub-regions in the arid and semi-arid region is a difficult task, as there are 

only 45 catchments available from a vast region of interior Australia. There are a few 

alternatives: (i) all the 45 stations to form one region, which however appears to be 

unreasonable given the areal extent of the region (over 5000 km × 5000 km), there are likely 

to be different hydro-geo-meteorological processes over this vast region that affect the flood 

generation process; (ii) formation of small sub-regions based on geographical proximity; 

however, too small a region makes the developed RFFA methods of little statistical 

significance. 

 

To assess the hydrological similarity of various candidate regions, the test by Hosking and 

Wallis (1993) was applied. This uses the H statistic to test for the degree of heterogeneity in 

a proposed region, where H < 1 indicates an „acceptably homogeneous region‟, 1 ≤  H < 2  

indicates a  „possibly heteorogeneous‟ region and H ≥ 2 a „definitely heterogeneous‟ region. 

The results of this test are summarised in Table 7.2, which shows that none of the proposed 

regions are „acceptably homogeneous‟. It should be noted here that Australian catchments 

generally exhibit a high level of heterogeneity and application of the test by Hosking and 

Wallis (1993) did not generate acceptable homogeneous regions in Australia (e.g. Bates et 

al., 1993 and Rahman et al., 1999). 

 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  219 

Since there is limited data in the arid and semi-arid regions in Australia, formation of simple 

geographic regions appears to be a reasonable option. As NSW and Vic have only 4 and 5 

catchments they are combined together to achieve a sample size of 9. The selected 

catchments of these two states fall in the same drainage division (Drainage Division IV - 

Murray-Darling Division), and hence their combination is not unreasonable. The states of 

Qld, NT and SA were treated as separate regions.  

 

Table 7.2 Heterogeneity statistics for candidate regions in the arid and semi-arid regions  
 

State Nos. of station H1 H2 H3 

All the 45 
catchments 

45 24.98 12.45 4.88 

NSW & VIC 9 18.68 9.24 5.21 

Queensland 16 7.41 3.11 2.40 

South Australia 6 3.51 2.58 1.12 

Northern Territory 14 11.53 5.93 2.03 

 

 

7.5.2 Derivation of growth curves 
 

 

The flood quantiles were estimated for T = 2, 5, 10, 20, 50 and 100 years at each station by 

fitting a Genralised Pareto (GPA) distribution using L moments (Madsen et al., 1997). The 

QT/Q  values were estimated at individual stations; the weighted average of these values 

(weighting was done based on record length at individual sites) over all the stations in a 

region defines the growth curve, as shown in Figure 7.2. A smooth curve was drawn to 

represent the average growth curve for each of the four regions; the corresponding equations 

(Table 7.3) show a R2 value in the range of 0.95 to 0.99 indicating quite a good fit. The 

growth factors for the selected ARIs, estimated from the fitted equations, are provided in 

Table 7.3 

 

The approximate 95% confidence interval of the derived growth curves for the four regions 

are shown in Figure 7.3. From Figures 7.2 and 7.3, it can be found that SA has the steepest 

growth curve followed by the NT. The Qld has the flattest growth curve. In the larger ARI 

range, the growth curve for SA is much higher than the other regions (e.g. for 100 years ARI, 

SA growth factor is approximately double to that of Qld). At higher ARIs, NT and NSW &Vic 

growth curves are very similar. The combination of growth curves for the four selected 

regions seems to be unviable, in particular, when the differences are so high between the SA 

and Qld growth curves. The growth curves derived here generally agree with the world 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  220 

growth curves (except for SA at higher ARIs) derived by Farquharson et al. (1992) as shown 

in Table 7.3.  

 

The growth curve for SA catchments found in this study is considerably steeper (particularly 

for higher ARIs) than the ones implied by Table 1.8 in ARR87 (page 13, Book IV) (but 

smaller than the ones recommended in ARR87 for the WA Wheatbelt region (page 18, Book 

IV)). Table 1.8 in ARR87 was based on annual maximum flood series data from three 

catchments from the Alice Spring area and a 1 year ARI.  
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Figure 7.2 Growth curves (GC) for four selected arid and semi-arid regions in Australia 
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Figure 7.3 Growth curves with 95% confidence intervals (UL- upper limit, LL- lower limit) for 
four selected arid and semi-arid regions in Australia 

 
 

Table 7.3 Growth factors for arid and semi-arid regions in Australia (YT = Gumbel reduced 
variate = - ln(- ln(1 - 1/T)) (The growth factors in the table are obtained from the prediction 

equations shown in the second row of the table) 
Region NSW-Vic Qld SA NT World data 

(Farquharson et 

al.,  1992) 

Equation 

99.0

71.0

2

5.0





R

eGF TY

 
95.0

62.0

2

45.0





R

eGF TY

 
99.0

37.0

2

7.0





R

eGF TY

 

99.0

43.0

2

61.0





R

eGF TY
 

T 

(years) 
YT 

2 0.37 0.85 0.73 0.48 0.54 0.6 

5 1.50 1.50 1.22 1.06 1.07 1.5 

10 2.25 2.19 1.71 1.79 1.70 2.1 

20 2.97 3.13 2.36 2.96 2.63 3.0 

50 3.90 5.00 3.59 5.68 4.65 4.2 

100 4.60 7.08 4.91 9.26 7.11 5.9 
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7.5.3 Development of prediction equations for mean annual flood 
 
The statistical package SPSS was used to develop prediction equations for the mean annual 

flood using an ordinary least squares (OLS) regression, where many different combinations 

of variables were examined to come up with the best possible model i.e. the one which had 

the highest coefficient of determination (R2) and the smallest number of predictor variables. 

The developed prediction equations are shown in Table 7.4.  

 

The developed prediction equations contain two predictor variables, catchment area (area) 

and 12 hours 2 year rainfall intensity (I12_2), which are relatively easy to obtain. The values of 

the Durbin-Watson statistic range from 1.84 to 2.34, which are not far away from 2 (a value 

of 2 indicates no correlation between predictor variables). For all the four regions except for 

SA, the regression coefficients associated with the predictor variables area and I12_2 are 

positive which indicate that mean flood increases with increasing area and rainfall intensity, 

which is as expected. However, for SA, the regression coefficient for I12_2  is negative, which 

appears to be counter-intutive, i.e. how can the mean flood decrease with increasing rainfall 

intensity. To investigate this further, plots of the mean flood vs. area and I12_2 are prepared 

(Figures 7.4 and 7.5), which show that the mean flood increases with area as expected but 

mean flood decreases with increasing I12_2. This unexpected behaviour of I12_2 may be due to 

very small sample size and due to possible problems in the design rainfall data, which might 

have been derived in ARR87 using a very limited data set, thus having a high degree of 

uncertainty associated with these. Here, I12_2 was finally ignored for SA and only area was 

considered in the prediction equation, which showed a smaller R2 value than the equation 

with area and I12_2.  

 

The R2 value for Qld is 0.88, which represents quite a good fit. However, the R2 values for 

the other three regions are moderate (in the range of 0.29 to 0.49). The R2 values obtained 

here are comparable to the values obtained by Farquharson et al. (1992) (their average R2 

value was 0.57). The quantile-quantile plots (QQ-plot) of the standardised residuals indicate 

that the residuals are near-normally distributed and there is no outlier data point for the Qld 

(Figure 7.6) and the NT (Figure 7.8) data sets. The plots of standardised residuals vs. 

predicted flood quantiles (examples in Figures 7.7 and 7.9 for Qld and the NT, respectively) 

show that the residuals are within  2.0  standard deviation, which indicate the absence of 

any true outlier data point. The plots for other states were not examined due to very small 

sample sizes.  
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Figure 7.4 Plots of mean flood ( )Q  vs. catchment area for South Australia 
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Figure 7.5 Plots of mean flood ( )Q  vs. design rainfall intensity I12,2 for South Australia 
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Table 7.4 Summary of prediction equations for mean annual flood for arid and semi-arid  
regions 

 

Region 

Prediction equation (Q = mean annual flood of partial 

duration series data in m3/s, A = catchment area in 

km2 and I12,2 = design rainfall intensity of 2 years ARI 

and 12 hours duration in mm/h, obtained at catchment 

outlet) 

R2 

Durbin-

Watson 

statistic 

NSW-Vic  

(9 stations) 
)(log03.5)(log42.043.2)(log 2_12101010 IAQ   0.35 2.06 

Qld 

(16 stations) 
)(log01.4)(log76.071.2)(log 2_12101010 IAQ   0.88 2.34 

SA 

(6 stations) 

)(log29.3)(log84.044.1)(log 2_12101010 IAQ   0.49 2.12 

)(log85.019.0)(log 1010 AQ   0.29 - 

NT 

(14 stations) 
)(log65.1)(log60.050.0)(log 2_12101010 IAQ   0.45 1.84 
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Figure 7.6 QQ-plot of the standardised residuals for Q20 (Qld) 
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           Figure 7.7 Standardised residuals vs. predicted quantiles for Q20 (the red marks     

show the bound of  2.0  standard deviation) (Qld) 
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Figure 7.8 QQ-plot of the standardised residuals for Q20 (NT) 
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Figure 7.9 Standardised residuals vs. predicted quantiles for Q20 (the red marks 

                           show the bound of  2.0  standard deviation) (NT) 

 

7.5.4 Validation and testing 
 

The predicted flood quantiles (using Equations in Table 7.4 and growth factors in Table 7.3) 

for each of the study catchments were compared with the at-site flood frequency estimates 

(Qobs). The relative error values (Tables 7.5 to 7.8) range from 46% to 71% for NSW-Vic, 

22% to 31% for Qld, 12% to 50% for SA and 49% to 59% for the NT, which seem to be quite 

reasonable. The count of the ratio Qpred/Qobs values are also presented in Tables 7.5 to 7.8. 

The ratio values in the „desirable‟ range of 0.5 to 2 are 50%, 85%, 92% and 51% for NSW-

Vic, Qld, SA & NT respectively; the ratio values for Qld and SA appear to be quite 

satisfactory. It should be noted here that due to small sample size, the error statistics 

discussed here may have little statistical validity. The observed and predicted flood quantiles 

for Q20 in Queensland match very well (Figures 7.10 and 7.11). 

 

Table 7.5 Summary of model testing (NSW-Vic) 

ARI (years) Median RE (%) 
Count Qpred/Qobs (ratio) 

ratio < 0.5 0.5   ratio   2.0 Ratio > 2.0 

2 47 1 6 2 

5 46 1 5 3 

10 55 2 4 3 

20 71 3 3 3 

50 66 2 4 3 

100 67 2 4 3 

Total count 10 27 17 

% of count 19% 50% 31% 
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Table 7.6 Summary of model testing (Queensland) 

ARI (years) Median RE (%) 
Count Qpred/Qobs (ratio) 

ratio < 0.5 0.5  ratio 2.0 Ratio > 2.0 

2 31 4 10 2 

5 26 0 14 2 

10 23 0 15 1 

20 22 0 14 2 

50 22 1 14 1 

100 18 1 14 1 

Total count 6 82 8 

% of count 7% 85% 8% 

 

 

Table 7.7 Summary of model testing (South Australia) 

ARI (years) Median RE (%) 
Count Qpred/Qobs (ratio) 

ratio < 0.5 0.5  ratio 2.0 Ratio > 2.0 

2 50 1 3 2 

5 19 0 6 0 

10 14 0 6 0 

20 21 0 6 0 

50 12 0 6 0 

100 12 0 6 0 

Total count 1 33 2 

% of count 3% 92% 5% 

 

 

 

Table 7.8 Summary of model testing (Northern Territory) 

ARI (years) Median RE (%) 
Count Qpred/Qobs (ratio) 

ratio < 0.5 0.5  ratio 2.0 Ratio > 2.0 

2 59 6 4 4 

5 49 2 9 3 

10 58 2 9 3 

20 58 5 6 3 

50 54 5 7 2 

100 56 5 7 2 

Total count 25 43 16 

% of count 30% 51% 19% 
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Figure 7.10 Predicted vs. observed floods for test catchments in the arid and semi-arid 

region in Qld for Q20 (catchment areas in the range of 6 km2 to 425 km2) 
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Figure 7.11 Predicted vs. observed floods for test catchments in the arid and semi-arid 

region in Qld for Q20 (catchment areas in the range of 1089 km2 to 5975 km2) 

 

 

7.6 Summary 
 
Catchments in the arid and semi-arid regions of Australia have a distinctly different flood 

hydrology from catchments in more humid/coastal regions, and they thus warrant separate 

treatment for regional flood estimation. The limited availability of streamflow data at both 

temporal and spatial scales in the arid and semi-arid regions of Australia makes it difficult to 
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develop statistically meaningful RFFA methods. Using the limited data, a simple RFFA 

method is developed here for the arid and semi-arid regions, which has generally a lower 

degree of accuracy than the RFFA methods developed in Chapter 4 for the coastal regions 

of Australia, which are based on a larger data set with good quality. The RFFA methods 

presented here for the arid and semi-arid regions should be used with caution; local 

hydrological knowledge must be exercised to interpret the results. It would be necessary to 

compare the results from these methods with other methods, such as rainfall runoff models 

and any locally available methods. The RFFA methods presented here will require further 

development and testing before they can be recommended for inclusion in the revised ARR.    

 

It is recommended that some representative stream gauges be established in the arid and 

semi-arid regions for „long term monitoring‟ to develop a comprehensive database which will 

assist in upgrading the RFFA methods presented here in the future. A more comprehensive 

flood data base is required to develop a better understanding of how the special climate, 

catchment and stream characteristics of the arid and semi-arid regions of Australia interact to 

produce distinctly different flood responses. It is to be noted here that a high degree of 

uncertainty associated with a RFFA method results in inaccurate design flood estimates, 

which increase the capital cost of the infrastructure in the case of over-design, or the average 

annual flood damage cost in the case of under-design. The cost of streamflow monitoring 

and data collection is expected to be far less than the cost associated with grossly inaccurate 

RFFA methods that are developed based on inadequate data. 
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8. Time trends in Australian flood data 

 

8.1 General 

 

The initial results of trend analyses in Australian annual maximum flood series data had 

shown a trend for over 30% of the stations investigated (Ishak et al., 2010). Many of these 

stations had record lengths in the range of 30 to 97 years and were affected by the 

exceptionally dry weather regime since 1990s, and hence it was not possible to confirm 

whether the detected trends were due to climate change or due to climate variability. This 

initial study also disregarded the correlation structure within the annual maximum flood series 

data in the trend detection analysis. The objective of this section is to provide a brief review 

on trend analysis in rainfall and flood data, focusing on the most recent literatures and to 

investigate the impacts of serial and cross-correlation on trend analysis.  

 

8.2 A review of trend analysis for hydrological data    

 

The potential impacts of climate change and natural climate variability on the hydrologic 

regime have received great attention in contemporary hydrology and water resources 

management research. Climate change in the context of hydrology can be defined as any 

change in the hydrologic cycle which is attributable to human activities, most notably those 

associated with increasing greenhouse gas concentrations in the atmosphere and the 

corresponding increases in global mean temperature. The effects of anthropogenic 

emissions of aerosols also fall within this category, although their effects on climate are likely 

to be more regional and shorter-lived. Climate variability, on the other hand, is generally 

viewed as resulting from „natural‟ sources, and may be due to internal dynamics of the 

climate system (e.g. ENSO/IPO) or external forcing (e.g. periodic fluctuations in solar 

radiation, and „spikes‟ due to volcanic eruptions). 

 

Assessment of hydrological records collected in different parts of the world has provided 

evidence of regime-like or quasi-periodic climate behaviour, and of systematic trends in key 

climate variables due to climate change and/or climate variability (Gallant et al., 2007; Fu et 

al., 2008; Ma et al., 2008; Zhang and Lu, 2009; Chowdhury and Beecham, 2009; Villarini et 

al., 2009). In Australia average surface temperature has increased over the past 98 years, 

where the last two decades have been particularly warm, with the warmest year on record 

occurring during 2005, as shown in Figure 8.1. Furthermore, the Intergovernmental Panel on 
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Climate Change (IPCC) fourth assessment report acknowledged that the global surface 

temperature is expected to continue to warm up over the 21st century, affecting all aspects of 

the hydrological cycle (IPCC, 2007).  The implications for flood hydrology are expected to be 

significant, with projections of changing mean temperature and rainfall intensities leading to a 

change in the flood frequency regime.  

 

It has been reported in the literature that the frequency and magnitude of extreme flood 

events are expected to rise in the near future due to climate change, even in cases where 

the long-term annual average rainfall is expected to decline (IPCC, 2007). Changing climate 

will have notable impacts on the rainfall runoff process, and thus the assumption of stationary 

hydrology (i.e. the idea that the past is the key to the future) will have to be revised if the 

stationarity assumption is not met. Otherwise, the effectiveness of the return period concept 

can be undermined, and can lead to underestimation/overestimation of the design flood 

(Khaliq et al., 2006), which in turn will have important implications on the hydrologic design 

and operation processes. Recent research carried out in some regions of the world has 

questioned the validity of the traditional flood risk assumptions of stationarity and 

homogeneity (Power et al., 1999; Douglas et al., 2000; Strupczewski et al., 2001a; Franks 

and Kuczera, 2002; Cunderlik and Burn, 2003; Prudhomme et al., 2003; Micevski et al., 

2006; Leclerc and Ouarda, 2007; among many others), especially with the recognition that 

climate naturally varies at all scales. Accordingly, design flood estimation techniques are 

required to consider the changing flood regimes in the presence of trends in hydrological 

variables, e.g. by assuming time-varying parameters of the flood frequency distribution (e.g., 

Strupczewski et al., 2001a, b).  

 

In attempts to address the impacts of climate change on hydrological time series, numerous 

assessments have been undertaken worldwide to investigate if abnormalities in the form of 

trends exist in time series of hydrological variables. For instance, in North America, Olsen et 

al. (1999) have reported positive trends in flood risk over time for gauged sites within the 

Mississippi, Missouri, and Illinois River basins. Douglas et al. (2000) discovered no evidence 

of trends in flood flows but they did find evidence of upward trends in low flows at larger 

scale in the Midwest and at a smaller scale in Ohio, the north central and the upper Midwest 

regions. Negative trends in total streamflow were most common for the analysed 

Pennsylvanian streamflow time series from 1971 to 2001 due to climate variability (Zhu and 

Day, 2005). Novotny & Stefan (2007) investigated the streamflow records from 36 gauging 

stations in five major river basins of Minnesota, USA, for trend and correlations using the 

Mann-Kendall (MK) test and moving averages method. The authors found that trends 

differed significantly from one river basin to another, and became more prominent for shorter 
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time windows. Pasquini & Depetris (2007) presented an overview of discharge trends and 

flow dynamics of South American rivers draining the southern Atlantic seaboard. Juckem et 

al. (2008) found a decrease in annual flood peaks for stream gauging stations in the Driftless 

Area of Wisconsin.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1 Annual mean temperature anomalies for Australia based on 1961-2009 (Source: 

Australian Bureau of Meteorology dated 10/03/2010) 

 

Similarly, several studies have been undertaken in Canadian basins to assess climate 

change impacts on hydro-meteorological variables. Zhang et al. (2001) analysed hydrological 

data from a network of 54 hydrometric stations and meteorological data from a network of 10 

stations using the Mann-Kendall test associated with the pre-whitening approach. They found 

that overall Canadian streamflows experienced negative trends for the past 30 to 50 years. 

The temperature, precipitation and streamflow data for sites in British Columbia and the 

Yukon were examined by Whitfield (2001). Burn & Hag Elnur (2002) analysed the trends and 

variability in the hydrological regime for the Mackenzie Basin in northern Canada. The 

authors identified similarities in trends and patterns in the hydrological and meteorological 

variables at chosen locations in Canada, implying a relationship between the two groups of 

variables. The trends in annual streamflow volume in northern British Columbia and the 

Yukon have been investigated by Fleming and Clarke (2003). Burn et al. (2004a, b) 

assessed the trends in streamflow data in the Liard and Athabasca River Basins in northern 

Canada. Abdul Aziz & Burn (2006) applied the non-parametric Mann-Kendall test with the 

           5 Years Moving Average 
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trend-free pre-whitening approach to identify trends in hydrological variables. Winter month 

flows exhibited strong increasing trends, and an earlier inception of the spring freshet was 

noted over the basin.  

 

Swedish annual runoff volumes, annual and seasonal flood peak time series have been 

analysed by Lindstrom & Bergstrom (2004), where they found that the 1970s were very dry 

and, in a short perspective, both runoff volumes and flood magnitude increased substantially 

between 1970 and 2002. Birsan et al. (2005) have studied the trends in the streamflows in 

Switzerland using the Mann–Kendall nonparametric test in three study periods. The trends in 

water levels and streamflow in the Yangtze River basin in China have also been investigated 

by Zhang et al. (2006). The temporal trends of annual and seasonal precipitation and 

temperature in the Hanjiang basin in China have been analysed by Hua et al. (2007) using 

Mann-Kendall and linear regression techniques. Petrow and Merz (2009) analysed the trends 

in the flood time series in Germany using the MK test. The analysis detected significant 

upward trends in flood data for a considerable fraction of basins. Also they found that most 

changes were detected for sites in the west, south and centre of Germany. Petrow and Merz 

(2009) concluded that the missing relation between significant changes and basin area 

suggested that the observed changes in flood behaviour are climate-driven. 

 

In Australia, Chiew & McMahon (1993) examined trends in annual streamflow of 30 

unregulated Australian rivers to identify changes in streamflow in relation to the changes in 

climate. The authors did not find evidence of changes in streamflow resulting from climate 

change.  They also indicated that the detection of statistically significant trends in streamflow 

is largely affected by inter-annual variability in streamflow and to a lesser degree the length 

of streamflow record. Hennessy et al. (1999), Plummer et al. (1999) and Collins et al. (2000) 

reported that Australia‟s continental average rainfall and temperature have an increasing 

trend since the beginning of the 20th century, while Smith (2004) and Alexander et al. (2007) 

reported some decreases in the rainfall in the southeast and along the east coast of the 

country after 1950. Similarly, Murphy and Timbal (2008) found that the South-eastern 

Australia region has been experiencing an annual rainfall downward trend at the rate of 20.6 

mm per decade since 1950. 

Taschetto and England (2008) investigated the post 1970 Australian rainfall trends, and they 

found an increasing trend to the west (except coastlines) and a decreasing trend on the 

northeast coast. This is consistent with the trend in annual total rainfall maps issued by the 

Australian Bureau of Meteorology, as shown in Figure 8.2. In general, the spatial pattern of 

the trends in annual precipitation can be separated into two main regions: to the west where 

the rain has been increasing, and the east where precipitation has been decreasing, 
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especially during the last 30 years. Chowdhury and Beecham (2009) investigated the 

monthly rainfall trends and their relation to the southern oscillation index (SOI) at ten rainfall 

stations across Australia covering all the state capital cities. The outcomes of their 

assessment revealed decreasing trends of rainfall depth at two stations (Perth airport and 

Sydney Observatory Hill); no significant trends were found in the Melbourne, Alice Springs 

and Townsville rainfall data, while the remaining five stations showed increasing trends of 

monthly rainfall depth. Furthermore, they found that SOI accounted for the increasing trends 

for the Adelaide and Cairns rainfall data and the decreasing trends for Sydney rainfall. On a 

short time scale, Haddad et al. (2008) reported a decreasing trend in Victorian observed 

annual maximum flood series data (for a quite large number of stations), particularly after the 

1990s. Ishak et al. (2010), based on a preliminary study, found that 30% of the study stations 

exhibited local significant trend in annual maximum flood series data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2 Rainfall trends in Australia for (a) 1910 to 2008 and (b) 1970-2008. Trends are 

shown in mm per decade. (Source: Australian Bureau of Meteorology dated 05/01/2009)  

 

The review of literatures on the identification of trends in hydrological data reveals that the 

non-parametric Mann-Kendall (MK) and Spearman Rho (SR) associated with Sen‟s robust 

slope estimator tests have been favoured for identifying temporal changes in observational 

records. The non-parametric tests are more robust with respect to non-normality, 

nonlinearity, missing values, serial dependence, sensitivity to outliers (extremes), and 

seasonality (Yue et al., 2002). Furthermore, the majority of trend investigations in Australia 

were concentrated on the evaluation of the trends in the Australian rainfall time series, with 
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limited investigation on the impact of climate changes on flood risk appraisal. Thus the 

emphasis in this chapter is on the assessment of trends in the annual maximum flood series 

for the Australian continent with and without the consideration of serial and cross-correlation. 

The spatial distribution of catchments exhibiting trends and not exhibiting trends is also 

investigated. The relationships between trends in annual maximum flood series and the 

catchments attributes are also investigated. 

 

8.3 Adopted Methodology  

 

The first step in the trend analysis is to investigate trends in the hydrological data at local 

scales. Thus, the methodology used for exploring the trends and variability started with the 

preliminary evaluation of trends in hydrological variables for individual stations, with the 

assumption of serial independence of recorded observations, using the Mann-Kendall and 

the Spearman Rho nonparametric trend tests without the consideration of the correlation 

structure. Both tests are rank-based methods, where the MK test assesses whether a 

random response monotonically increases or decreases, and the SR test examines whether 

the correlation between time steps and streamflow observations is significant. The results of 

the trend analysis can be used to establish whether the observed streamflow time series 

from the selected sites exhibit trends for a number of sites that is greater than the number 

that is expected to occur by chance. All the trend outcomes have been appraised using a 

local significance level of 10% to ensure an effective exploration of the trend characteristics 

in the study area. 

 

A vital part of the trend identification procedure is to consider the correlation structure of the 

time series under assessment. The correlation structure consists of the serial correlation of 

the data series, and the cross-correlation between hydrological variables at different 

locations (Khaliq et al., 2009). The existence of positive serial correlation within a time series 

increases the possibility of the null hypothesis of no trend being rejected while the null 

hypothesis is actually true (von Storch, 1995). Similarly, the occurrence of positive cross-

correlation within a hydrological homogeneous region or within a stream gauging network will 

enhance the possibility of the null hypothesis of no field significance of identified trends being 

rejected (Douglas et al., 2000). The field significance analysis of identified trends helps to 

establish whether the stations recognized with significant trends at local scales are real or 

just coincidental because of cross-correlation among the set of stations studied. Hence, 

failure to take this into consideration in the trend detection process could result in erroneous 

conclusions. 
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The impact of serial correlation on the trend detection analysis has been addressed by 

applying the trend-free-pre-whitening (TFPW) approach proposed by Yue et al. (2002) to the 

hydrological variables. The TFPW process involves an estimation of the slope of the trend by 

using Sen‟s robust slope estimator method, then the series is detrended by assuming a 

linear trend and the lag-1 serial correlation coefficient is evaluated from the detrended series. 

If the lag-1 serial correlation coefficient is non-significant at the 95% significance level, then 

the MK test is applied to the original time series, as it is considered to be serially 

independent; otherwise the trend identification test is applied to the detrended pre-whitened 

series recombined with the previously estimated slope of trend. Note that while the TFPW 

process requires fitting and removing a linear trend, the overall MK trend analysis does not 

make any assumptions about the nature of the trend in the data set. 

 

In a similar manner, the presence of positive cross-correlation among a stream gauging 

network will inflate the rate of rejecting the null hypothesis of no field significance of trends 

while it is true (Douglas et al., 2000). Therefore, in this study, the cross-correlation was 

incorporated by evaluating the field significance of the trend results using the group block 

bootstrap resampling approach from Yue et al. (2003) by preserving the cross-correlation 

within the stations network. The resampling approach determines the critical value for the 

percentage of stations exhibiting an upward or a downward trend separately by chance. 

Based on this critical value, it is possible to determine whether the observed number of 

upward or downward trends within the stream gauging network exceeds what is expected to 

occur by chance. For illustration, at the field significance level of 0.1, if the observed number 

of sites with significant upward trend is greater than or equal to the 90th quantile value of the 

simulated distribution of the number of sites with significant upward trend developed by the 

bootstrap approach, then the observed number of sites with significant upward trends over 

the network is judged to be field-significant at 0.1 significance level. Similarly, the observed 

number of sites with significant downward trend was assessed. Results obtained from the 

trend test were analysed using a local significance level of 10% and a field significance level 

of 10%.  
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8.4 Study period and database 

 

The preliminary trend analysis using MK and SP tests was performed on a study period 

corresponding to all the available records at each station to allow for an optimal spatial 

coverage. This initial assessment provides general guidance about the trend behaviour for 

individual stations, although the periods of records reflected at each station potentially 

fluctuate, making interpretation of the results more difficult. Further, the methodology 

described for the consideration of the correlation structure was carried out on three study 

periods starting in 1955, 1965, and 1975 and ending in 2004. The different fixed study 

periods selected correspond to a trade-off between the temporal and spatial coverage 

offered by the selected data set. The selection of a common period of record in this way 

facilitates investigation of variable climate conditions during the common prescribed period. It 

should be prominent that for a station to be included in any of the three given study periods, 

it should have a continuous record during the study period, whereas two years of no data 

were allowable during the preliminary analysis.   

  

Australian annual maximum flood series (AMS) data collected from river monitoring stations 

throughout Australia were used for the trend identification analysis. The data base consists of 

491 streamflow stations selected with a minimum record length of 30 years, where the 

average record length is 38 years and the longest one is 97 years, to ensure statistical 

validity of the trend results. Although there are a total of 491 stations with streamflow data, 

the selected study periods determined which of the stations were available for the 

investigation. On average, the numbers of stations available were 330 for the 30-year period, 

77 for the 40-year period, and 21 for the 50-year period. The selected stations have 

catchments with only minor anthropogenic influence and high quality measurements. 

Catchment sizes range from 1.3 km2 to 4,360 km2, with a median value of about 280 km2. 

About 3% of the catchments are greater than 1,000 km2 in size; about 22% are less than 100 

km2. Most of the selected stations were spatially located near the coast line, as shown in 

Figure 8.3.  
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Figure 8.3 Geographical distributions of the selected catchments 

 

8.5 Results of trend analysis 

This section presents the preliminary results from the MK and SR tests for the study period 

corresponding to all the available records at each station, without consideration of the 

correlation structure. The outcomes of statistically significant trends observed at the 90% 

local confidence level are summarised in Table 8.1. Presented is the percentage of stations 

with significant trend for the annual maximum (AM) flood series; results are given separately 

for upward and downward trends. Among the 491 stations, the total numbers of stations 

exhibiting either a positive or negative trend by the MK and SR tests are 156 and 172 

stations respectively. Prominently, the numbers of trends for the AM flood data far exceed 

the critical level for establishing on-site significance. As a consequence, the preliminary 

conclusion is that the Australian AM flood series are exhibiting substantially more trends 

(32% and 35% from MK and SR tests respectively) than would be expected to occur by 

chance (10%). Further, Table 8.1 displays that the direction of the trends is, in general, 

downward, as recognized by the two trend tests. However, the shortness in record length for 

the majority of the selected stations (average record length of 38 years) might have an 

impact on these results, particularly the dry period experienced in the last decade in the 

south-eastern and south-western parts of the continent.  
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Table 8.1 Trend analysis results and percentage of stations with a significant trend 

 Trend Tests 

Number of 

Stations 

Number of stations 

with  Decreasing 

Trends 

Number of stations 

with Increasing 

Trends 

Percent 

Significant 

Trends (%) 

Mann-Kendall  

491 

127 29 32 

Spearman's 

Rho 
140 32 35 

 

Additionally, the spatial distribution of trends in the annual maximum flood series for the 

preliminary study period from MK and SR tests for the Australian region is visually displayed 

in Figures 8.4 and 8.5 respectively. On these maps, a yellow circle, a blue circle and a red 

circle represent a station with no significant trend, significant upward trend, and significant 

downward trend, respectively. Notable from these figures are the basins located in south-

eastern Australia and in the south-west of Western Australia region that exhibit downward 

trends only, suggesting a decrease in the AM flood series with time within these regions. 

Contrary are the basins located in the north-western part of the continent, which display 

upward trends, suggesting an increase in the AM flood series (with time) for these basins, 

while combined decreasing and increasing trend patterns were detected in the north-eastern 

region mostly in Queensland. It is noteworthy that this preliminary trend analysis allows for 

an optimal spatial coverage, although the period of records reflected at each station 

fluctuates, making interpretation of the results quite difficult. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.4 Results of trend analysis based on Mann-Kendall test. Red and blue circles 

represent downward and upward trends respectively  



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  240 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5 Results of trend analysis based on Spearman‟s Rho. Red and blue circles 

represent downward and upward trends, respectively 

 

8.6 Impact of serial and spatial correlation on trend results 

 

8.6.1 Site significance assessment 

 

As a first step, the annual maximum (AM) flow series at all stations for the three selected 

study periods were subjected to serial correlation (or autocorrelation) analysis.  It was found 

that the majority of the stations (with 40 and 50 years study periods) had no significant lag-1 

serial correlation coefficient. However, for the 30 years study period, it was found that 23 out 

of 330 stations (7%) showed positive serial correlation, whereas 8 stations (2%) had negative 

serial correlation. The mapped results in Figure 8.6 indicated no regional pattern for positive 

serial correlation. The stations with a significant serial correlation are subjected to the TFPW 

processes before applying the MK test.  
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Figure 8.6 Serial correlation analysis. Purple lozenge represents the stations with positive 

serial correlation  

 

The MK test with the trend free pre-whitening procedures was then applied to assess the 

significance of trend at the significance level of 0.10 in the annual maximum flow series for 

30-, 40-, and 50-year periods. Table 8.2 presents the number of available stations and the 

percentages of the stations with significant upward and downward trends for the three study 

periods. Additionally, the last two columns in Table 2 present the total number and the 

percentage of the stations with significant trends. Apparent from Table 8.2 is the decrease in 

the density of the station network with the increasing length of the study period. The 

outcomes indicate that for all the three time frames considered here, the percentages of 

stations with significant downward trends are higher than the expected number at the 

significance level of 0.10. For example, consider the 1965-2004 period, here 16 stations out 

of 77 show downward trend, which is 21% of the total stations, and greater than 7.7 stations, 

expected to happen by chance at the 10% significance level. The percentages of stations 

with significant upward trends are not considered to be of statistically significant, as they are 

smaller than the expected number at the 10% significance level. However, if the stations 

showing significant trend (irrespective of increasing or decreasing trend) are combined, the 

percentages of total sites with significant trends are higher than the expected number at the 

10% significance level.  
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Table 8.2 Percentage of Stations with significant upward and downward trends at the 

significance level of 0.10 (based on trend free pre-whitening procedure) 

Study period 

Total  

stations 

tested 

Downward trend Upward trend 
Total stations showing 

trend 

Number of 

stations 
% 

Number 

of stations 
% 

Number of 

stations 
% 

1955 - 2004 21 6 29 1 5 7 33 

1965 - 2004 77 16 21 2 3 18 23 

1975 - 2004 330 75 23 7 2 82 25 

 

Furthermore, the spatial distributions of the stations showing significant trends in annual 

maximum flows based on TFPW_MK test are shown in Figure 8.7(a, b, c). On the maps, a 

yellow, blue and a red circle represent a station with no significant trend, significant upward 

trend and significant downward trend, respectively. The density of stations for the 1955-2004 

study periods is quite low and results in a very uneven spatial distribution of gauging stations 

across the country, making the interpretation of the results quite difficult. Hence, the focus 

will be on the findings from the 1965-2004 and 1975-2004 study periods, since these periods 

provide a good spatial coverage and present a reasonably long record length. Figure 8.7(b) 

shows a decreasing trend for a good number of stations in the south-west of Western 

Australia, and in the south-east of New South Wales and south-east of Queensland regions. 

A significant upward trend is found for only a few stations in the north-east of Queensland 

and in the north of the Northern Territory regions.  

 

The spatial patterns of the trends for the 30-year period are displayed in Figure 8.7(c), which 

shows an upward trend along the north-west regions, and a downward trend along the south-

east and the eastern regions of the country. Interesting is the detection of both upward and 

downward trends in the south-west of Western Australia. Furthermore, Figures 8.4, 8.5 and 

Figure 8.7 substantiate that the identified trends in the annual maximum flood series are 

spatially consistent with the trends in regional mean annual rainfall and other average rainfall 

characteristics identified previously (e.g., Murphy and Timbal, 2008; Taschetto and England, 

2008). These studies have identified an increasing trend of mean annual rainfall and other 

average rainfall characteristics in the western region (except near the coastline) and a 

decreasing trend along the eastern coastlines. This similarity in trends and patterns in the 

annual maximum flow and rainfall variables for the study area implies that the trends in 

streamflow might be related to the trends in rainfall. However, the flood behaviour is likely to 

be more related to extreme rainfalls rather than mean annual rainfall. Further study will be 
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conducted in Stage III of Project 5 to investigate the link between the trends of extreme 

rainfalls and flood data in Australia.  

 

8.6.2 Field significance of trends 

As mentioned earlier, the presence of cross-correlation in a station-network affects the ability 

of a test to assess the field significance of trends over a network. The cross-correlation 

coefficient between two sites can be computed after Salas et al. (1980). The histograms of 

the cross-correlation coefficients among the sites of the AM flood series for the three time 

frames (1955–2004, 1965–2004 & 1975–2004) were plotted in Figure 8.8. This shows that 

the number of pairs of sites with positive cross-correlation is much greater than those with 

negative cross-correlation, and that positive cross-correlation dominates the streamflow 

observation network. The bootstrap test with preserving the cross-correlation structure in the 

network and with the TFPW approach to remove serial correlation at sites was applied to 

assess the field significance of trends in the AM flood series over the whole country.  

 

For the purpose of illustration, the bootstrap empirical cumulative distributions (BECDs) of 

the number of significant upward and downward trends for the AM flood series for the three 

study timeframes, with preserving the cross-correlation structure of the network, are 

displayed in Figure 8.9(a), (b), (c). Further, the 90th quantile values of the simulated 

distribution of the number of sites with significant upward/downward trends developed by the 

bootstrap resampling approach for the three time periods are presented in Table 8.3. The 

field assessment results with the consideration of the influence of the cross-correlation 

among the sites, for the three timeframes, 1955-2004, 1965-2004 and 1975-2004, show that 

the downward trends in the real data network are statistically significant at the 10% 

significance level. To clarify, the 90th quantile values of the empirical cumulative distribution 

for the number of sites with significant downward trend are found to be 3, 9, and 40 for the 

50-, 40- and 30-year periods respectively, compared to 6, 16, and 75 sites with significant 

downward trends for the real data network. On the other hand, none of the three study 

periods demonstrates that the upward trend in the data network is statistically significant at 

the 10% level of significance with the consideration of the cross-correlation among the sites 

in the network. 
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Figure 8.7 Spatial illustration of significant trends for the annual maximum flows: (a) 1955 - 

2004; (b) 1965 - 2004; and (c) 1975 – 2004 
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Figure 8.8 Histograms of cross-correlation coefficients of the network for different time 

frames: (a) 1955-2004; (b) 1965-2004; and (c) 1975-2004
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Figure 8.9: BECDs of the number of significant trends for AMFS with preserving the cross-

correlation structure of the network: (a) 1955-2004; (b) 1965-2004; and (c) 1975-2004 
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Table 8.3 Field significance assessment results by the bootstrap test. 

Period 

Total 
Stations 
Tested 

90th quantile value of the simulated 
distribution  

Upward Downward 

1955 - 2004 21 3 3 

1965 - 2004 77 8 9 

1975 - 2004 330 40 40 

 

 

8.7 Impacts of catchment attributes on trends  

 

In this section the relationships between trends in the AM flow and the catchments attributes 

are investigated. The catchment attributes are summarised by the catchment areas, mean 

annual rainfall and mean annual evaporation. Figure 8.10(a, b, c) presents box plots for the 

stations showing significant trends (at the 10% significance level) compared to their parent 

data set for the three study periods. Apparent from these box plots is that the catchments 

with smaller size are generally exhibiting more trend than the bigger catchments.  

 

An investigation was also made to see whether the stations showing trends have any 

unusual physical features e.g. storage, mining, land clearing; however, nothing remarkable 

was found.    
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Figure 8.10: Relationships between trends in the AM flow and the catchments attributes: (a) 

1955-2004; (b) 1965-2004; and (c) 1975-2004
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8.8 Impact of trend on regional flood estimates 

 

To assess the impacts of time trends on regional flood estimates, it is proposed that a non-

stationary generalised extreme value (GEV) distribution be fitted to selected stations‟ AM 

flood series in different parts of the country and compared with the quantile estimates 

obtained from the stationary GEV distribution. This will enable identification of the level of 

expected differences in flood quantile estimates over various ARIs and locations due to the 

presence of expected levels of upward or downward trends. This has been left for future 

study.  

 

8.9 Summary 

 

This chapter presents the results of trend analyses for the Australian annual maximum flood 

series. Firstly, a preliminary trend assessment using the rank-based non-parametric Mann-

Kendal and Spearman Rho tests using all the available records for the selected stations was 

undertaken. However, to eliminate the effect of serial correlation on the Mann-Kendall test for 

assessing the site significance of a trend, the trend-free pre-whitening (TFPW) procedure 

was applied to the annual maximum flood series. Also, a bootstrap test with preserving the 

cross-correlation structure in a station network and with the TFPW to remove serial 

correlation at a site for assessing separately the field significance of upward and downward 

trends over the network was used.  

 

There is a good agreement between the outcomes from the site significance assessment 

based on the TFPW procedures and the results from the preliminary trend analysis. In 

general, prominent from both the analyses is the geographical distribution of the stations with 

significant upward and downward trend at the significance level of 0.1; specifically, the 

findings of negative trend in the annual maximum flood series in the south-east and positive 

trend in the north-west of the continent. Furthermore, the additional bootstrap test was 

applied to assess the field significance of the upward and downward trends in the annual 

maximum flood series for the three timeframes over the country. At the significance level of 

10% and with the consideration of the cross-correlation among the sites in the network, field 

significance of downward trends in the annual maximum flood series for the three time 

periods was detected over the whole country. Conversely, the field significance of upward 

trends for the three time periods was found to be statistically non-significant at the 10% 
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significance level. It has also been found that smaller catchments are affected by trends in 

greater proportion than the larger ones. 

 

Based on the results of this investigation, it can be concluded that the annual maximum flood 

series in a large number of Australian stations are affected by a time trend at the 10% level 

of significance. However, given the length of records and the existence of exceptionally dry 

weather in the last decade or so, it is not possible to state whether this trend is due to climate 

change. A further investigation is needed to identify the causes of the identified trends and 

their possible links with climate indices and physical catchment attributes.  

 

The impacts of the identified trends on regional flood quantile estimates for ARIs in the range 

of 2 to 100 years will be investigated in Stage III of the project. This is expected to produce 

climate change adjustment factors as a function of ARIs and locations across Australia. 
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9. Summary of Project 5 Stage II investigations 
 

The summary of research investigations from Project 5 Stage II, as presented in this report, 

is provided below. 

 

1) Updated national database: The initially prepared streamflow and catchment attributes 

database in Stage I of the project has been upgraded, as summarised below. The 

national database now contains 682 stations from coastal regions of Australia and 45 

stations from arid/ semi-arid regions, giving a total of 727 stations. 

 

a) New database for WA has been prepared consisting of 146 stations: 

i) 120 stations from south-west region (Drainage Division VI) 

ii) 12 stations from Pilbara region (Drainage Division VII) 

iii) 14 stations from Kimberley region (Drainage Division VIII – WA part) 

 

b) Database for Tasmania has been updated which now contains 53 stations:  

i) 32 stations from western Tasmania and 

ii) 21 stations for east Tasmania. 

c) Database for the NT has been updated, now contains 55 stations. 

d) Database for Victoria, NSW, Qld and SA have been further tested and updated where 

needed. The number of stations for these states are: 

i) Victoria – 131 stations 

ii) NSW - 96 stations 

iii) Qld – 172 stations 

iv) SA - 29 stations 

e) Database for arid/semi-arid regions has been prepared, containing 45 stations from 

SA, Vic, NSW, Qld and NT.  

 

Some important details of the national database are provided in Table 9.1. The locations 

of the selected 727 stations are plotted in Figure 9.1. 
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Table 9.1 Summary of national database (Project 5 Regional flood methods in Australia) 

State 
No. of 

stations 
Median annual maximum 
flood record length (years) 

Median catchment 
size (km2) 

NSW & ACT 96 34 267 

Victoria 131 33 289 

South Australia 29 34 76.5 

Tasmania 53 28 158 

Queensland 172 36 254 

Western Australia 146 30 60 

Northern Territory 55 33 360 

Sub Total 682 - - 

Arid semi-arid region 45 22 360 

TOTAL 727 - - 

 

 

 

 

Figure 9.1 Geographical distributions of the selected 727 stations for Project 5 
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2) GLS based Quantile Regression Technique (QRT) vs. Probabilistic Rational Method 

(PRM): The two methods have been compared for the state of NSW. To make a valid 

comparison, the same predictor variables and data set have been used with both the 

methods. The comparison has examined the specific features of each method and 

assessed its performance using a one-at-a-time validation approach, where each of the 

study catchments is tested independently, as well as a split sample approach, leaving a 

randomly selected 20% of catchments for independent testing. Based on a range of 

evaluation statistics (such as root mean squared error, median relative error and ratio of 

predicted and observed flood quantiles), the QRT has been found to outperform the 

PRM. No evidence has been found that PRM and QRT perform more poorly for smaller 

catchments, as far as the range of smaller catchments used in this study is concerned. 

The applicability of these methods for catchments smaller than 8 km2 could not be tested 

due to limitations of streamflow data for these catchments. 

 

The particular advantage of the QRT is that it does not require a contour map of the 

runoff coefficient as with the PRM. The GLS-based QRT also offers rigorous uncertainty 

analysis of the estimated flood quantiles by differentiating the sampling and model error. 

The QRT can also be integrated with the region-of-influence approach where a region 

can be formed around an ungauged catchment by selecting an „appropriate number‟ of 

neighbouring gauged catchments based on the criterion of minimum model error 

variance. Hence, QRT offers much greater flexibility and potential in terms of error 

analysis and further development. 

 

Based on these findings, the PRM method was not considered for further testing. 

Subsequently, the QRT has been further developed and tested with the region-of-

influence approach and compared with the Parameter Regression Technique (PRT). In 

the PRT, the first three moments of the LP-3 distribution have been regionalised. 

 

3) QRT vs. PRT and fixed regions vs. region-of-influence approach: The GLS 

regression method developed in the Stage I project has been enhanced by adding 

Bayesian analysis, which is referred to as Bayesian GLS regression. The Bayesian 

Quantile Regression Technique (QRT) and Bayesian Parameter Regression Technique 

(PRT) have been compared for various Australian states (i.e. Victoria, NSW & ACT, 

Tasmania, Qld, SA, NT and WA).  
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It has been found that Bayesian QRT and Bayesian PRT methods perform very similarly 

for various Australian states. Since the PRT method offers several additional advantages 

over the QRT (namely, in PRT, flood quantiles increase smoothly with increasing ARIs 

and floods of any ARI in the range of 2 to 100 years can be estimated), this has been 

recommended for further testing for inclusion in the 4th edition of ARR. It has been found 

that for the PRT, only two predictor variables (catchment area and design rainfall intensity 

of 2 years ARI and 12 hours duration) are needed to estimate the mean annual flood and 

regional average values of the standard deviation (SD) and skew of ln(Q), which can then  

be used to fit the regional LP3 distribution. This will make the application of the PRT 

method relatively easy in practice.  

 

From the comparison of fixed regions and region-of-influence (ROI) approaches, it has 

been found that the ROI approach outperforms the use of fixed regions; the ROI reduces 

the model error variance by reducing the size of the region i.e. this provides a region with 

a lower level of heterogeneity. It has been found that the mean flood model has the 

highest model error as compared to the SD and skew models. In the ROI approach, the 

mean flood, SD and skew models typically require about 40, 60 and 100 sites, 

respectively. 

 

4) Applicability of the RFFA method to small catchments: It has been found that the 

recommended RFFA methods i.e. GLS-PRT-ROI and GLS-PRT-fixed-region perform 

quite well for the smaller catchments in the database, where there is no evidence that 

smaller catchments perform more poorly than for the medium and larger catchments. The 

possibility of extending the RFFA method to very small catchments beyond the limit of the 

current Project 5 database has been examined; however, further study is needed to 

develop an acceptable method. 

 

5) RFFA method for flood estimation in the large flood range: It has been found in 

Stage 1 of Project 5 that the development of a simple Large Flood Regionalisation Model 

for regional flood estimation in the „rare‟ flood range (ARIs 100 to 2000 years) needs 

consideration of the cross-correlations among the highest data points from each station‟s 

AM series. A number of possible ways to deal with this problem have been discussed 

however, this aspect needs further investigation.  

 

6) RFFA method for arid/semi-arid regions: Catchments in the arid and semi-arid regions 

of Australia have a distinctly different flood hydrology from catchments in more 

humid/coastal regions, and they thus warrant separate treatment for regional flood 
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estimation. The limited availability of streamflow data at both temporal and spatial scales 

in the arid and semi-arid regions of Australia makes it difficult to develop statistically 

meaningful RFFA methods. Using the limited data, a simple RFFA method has been 

developed for the arid and semi-arid regions, which has generally a lower degree of 

accuracy than the RFFA methods developed in Chapter 4 for the coastal regions of 

Australia, which are based on a larger data set with good quality. The RFFA methods 

presented here for the arid and semi-arid regions should be used with caution; local 

hydrological knowledge must be exercised to interpret the results. It would be necessary 

to compare the results from these methods with other methods, such as rainfall runoff 

models and any locally available methods. The RFFA methods presented in this report 

for arid/semi-arid region will require further development and testing before they can be 

recommended for inclusion in the revised ARR.    

 

It is recommended that some representative stream gauges be established in the arid 

and semi-arid regions for „long term monitoring‟ to develop a more comprehensive 

database, which will assist in upgrading the RFFA methods presented here in the future. 

A more comprehensive flood data base is required to develop a better understanding of 

how the special climate, catchment and stream characteristics of the arid and semi-arid 

regions of Australia interact to produce distinctly different flood responses. It is to be 

noted here that a high degree of uncertainty associated with a RFFA method results in 

inaccurate design flood estimates, which increase the capital cost of the infrastructure in 

the case of over-design, or the average annual flood damage cost in the case of under-

design. The cost of streamflow monitoring and data collection is expected to be far less 

than the cost associated with grossly inaccurate RFFA methods developed based on 

inadequate data. 

 

Trends in the annual maximum flood data: The impacts of serial and cross-correlation on 

trend analysis in the annual maximum flood series have been investigated. At the 

significance level of 10% and with the consideration of the cross-correlation among the sites 

in the network, field significance of downward trends in the annual maximum flood series was 

detected over the whole country. Conversely, the field significance of upward trends was 

discovered to be not statistically significant at the 10% level. It has also been found that 

smaller catchments are affected by trends in greater proportion than the larger catchments. 

Based on the results of this investigation, it can be stated that the annual maximum flood 

series in a large number of Australian stations are affected by a time trend at 10% level of 

significance. However, given the length of records and the existence of exceptionally dry 

weather conditions in the last decade or so, it is not possible to state whether this trend is 
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due to climate change. A further investigation is needed to identify the causes of the 

identified trend and their possible links with climate indices and physical catchment 

attributes. The impacts of the identified trends on regional flood quantile estimates for ARIs in 

the range of 2 to 100 years will be investigated in Stage III of the project. This is expected to 

produce climate change adjustment factors as a function of ARIs and locations across 

Australia. 

7)   
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10 Recommended RFFA methods for inclusion in the ARR 

and further testing and development 

 

10.1 Recommended RFFA methods for ARR 

 

1. Based on the findings of Stage I and Stage II of Project 5, it is recommended that 

the Bayesian-GLS-PRT method be applied as a general RFFA method for 

Australia. Also, the region-of-influence (ROI) approach should be used if there are 

enough stations in a region (say at least 50 stations). For the arid/semi-arid 

region, a simple index type RFFA method is recommended for use. 

 

2. Given the availability and geographical contiguity of a sufficient number of 

stations, the Bayesian-GLS-PRT-ROI method is recommended for the states of 

Victoria, NSW/ACT, Qld and south-west WA. Here, the state boundaries between 

Victoria, NSW/ACT and Qld should be disregarded and the stations from these 

regions combined into a single database to apply the Bayesian-GLS-PRT method.  

 

3. For Tasmania, two separate fixed regions are recommended: east Tasmania with 

21 stations and western Tasmania with 32 stations.  

  

4. For the NT, two separate fixed regions are recommended, one for north-west NT 

(Drainage Division VIII – NT part, containing 51 stations) and the other for 

Drainage Division IX (NT part). The arid/semi-arid part of the NT is to be treated 

as a separate region (possibly to be combined with data from other arid/semi-arid 

regions).  

 

5. For SA, a fixed region is recommended for Drainage Division V containing 29 

stations. The arid/semi-arid part of SA should be treated as a separate region 

(possibly to be combined with data from other arid/semi-arid regions). 

 

6. For WA, the Kimberley region (containing 14 stations) should be treated as a 

separate fixed region and, similarly, the Pilbara region (containing 12 stations) 

should be treated as a separate fixed region. 
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7. A simplified index-type RFFA method is recommended for arid/semi-arid regions 

of Australia, where four separate regions are recommended at this stage (this 

needs further development and testing before inclusion in ARR): 

(1) Arid/semi-arid parts of NSW and Victoria – one region (containing 9 stations) 

(2) Arid/semi-arid part of SA – one region (containing 6 stations) 

(3) Arid/semi-arid part of Qld – one region (containing 16 stations) 

(4) Arid/semi-arid part of NT – one region (containing 14 stations) 

 

Recommended RFFA methods for various Australian regions are summarised in Table 9.2. 

 

Table 9.2 Recommended RFFA methods for inclusion in ARR (subject to further testing) 

State Region Number 

of 

stations 

Method of 

forming region 

Estimation 

model 

NSW, ACT, 

Vic, Qld 

 399 ROI Bayesian GLS-

PRT-ROI 

Tasmania west Tasmania 32 Fixed region Bayesian GLS-

PRT 

east Tasmania 21 Fixed region Bayesian GLS-

PRT 

South Australia  29 Fixed region Bayesian GLS-

PRT 

Northern 

Territory 

North-west NT  

(Drainage Division VIII – 

NT part) 

51 Fixed region Bayesian GLS-

PRT 

North east NT  

(Drainage Division IX – 

NT part) 

4 Fixed region Bayesian GLS-

PRT 

WA Kimberley region 14 Fixed region Bayesian GLS-

PRT 

Pilbara region 12 Fixed region Bayesian GLS-

PRT 

South-west WA 120 ROI Bayesian GLS-

PRT-ROI 

Arid/semi-arid 

region 

Arid/ semi-arid parts of 

NSW and Vic 

9 Fixed region Simple index 

flood method 
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Arid/ semi-arid part of SA 6 

Arid/ semi-arid part of 

Qld 

16 

Arid/ semi-arid part of NT 14 

Arid/semi-arid part of WA - To be identified To be identified 

 

 

10.2 Further development and testing of the RFFA methods to be 

included in ARR 

 
The RFFA methods identified for inclusion in the ARR chapter (as discussed in Section 10.1) 

need further testing/development to come up with the final set of methods, design databases, 

user guidelines and application tools. This will form the scope of Stage III project, as 

summarised in Table 10.2.   

 
Table 10.2 Further development and testing of the RFFA methods to be included in ARR 

(Stage III proposed scope)  

Task Description 

1 Further testing and development of the recommended regional flood frequency 

analysis (RFFA) method, which is the parameter regression technique (PRT) using 

Bayesian GLS regression with region-of-influence (ROI) and fixed regions: 

1.1 Testing for smaller catchments 

1.2 Investigating the outlier catchments 

1.3 Examining the effects of removing the state boundaries for the combined data set 

of Vic, NSW and Qld on the results of the PRT-GLS-ROI method 

1.4 Testing the recommended RFFA method with randomly selected ungauged 

catchments in different states and compare the results with alternative methods 

1.5 Linking the method with at-site flood data and historical information, if any 

1.5 Documenting the results of testing and any modifications to the recommended 

methods. 

2 Development of a database and user instructions for pilot application of the 

recommended methods and benchmark testing by various state agencies/stake 

holders 

2.1 Deriving gridded coefficient values for PRT-GLS-ROI method, producing map in 

GIS format  

2.2 Preparing a set of guidelines on application of method (with a simple to use 
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spreadsheet)  

2.3 Analysing results of benchmark testing and adjusting method/guidelines for 

application. 

3 Development of a functional specification for the Windows-based GIS application tool 

for routine application of the recommended Bayesian-GLS-PRT-ROI method, 

including: 

 clear delineation of the limits of application in terms of the range of predictor 

variables used in the regressions and any other constraints 

 procedures for flood estimation in boundary areas between regions 

 calculation and presentation of uncertainties in flood estimates 

 generation of warning messages if uncertainties exceed nominal limits. 

4 Development and testing of Windows-based GIS application tool for routine 

application of the recommended RFFA methods. 

5 Recalibrating the adopted RFFA methods with new design rainfall data. 

6 Examination of trends in annual maximum flood data and identification of the impacts 

of climate variability and change on regional flood estimates. 

7 Development of a simple regional flood estimation techniques for large to extreme 

floods (Application of Large Flood Regionalisation Model) in the range of 100 to 1000 

years. 

8 Preparation of technical reports and refereed papers. 

9 ARR chapter drafting and finalisation. 
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11. Development of application tools 
 
 

The RFFA models based on fixed regions can be applied without the need of any 

software/application tool. However, the application of the Bayesian GLS-PRT-ROI method 

[for NSW, ACT, Vic, Qld and WA (south-west part)] would preferably require user-friendly 

software. The specifications of the Windows-based GIS application tool/software for 

routine application of the recommended Bayesian GLS-PRT-ROI method are provided below 

and illustrated in the flow chart in Figure 11.1. 

 

1. Locating the ungauged catchment of interest: The software will ask the user to 

enter the name, latitude and longitude of the ungauged catchment. The software will 

then plot the location of the ungauged catchment on a map of Australia. The software 

will check whether the ungauged catchment falls within the limits of application defined 

by the design data set that were used to develop the RFFA method which underpins 

the software. 

 

2. Obtaining regression coefficients and values of regional average standard 

deviation and skew of ln(Q): Regression coefficient values for estimation of the 

mean flood and regional average values of standard deviation and skew at each of the 

pre-determined grid points will be provided to the software developer in the form of a 

database table. Based on the location of the ungauged catchment, the software will 

select the regression coefficients from the grid point which is closest to the location of 

the ungauged catchment in question. It will then calculate the mean annual flood and 

display the mean annual flood and regional average values of SD and skew of ln(Q) in 

a window. 

 

3. Abstraction of predictor variables at the ungauged site of interest: Catchment 

area will be estimated by the user outside the software or it can be obtained from a 

linked GIS-based catchment map. The software may be linked with the BOM design 

rainfall calculator so that the user can obtain the required design rainfall intensity value 

at the ungauged site of interest directly. The software will then check whether the 

estimated area and rainfall intensity values are within the range of design data used to 

derive the gridded coefficient values e.g. whether 3 km2 <= area <= 1000 km2 and  

0.80×Imin <= I <= 1.20×Imax (where Imin and Imax are minimum and maximum 
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design rainfall intensity values respectively from the model database) (these limits will 

be confirmed after further testing). 

4. Fitting the regional LP3 distribution/PRT: Once the mean flood, SD and skew are 

calculated for the ungauged catchment, the frequency factors KT will be estimated and 

flood quantiles QT will be obtained for the specified range of T values and reported in a 

table. A flood frequency curve will be plotted by the software. 

 

5. Poorly gauged catchments with some data availability: If at-site flood data or 

historical flood information are available, the regional estimate obtained in step 4 will 

be updated. 

 

6. Confidence limits: The confidence limits of the estimated QT values will be derived 

and plotted by the software. 

 

7. Upgrade of gridded coefficients: Once a sufficient amount of new flood data are 

available, the gridded coefficients should be upgraded and fed into the software. This 

may need to be done every 5 years or so. 

 

8. Hosting of the software: The software should be web-based and hosted by an 

organisation like EA or BOM. 

 

9. Continuing feedback during initial period of application: The Project 5 team will 

be available for providing feedback during the initial application period of the software 

by the industry. 
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Figure 11.1 Flow chart showing the desirable features of the application tools/software for 

implementing the Bayesian GLS-PRT-ROI regional flood frequency analysis method 
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12. Conclusions 
 
This report presents research and investigations carried out for ARR Project 5 Regional flood 

methods in Australia (Stage II). The following conclusions can be drawn from this report: 

 

1. A quality controlled national database consisting of 727 stations has been prepared 

for development and testing of regional flood frequency analysis (RFFA) methods to 

be included in the upcoming 4th edition of Australian Rainfall and Runoff (ARR). This 

database covers all of mainland Australia and Tasmania. 

 

2. It has been found that regression-based RFFA methods (such as the Quantile 

Regression Technique (QRT) or the Parameter Regression Technique (PRT)) are 

preferable to the Probabilistic Rational Method. The particular advantage of the QRT 

and PRT is that they do not require a contour map of the runoff coefficient as with the 

PRM. The GLS-based QRT/PRT methods also offer rigorous uncertainty analysis of 

the estimated flood quantiles by differentiating between the sampling and model 

errors. The QRT/PRT can also be integrated with the region-of-influence approach, 

where a region can be formed around an ungauged catchment by selecting an 

„appropriate number‟ of neighbouring gauged catchments, based on the criterion of 

minimum model error variance. Hence, QRT/PRT offer much greater flexibility and 

potential in terms of error analysis and further development. 

 

3. It has been found that Bayesian QRT and Bayesian PRT methods perform very 

similarly for various Australian states. Since the PRT method offers several additional 

advantages over the QRT (namely, in the PRT flood quantiles increase smoothly with 

increasing ARIs and flood quantiles of any ARI (in the range of 2 to 100 years) can be 

estimated from the regional LP3 distribution), this has been recommended for general 

application in Australia.  

 

4. From the comparison of the fixed regions and region-of-influence (ROI) approaches, 

it has been found that the ROI approach outperforms the fixed regions approach; the 

ROI reduces the model error, i.e. regional heterogeneity. It has also been found that 

the mean annual flood model has the highest model error as compared to the SD and 

skew models. In the ROI approach, the mean flood, SD and skew models typically 

require about 40, 60 and 100 sites, respectively. 
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5. The developed RFFA methods require data of two or three climatic and physical 

catchment characteristics (i.e. catchment area and design rainfall intensity or mean 

annual rainfall), which are easy to obtain. This would make the application of the 

recommended RFFA methods easy and simple. 

 

6. It has been found that the recommended RFFA methods, i.e. GLS-PRT-ROI and 

GLS-PRT-fixed-region, perform quite well for the smaller catchments in the database 

where there is no evidence that smaller catchments perform more poorly than the 

medium and larger catchments. The possibility of extending the RFFA method to very 

small catchments beyond the limit of the current Project 5 database has been 

examined; however, further study is needed to develop an acceptable method. 

 

7. The development of a simple Large Flood Regionalisation Model for regional flood 

estimation in the major flood range needs consideration of the cross-correlations 

among the highest data points from each station‟s AM series. A number of possible 

ways to deal with this problem have been discussed; however this aspect needs 

further investigation.  

 

8. There is insufficient streamflow data available at both temporal and spatial scales in 

the arid and semi-arid regions of Australia that can be used to develop statistically 

meaningful RFFA methods. A simplified index type RFFA method is recommended 

for arid/semi-arid regions of Australia where four separate regions have been 

identified at this stage (this needs further development and testing before inclusion in 

ARR). 

 

9. The impacts of serial and cross-correlation on trend analysis in the annual maximum 

flood series have been investigated. At the significance level of 10% and with the 

consideration of the cross-correlation among the sites in the network, field 

significance of downward trends in the annual maximum flood series was detected 

over the whole country. Conversely, the field significance of upward trends was 

discovered to be not statistically significant at the 10% level. It has also been found 

that smaller catchments are affected by trends in greater proportion than the larger 

catchments. Based on the results of this investigation, it can be concluded that the 

annual maximum flood series at a large number of Australian stations are affected by 

a time trend at the 10% level of significance. However, given the length of records 

and the existence of exceptionally dry weather conditions in the last decade or so, it 

is not possible to state whether this trend is due to climate change. A further 
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investigation is needed to identify the causes of the identified trends and their 

possible links with climate indices and physical catchment attributes. The impacts of 

the identified trends on regional flood quantile estimates for ARIs in the range of 2 to 

100 years will be investigated in Stage III of the project. This is expected to produce 

climate change adjustment factors as a function of ARIs and locations across 

Australia. 

 

10. The testing of the recommended RFFA methods by various states/stakeholders in 

cooperation with the Project 5 team has been recommended. A set of future tasks 

has been identified. Also, the scope of developing an application tool/software has 

been indicated. 

 

Based on the research work related to Project 5, a total of 22 peer-reviewed technical papers 

and research reports have been published/ prepared as of Dec 2010 (Listed in Appendix B). 

This has provided the opportunity of getting important comments and feedbacks from experts 

in the field of regional flood estimation and of subsequent improvement of the methods 

reported here. 

 

Project 5 Stage I built a national database, established a network of relevant researchers and 

professionals and generated preliminary results for recommending potential RFFA methods 

for detailed investigation. Subsequently, Stage II has developed a firm basis for 

recommendations on the RFFA methods to be included in the revised ARR Chapter (4th 

edition). It has also identified future research and development work in Stage III of the 

Project, required to develop the Stage II findings into a final set of methods, design 

databases, user guidelines and application tools. 

 

The results presented in this report are applicable to the rural catchments in the vicinity of the 

catchments selected in this study; this should not be applied to urban catchments. 
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Table A2 Selected catchments from New South Wales 
 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

201001 Eungella Oxley -28.36 153.29 213 49 1958 - 2006 

203002 Repentance Coopers Ck -28.64 153.41 62 30 1977 - 2006 

203012 Binna Burra Byron Ck -28.71 153.50 39 29 1978 - 2006 

203030 Rappville Myrtle Ck -29.11 153.00 332 27 1980 - 2006 

204025 Karangi Orara -30.26 153.03 135 37 1970 - 2006 

204026 Bobo Nursery Bobo -30.25 152.85 80 29 1956 - 1984 

204030 Aberfoyle Aberfoyle -30.26 152.01 200 29 1978 - 2006 

204036 Sandy Hill(below Snake Cre Cataract Ck -28.93 152.22 236 54 1953 - 2006 

204037 Clouds Ck Clouds Ck -30.09 152.63 62 35 1972 - 2006 

204056 Gibraltar Range Dandahra Ck -29.49 152.45 104 31 1976 - 2006 

204906 Glenreagh Orara -30.07 152.99 446 34 1973 - 2006 

206009 Tia Tia -31.19 151.83 261 53 1955 - 2007 

206025 near Dangar Falls Salisbury Waters -30.68 151.71 594 34 1973 - 2006 

206026 Newholme Sandy Ck -30.42 151.66 8 33 1975 - 2007 

207006 Birdwood(Filly Flat) Forbes -31.39 152.33 363 32 1976 - 2007 

208001 Bobs Crossing Barrington -32.03 151.47 20 52 1955 - 2006 

209001 Monkerai Karuah -32.24 151.82 203 34 1946 - 1979 

209002 Crossing Mammy Johnsons -32.25 151.98 156 31 1976 - 2006 

209003 Booral Karuah -32.48 151.95 974 38 1969 - 2006 

209006 Willina Wang Wauk -32.16 152.26 150 36 1970 - 2005 

209018 Dam Site Karuah -32.28 151.90 300 27 1980 - 2006 

210011 Tillegra Williams -32.32 151.69 194 75 1932 - 2006 

210014 Rouchel Brook (The Vale) Rouchel Brook -32.15 151.05 395 42 1960 - 2001 

210017 Moonan Brook Moonan Brook -31.94 151.28 103 67 1941 - 2007 

 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  281 

 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

210022 Halton Allyn -32.31 151.51 205 65 1941 - 2005 

210040 Wybong Wybong Ck -32.27 150.64 676 50 1956 - 2005 

210042 Ravensworth Foy Brook -32.40 151.05 170 30 1967 - 1996 

210044 Middle Falbrook(Fal Dam Si Glennies Ck -32.45 151.15 466 51 1957 - 2007 

210068 Pokolbin Site 3 Pokolbin Ck -32.80 151.33 25 41 1965 - 2005 

210076 Liddell Antiene Ck -32.34 150.98 13 37 1969 - 2005 

210079 Gostwyck Paterson -32.55 151.59 956 33 1975 - 2007 

210080 U/S Glendon Brook West Brook -32.47 151.28 80 31 1977 - 2007 

211009 Gracemere Wyong -33.27 151.36 236 35 1973 - 2007 

211013 U/S Weir Ourimbah Ck -33.35 151.34 83 30 1977 - 2006 

212008 Bathurst Rd Coxs -33.43 150.08 199 55 1952 - 2006 

212018 Glen Davis Capertee -33.12 150.28 1010 35 1972 - 2006 

212040 Pomeroy Kialla Ck -34.61 149.54 96 27 1980 - 2004 

213005 Briens Rd Toongabbie Ck -33.80 150.98 70 27 1980 - 2006 

215004 Hockeys Corang -35.15 150.03 166 75 1930 - 2004 

218002 Belowra Tuross -36.20 149.71 556 29 1955 - 1983 

218005 D/S Wadbilliga R Junct Tuross -36.20 149.76 900 42 1965 - 2006 

218007 Wadbilliga Wadbilliga -36.26 149.69 122 33 1975 - 2005 

219003 Morans Crossing Bemboka -36.67 149.65 316 64 1944 - 2007 

219017 near Brogo Double Ck -36.60 149.81 152 41 1967 - 2007 

219022 Candelo Dam Site Tantawangalo Ck -36.73 149.68 202 36 1972 - 2007 

219025 Angledale Brogo -36.62 149.88 717 30 1977 - 2006 

220001 New Buildings Br Towamba -36.96 149.56 272 26 1955 - 1980 

220003 Lochiel Pambula -36.94 149.82 105 41 1967 - 2005 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

220004 Towamba Towamba -37.07 149.66 745 37 1971 - 2007 

221002 Princes HWY Wallagaraugh -37.37 149.71 479 36 1972 - 2007 

222004 Wellesley (Rowes) Little Plains -37.00 149.09 604 65 1942 - 2006 

222007 Woolway Wullwye Ck -36.42 148.91 520 57 1950 - 2006 

222009 The Falls Bombala -36.92 149.21 559 43 1952 - 1994 

222015 Jacobs Ladder Jacobs -36.73 148.43 187 27 1976 - 2002 

222016 The Barry Way Pinch -36.79 148.40 155 31 1976 - 2006 

222017 The Hut Maclaughlin -36.66 149.11 313 28 1979 - 2006 

401009 Maragle Maragle Ck -35.93 148.10 220 56 1950 - 2005 

401013 Jingellic Jingellic Ck -35.90 147.69 378 33 1973 - 2005 

401015 Yambla Bowna Ck -35.92 146.98 316 31 1975 - 2005 

410038 Darbalara Adjungbilly Ck -35.02 148.25 411 37 1969 - 2005 

410048 Ladysmith Kyeamba Ck -35.20 147.51 530 48 1939 - 1986 

410057 Lacmalac Goobarragandra -35.33 148.35 673 49 1958 - 2006 

410061 Batlow Rd Adelong Ck -35.33 148.07 155 60 1948 - 2007 

410062 Numeralla School Numeralla -36.18 149.35 673 43 1965 - 2007 

410076 Jerangle Rd Strike-A-Light C -35.92 149.24 212 31 1975 - 2005 

410088 Brindabella (No.2&No.3-Cab Goodradigbee -35.42 148.73 427 38 1968 - 2005 

410112 Jindalee Jindalee Ck -34.58 148.09 14 30 1976 - 2005 

410114 Wyangle Killimcat Ck -35.24 148.31 23 30 1977 - 2006 

411001 Bungendore Mill Post Ck -35.28 149.39 16 25 1960 - 1984 

411003 Butmaroo Butmaroo Ck -35.26 149.54 65 28 1979 - 2006 

412050 Narrawa North Crookwell -34.31 149.17 740 34 1970 - 2003 

412063 Gunning Lachlan -34.74 149.29 570 39 1961 - 1999 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

412081 near Neville Rocky Br Ck -33.80 149.19 145 33 1969 - 2001 

412083 Tuena Tuena Ck -34.02 149.33 321 33 1969 - 2001 

416003 Clifton Tenterfield Ck -29.03 151.72 570 28 1979 - 2006 

416008 Haystack Beardy -29.22 151.38 866 35 1972 - 2006 

416016 Inverell (Middle Ck) Macintyre -29.79 151.13 726 35 1972 - 2006 

416020 Coolatai Ottleys Ck -29.23 150.76 402 28 1979 - 2006 

416023 Bolivia Deepwater -29.29 151.92 505 28 1979 - 2006 

418005 Kimberley Copes Ck -29.92 151.11 259 35 1972 - 2006 

418014 Yarrowyck Gwydir -30.47 151.36 855 37 1971 - 2007 

418017 Molroy Myall Ck -29.80 150.58 842 29 1979 - 2007 

418021 Laura Laura Ck -30.23 151.19 311 29 1978 - 2006 

418025 Bingara Halls Ck -29.94 150.57 156 28 1980 - 2007 

418027 Horton Dam Site Horton -30.21 150.43 220 36 1972 - 2007 

418034 Black Mountain Boorolong Ck -30.30 151.64 14 29 1976 - 2004 

419010 Woolbrook Macdonald -30.97 151.35 829 28 1980 - 2007 

419016 Mulla Crossing Cockburn -31.06 151.13 907 33 1974 - 2006 

419029 Ukolan Halls Ck -30.71 150.83 389 27 1979 - 2005 

419051 Avoca East Maules Ck -30.50 150.08 454 31 1977 - 2007 

419053 Black Springs Manilla -30.42 150.65 791 33 1975 - 2007 

419054 Limbri Swamp Oak Ck -31.04 151.17 391 33 1975 - 2007 

420003 Warkton (Blackburns) Belar Ck -31.39 149.20 133 30 1976 - 2005 

421026 Sofala Turon -33.08 149.69 883 34 1974 - 2007 

421036 below Dam Site Duckmaloi -33.75 149.94 112 25 1956 - 1980 

421050 Molong Bell -33.03 148.95 365 33 1975 - 2007 
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Table A2 Selected catchments from Victoria 
 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

221207 Errinundra Errinundra -37.45 148.91 158 35 1971 - 2005 

221209 Weeragua Cann(East Branch -37.37 149.20 154 33 1973 - 2005 

221210 The Gorge Genoa -37.43 149.53 837 34 1972 - 2005 

221211 Combienbar Combienbar -37.44 148.98 179 32 1974 - 2005 

221212 Princes HWY Bemm -37.61 148.90 725 31 1975 - 2005 

222202 Sardine Ck Brodribb -37.51 148.55 650 41 1965 - 2005 

222206 Buchan Buchan -37.50 148.18 822 32 1974 - 2005 

222210 Deddick (Caseys) Deddick -37.09 148.43 857 35 1970 - 2005 

222213 Suggan Buggan Suggan Buggan -36.95 148.33 357 35 1971 - 2005 

222217 Jacksons Crossing Rodger -37.41 148.36 447 30 1976 - 2005 

223202 Swifts Ck Tambo -37.26 147.72 943 32 1974 - 2005 

223204 Deptford Nicholson -37.60 147.70 287 32 1974 - 2005 

224213 Lower Dargo Rd Dargo -37.50 147.27 676 33 1973 - 2005 

224214 Tabberabbera Wentworth -37.50 147.39 443 32 1974 - 2005 

225213 Beardmore Aberfeldy -37.85 146.43 311 33 1973 - 2005 

225218 Briagalong Freestone Ck -37.81 147.09 309 35 1971 - 2005 

225219 Glencairn Macalister -37.52 146.57 570 39 1967 - 2005 

225223 Gillio Rd Valencia Ck -37.73 146.98 195 35 1971 - 2005 

225224 The Channel Avon -37.80 146.88 554 34 1972 - 2005 

226204 Willow Grove Latrobe -38.09 146.16 580 35 1971 - 2005 

226205 Noojee Latrobe -37.91 146.02 290 46 1960 - 2005 

226209 Darnum Moe -38.21 146.00 214 34 1972 - 2005 

226217 Hawthorn Br Latrobe -37.98 146.08 440 34 1955 - 1988 

226218 Thorpdale Narracan Ck -38.27 146.19 66 35 1971 - 2005 

 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  285 

 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

226222 Near Noojee (U/S Ada R Jun Latrobe -37.88 145.89 62 35 1971 - 2005 

226226 Tanjil Junction Tanjil -38.01 146.20 289 46 1960 - 2005 

226402 Trafalgar East Moe Drain -38.18 146.21 622 31 1975 - 2005 

227200 Yarram Tarra -38.46 146.69 25 41 1965 - 2005 

227205 Calignee South Merriman Ck -38.36 146.65 36 31 1975 - 2005 

227210 Carrajung Lower Bruthen Ck -38.40 146.74 18 33 1973 - 2005 

227211 Toora Agnes -38.64 146.37 67 32 1974 - 2005 

227213 Jack Jack -38.53 146.53 34 36 1970 - 2005 

227219 Loch Bass -38.38 145.56 52 32 1973 - 2004 

227225 Fischers Tarra -38.47 146.56 16 33 1973 - 2005 

227226 Dumbalk North Tarwineast Branc -38.50 146.16 127 36 1970 - 2005 

227231 Glen Forbes South Bass -38.47 145.51 233 32 1974 - 2005 

227236 D/S Foster Ck Jun Powlett -38.56 145.71 228 27 1979 - 2005 

228212 Tonimbuk Bunyip -38.03 145.76 174 30 1975 - 2004 

228217 Pakenham Toomuc Ck -38.07 145.46 41 29 1974 - 2002 

229218 Watsons Ck Watsons Ck -37.67 145.26 36 26 1974 - 1999 

230202 Sunbury Jackson Ck -37.58 144.74 337 31 1975 - 2005 

230204 Riddells Ck Riddells Ck -37.47 144.67 79 32 1974 - 2005 

230205 Bulla (D/S of Emu Ck Jun) Deep Ck -37.63 144.80 865 32 1974 - 2005 

230211 Clarkefield Emu Ck -37.47 144.75 93 31 1975 - 2005 

231200 Bacchus Marsh Werribee Ck -37.68 144.43 363 28 1978 - 2005 

231213 Sardine Ck- O'Brien Cro Lerderderg Ck -37.50 144.36 153 47 1959 - 2005 

231225 Ballan (U/S Old Western H) Werribee Ck -37.60 144.25 71 33 1973 - 2005 

231231 Melton South Toolern Ck -37.91 144.58 95 27 1979 - 2005 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

232200 Little Little Ck -37.96 144.48 417 32 1974 - 2005 

232210 Lal Lal Mooraboolwest Br -37.65 144.04 83 33 1973 - 2005 

232213 U/S of Bungal Dam Lal Lal Ck -37.66 144.03 157 29 1977 - 2005 

233211 Ricketts Marsh Birregurra Ck -38.30 143.84 245 31 1975 - 2005 

233214 Forrest (above Tunnel) Barwoneast Branc -38.53 143.73 17 28 1978 - 2005 

234200 Pitfield Woady Yaloak -37.81 143.59 324 34 1972 - 2005 

235202 Upper Gellibrand Gellibrand -37.56 143.64 53 31 1975 - 2005 

235203 Curdie Curdies -38.45 142.96 790 31 1975 - 2005 

235204 Beech Forest Little Aire Ck -38.66 143.53 11 30 1976 - 2005 

235205 Wyelangta Arkins Ck West B -38.65 143.44 3 28 1978 - 2005 

235227 Bunkers Hill Gellibrand -38.53 143.48 311 32 1974 - 2005 

235233 Apollo Bay- Paradise Barhameast Branc -38.76 143.62 43 29 1977 - 2005 

235234 Gellibrand Love Ck -38.49 143.57 75 27 1979 - 2005 

236205 Woodford Merri -38.32 142.48 899 32 1974 - 2005 

236212 Cudgee Brucknell Ck -38.35 142.65 570 31 1975 - 2005 

237207 Heathmere Surry -38.25 141.66 310 31 1975 - 2005 

238207 Jimmy Ck Wannon -37.37 142.50 40 32 1974 - 2005 

238219 Morgiana Grange Burn -37.71 141.83 997 33 1973 - 2005 

401208 Berringama Cudgewa Ck -36.21 147.68 350 41 1965 - 2005 

401209 Omeo Livingstone Ck -37.11 147.57 243 27 1968 - 1994 

401210 below Granite Flat Snowy Ck -36.57 147.41 407 38 1968 - 2005 

401212 Upper Nariel Nariel Ck -36.45 147.83 252 52 1954 - 2005 

401215 Uplands Morass Ck -36.87 147.70 471 35 1971 - 2005 

401216 Jokers Ck Big -36.95 141.47 356 52 1952 - 2005 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

401217 Gibbo Park Gibbo -36.75 147.71 389 35 1971 - 2005 

401220 McCallums Tallangatta Ck -36.21 147.50 464 30 1976 - 2005 

402203 Mongans Br Kiewa -36.60 147.10 552 36 1970 - 2005 

402204 Osbornes Flat Yackandandah Ck -36.31 146.90 255 39 1967 - 2005 

402206 Running Ck Running Ck -36.54 147.05 126 31 1975 - 2005 

402217 Myrtleford Rd Br Flaggy Ck -36.39 146.88 24 36 1970 - 2005 

403205 Bright Ovens Rivers -36.73 146.95 495 35 1971 - 2005 

403209 Wangaratta North Reedy Ck -36.33 146.34 368 33 1973 - 2005 

403213 Greta South Fifteen Mile Ck -36.62 146.24 229 33 1973 - 2005 

403221 Woolshed Reedy Ck -36.31 146.60 214 30 1975 - 2004 

403222 Abbeyard Buffalo -36.91 146.70 425 33 1973 - 2005 

403224 Bobinawarrah Hurdle Ck -36.52 146.45 158 31 1975 - 2005 

403226 Angleside Boggy Ck -36.61 146.36 108 32 1974 - 2005 

403227 Cheshunt King -36.83 146.40 453 33 1973 - 2005 

403233 Harris Lane Buckland -36.72 146.88 435 34 1972 - 2005 

404206 Moorngag Broken -36.80 146.02 497 33 1973 - 2005 

404207 Kelfeera Holland Ck -36.61 146.06 451 31 1975 - 2005 

405205 Murrindindi above Colwells Murrindindi -37.41 145.56 108 31 1975 - 2005 

405209 Taggerty Acheron -37.32 145.71 619 33 1973 - 2005 

405212 Tallarook Sunday Ck -37.10 145.05 337 31 1975 - 2005 

405214 Tonga Br Delatite -37.15 146.13 368 49 1957 - 2005 

405215 Glen Esk Howqua -37.23 146.21 368 32 1974 - 2005 

405217 Devlins Br Yea -37.38 145.48 360 31 1975 - 2005 

405218 Gerrang Br Jamieson -37.29 146.19 368 47 1959 - 2005 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

405219 Dohertys Goulburn -37.33 146.13 694 39 1967 - 2005 

405226 Moorilim Pranjip Ck -36.62 145.31 787 32 1974 - 2005 

405227 Jamieson Big Ck -37.37 146.06 619 36 1970 - 2005 

405229 Wanalta Wanalta Ck -36.64 144.87 108 36 1969 - 2005 

405230 Colbinabbin Cornella Ck -36.61 144.80 259 33 1973 - 2005 

405231 Flowerdale King Parrot Ck -37.35 145.29 181 32 1974 - 2005 

405237 Euroa Township Seven Creeks -36.76 145.58 332 33 1973 - 2005 

405240 Ash Br Sugarloaf Ck -37.06 145.05 609 33 1973 - 2005 

405241 Rubicon Rubicon -37.29 145.83 129 33 1973 - 2005 

405245 Mansfield Ford Ck -37.04 146.05 115 36 1970 - 2005 

405248 Graytown Major Ck -36.86 144.91 282 35 1971 - 2005 

405251 Ancona Brankeet Ck -36.97 145.78 121 33 1973 - 2005 

405263 U/S of Snake Ck Jun Goulburn -37.46 146.25 327 31 1975 - 2005 

405264 D/S of Frenchman Ck Jun Big -37.52 146.08 333 31 1975 - 2005 

405274 Yarck Home Ck -37.11 145.60 187 29 1977 - 2005 

406213 Redesdale Campaspe -37.02 144.54 629 30 1975 - 2004 

406214 Longlea Axe Ck -36.78 144.43 234 34 1972 - 2005 

406215 Lyal Coliban -36.96 144.49 717 32 1974 - 2005 

406216 Sedgewick Axe Ck -36.90 144.36 34 26 1975 - 2005 

406224 Runnymede Mount Pleasant C -36.55 144.64 248 30 1975 - 2004 

406226 Derrinal Mount Ida Ck -36.88 144.65 174 28 1978 - 2005 

407214 Clunes Creswick Ck -37.30 143.79 308 31 1975 - 2005 

407217 Vaughan atD/S Fryers Ck Loddon -37.16 144.21 299 38 1968 - 2005 

407220 Norwood Bet Bet Ck -37.00 143.64 347 33 1973 - 2005 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
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Record Length 
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Period of Record 

407221 Yandoit Jim Crow Ck -37.21 144.10 166 33 1973 - 2005 

407222 Clunes Tullaroop Ck -37.23 143.83 632 33 1973 - 2005 

407230 Strathlea Joyces Ck -37.17 143.96 153 33 1973 - 2005 

407246 Marong Bullock Ck -36.73 144.13 184 33 1973 - 2005 

407253 Minto Piccaninny Ck -36.45 144.47 668 33 1973 - 2005 

415207 Eversley Wimmera -37.19 143.19 304 31 1975 - 2005 

415217 Grampians Rd Br Fyans Ck -37.26 142.53 34 33 1973 - 2005 

415220 Wimmera HWY Avon -36.64 142.98 596 32 1974 - 2005 

415226 Carrs Plains Richardson -36.75 142.79 130 31 1971 - 2001 

415237 Stawell Concongella Ck -37.02 142.82 239 29 1977 - 2005 

415238 Navarre Wattle Ck -36.90 143.10 141 30 1976 - 2005 
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Table A3 Selected catchments from South Australia 
 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

A4260504 4km East of Yundi Finniss River -35.32 138.67 191 38 1971-2008 

A4260529 Cambrai Marne River upstream -34.68 139.23 239 33 1974-2006 

A4260533 Hartley Bremer River -35.21 139.01 473 34 1975-2008 

A4260536 Worlds End Burra Creek -33.84 139.09 704 31 1975-2005 

A4260557 Mount Barker 
Mount Barker Creek 

dowstream 
-35.09 138.92 88 28 1981-2008 

A4260558 Dawesley Dawesley Creek -35.04 138.95 43 29 1980-2008 

A5020502 Dam And Road Bridge Myponga River upstream -35.38 138.48 76.5 29 1980-2008 

A5030502 Scott Bottom Scott Creek -35.1 138.68 26.8 38 1971-2008 

A5030503 4.5km WNW Kangarilla Baker Gully -35.14 138.61 48.7 38 1971-2008 

A5030504 Houlgrave Onkaparinga River -35.08 138.73 321 34 1975-2008 

A5030506 Mount Bold Reservoir 
Echunga Creek 

upstream 
-35.13 138.73 34.2 34 1975-2008 

A5030507 Lenswood Lenswood Creek -34.94 138.82 16.5 35 1974-2008 

A5030508 Craigbank Inverbrackie Creek -34.95 138.93 8.4 35 1974-2008 

A5030509 Aldgate Railway Station Aldgate Ck -35.02 138.73 7.8 35 1974-2008 

A5030526 Uraidla Cox Creek -34.97 138.74 4.3 31 1978-2008 

A5030529 Mount Bold Reservoir 
Burnt Out Creek 

upstream 
-35.13 138.71 0.6 29 1980-2008 

A5040500 Gumeracha Weir River Torrens -34.82 138.85 194 67 1942-2008 

A5040512 Mount Pleasant Torrens River -34.79 139.03 26 34 1975-2008 

A5040517 Waterfall Gully First Creek -34.97 138.68 5 28 1978-2005 

A5040518 Minno Creek Junction Sturt River upstream M -35.04 138.63 19 30 1979-2008 

A5040523 Castambul Sixth Creek -34.87 138.76 44 30 1979-2008 

A5040525 Millbrook Reservoir Kersbrook Ck upstream -34.81 138.84 23 18 1991-2008 

A5050502 Yaldara North Para River -34.57 138.88 384 64 1945-2008 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

A5050504 Turretfield North Para River -34.56 138.77 708 35 1974-2008 

A5050517 Penrice North Para River -34.46 139.06 118 30 1979-2008 

A5060500 Rhynie Wakefield River -34.1 138.63 417 67 1943-2009 

A5070500 Andrews Hill River -33.61 138.63 235 38 1971-2008 

A5070501 Spalding Hutt River -33.54 138.6 280 37 1971-2007 

A5130501 Gorge Falls Rocky River upstream -35.96 136.7 190 34 1975-2008 
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Table A4 Selected catchments from Tasmania 
 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

76 at Ballroom Offtake North Esk -41.50 147.39 335.0 74 1923 - 1996 

159 D/S Rapid Arthur -41.12 145.08 1600.0 42 1955 - 1996 

473 D/S Crossing Rv Davey -43.14 145.95 680.0 34 1964 - 1997 

499 at Newbury Tyenna -42.71 146.71 198.0 33 1965 - 1997 

852 at Strathbridge Meander -41.49 146.91 1025.0 24 1985 - 2008 

1012 3.5 Km U/S Esperance Peak Rivulet -43.32 146.90 35.0 23 1975 - 1997 

1200 at Whitemark Water Supply South Pats -40.09 148.02 21.0 22 1969 - 1990 

2200 at The Grange Swan -42.05 148.07 440.0 33 1964 - 1996 

2204 U/S Coles Bay Rd Bdg Apsley -41.94 148.24 157.0 24 1969 - 1992 

2206 
U/S Scamander Water 

Supply 
Scamander -41.45 148.18 265.0 28 1969 - 1996 

2207 3 Km U/S Tasman Hwy Little Swanport -42.34 147.90 600.0 19 1971 - 1989 

2208 at Swansea Meredith -42.12 148.04 88.0 27 1970 - 1996 

2209 Tidal Limit Carlton -42.87 147.70 136.0 28 1969 - 1996 

2211 U/S Brinktop Rd Orielton Rivulet -42.76 147.54 46.0 24 1973 - 1996 

2213 D/S McNeils Rd Goatrock Ck -42.14 147.92 1.3 22 1975 - 1996 

3203 at Baden Coal -42.43 147.45 55.0 26 1971 - 1996 

4201 at Mauriceton Jordan -42.53 147.12 730.0 36 1966 - 2001 

5200 at Summerleas Rd Br Browns -42.96 147.27 15.0 30 1963 - 1992 

6200 D/S Grundys Ck Mountain -42.94 147.13 42.0 29 1968 - 1996 

7200 Dover Ws Intake Esperance -43.34 146.96 174.0 29 1965 - 1993 

14206 1.5 Km U/S of Mouth Sulphur Ck -41.11 146.03 23.0 29 1964 - 1992 

14207 at Bannons Br Leven -41.25 146.09 495.0 35 1963 - 1997 

14210 U/S Flowerdale R Juncti Inglis -41.00 145.63 170.0 21 1968 - 1988 

14215 at Moorleah Flowerdale -40.97 145.61 150.0 31 1966 - 1996 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  293 

 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
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Period of Record 

14217 at Sprent Claytons Rivulet -41.26 146.17 13.5 26 1970 - 1995 

14220 U/S Bass HWY Seabrook Ck -41.01 145.77 40.0 20 1977 - 1996 

16200 U/S Old Bass Hwy Don -41.19 146.31 130.0 24 1967 - 1990 

17200 at Tidal Limit Rubicon -41.26 146.57 255.0 31 1967 - 1997 

17201 1.5KM U/S Tidal Limit Franklin Rivulet -41.26 146.61 131.0 20 1975 - 1994 

18201 0.5 Km U/S Tamar Supply -41.26 146.94 135.0 19 1965 - 1983 

18221 D/S Jackeys Marsh Jackeys Ck -41.68 146.66 29.0 27 1982 - 2008 

18312 D/S Elizabeth R Junctio Macquarie -41.91 147.39 1900.0 19 1989 - 2007 

19200 2.6KM U/S Tidal Limit Brid -41.02 147.37 134.0 32 1965 - 1996 

19201 2KM U/S Forester Rd Bdg Great Forester -41.11 147.61 195.0 27 1970 - 1996 

19204 D/S Yarrow Ck Pipers -41.07 147.11 292.0 25 1972 - 1996 

304040 U/S Derwent Junction Florentine River -42.44 146.52 435.8 58 1951 - 2008 

304125 Below Lagoon Travellers Rest River -42.07 146.25 43.6 25 1949 - 1973 

304597 At Lake Highway Pine Tree Rivulet Ck -41.80 146.68 19.4 40 1969 - 2008 

308145 At Mount Ficham Track Franklin River -42.24 145.77 757.0 56 1953 - 2008 

308183 Below Jane River Franklin River -42.47 145.76 1590.3 22 1957 - 1978 

308225 Below Darwin Dam Andrew River -42.22 145.62 5.3 21 1988 - 2008 

308446 Below Huntley Gordon River -42.66 146.37 458.0 27 1953 - 1979 

308799 B/L Alma Collingwood Ck -42.16 145.93 292.5 28 1981 - 2008 

308819 Above Kelly Basin Rd Andrew River -42.22 145.62 4.6 26 1983 - 2008 

310061 At Murchison Highway Que River -41.58 145.68 18.4 22 1987 - 2008 

310148 Above Sterling Murchison River -41.76 145.62 756.3 28 1955 - 1982 

310149 Below Sophia River Mackintosh River -41.72 145.63 523.2 27 1954 - 1980 

310472 Below Bulgobac Creek Que River -41.62 145.58 119.1 32 1964 - 1995 
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2
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315074 At Moina Wilmot River -41.47 146.07 158.1 46 1923 - 1968 

315450 U/S Lemonthyme Forth River -41.61 146.13 311.0 46 1963 - 2008 

316624 Above Mersey Arm River -41.69 146.21 86.0 37 1972 - 2008 

318065 Below Deloraine Meander River -41.53 146.66 474.0 28 1969 - 1996 

318350 Above Rocky Creek Whyte River -41.63 145.19 310.8 33 1960 - 1992 
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Table A5 Selected catchments from Queensland 
 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

102101A Fall Ck Pascoe -12.88 142.98 651 33 1968 - 2005 

104001A Telegraph Rd Stewart -14.17 143.39 470 32 1970 - 2005 

105105A Developmental Rd East Normanby -15.77 145.01 297 34 1970 - 2005 

107001B Flaggy Endeavour -15.42 145.07 337 43 1959 - 2004 

108002A Bairds Daintree -16.18 145.28 911 29 1969 - 2000 

108003A China Camp Bloomfield -15.99 145.29 264 32 1971 - 2004 

110003A Picnic Crossing Barron -17.26 145.54 228 80 1926 - 2005 

110011B Recorder Flaggy Ck -16.78 145.53 150 44 1956 - 2003 

110101B Freshwater Freshwater Ck -16.94 145.70 70 37 1922 - 1958 

111001A Gordonvale Mulgrave -17.10 145.79 552 43 1917 - 1972 

111003C Aloomba Behana Ck -17.13 145.84 86 28 1943 - 1970 

111005A The Fisheries Mulgrave -17.19 145.72 357 34 1967 - 2004 

111007A Peets Br Mulgrave -17.14 145.76 520 31 1973 - 2004 

111105A The Boulders Babinda Ck -17.35 145.87 39 29 1967 - 2003 

112001A Goondi North Johnstone -17.53 145.97 936 39 1929 - 1967 

112002A Nerada Fisher Ck -17.57 145.91 15.7 75 1929 - 2004 

112003A Glen Allyn North Johnstone -17.38 145.65 165 46 1959 - 2004 

112004A Tung Oil North Johnstone -17.55 145.93 925 31 1967 - 2004 

112101B U/S Central Mill South Johnstone -17.61 145.98 400 81 1917 - 2003 

113004A Powerline Cochable Ck -17.75 145.63 95 32 1967 - 2001 

114001A Upper Murray Murray -18.11 145.80 156 31 1971 - 2003 

116005B Peacocks Siding Stone -18.69 145.98 368 36 1936 - 1971 

116008B Abergowrie Gowrie Ck -18.45 145.85 124 51 1954 - 2004 

116010A Blencoe Falls Blencoe Ck -18.20 145.54 226 40 1961 - 2000 
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116011A Ravenshoe Millstream -17.60 145.48 89 42 1963 - 2004 

116012A 8.7KM Cameron Ck -18.07 145.34 360 41 1962 - 2002 

116013A Archer Ck Millstream -17.65 145.34 308 42 1962 - 2003 

116014A Silver Valley Wild -17.63 145.30 591 44 1962 - 2005 

116015A Wooroora Blunder Ck -17.74 145.44 127 38 1967 - 2004 

116017A Running Ck Stone -18.77 145.95 157 33 1971 - 2004 

117002A Bruce HWY Black -19.24 146.63 256 31 1974 - 2004 

117003A Bluewater Bluewater Ck -19.18 146.55 86 30 1974 - 2003 

118101A Gleesons Weir Ross -19.32 146.74 797 44 1916 - 1959 

118106A Allendale Alligator Ck -19.39 146.96 69 30 1975 - 2004 

119006A Damsite Major Ck -19.67 147.02 468 25 1979 - 2003 

120014A Oak Meadows Broughton -20.18 146.32 182 28 1971 - 1998 

120102A Keelbottom Keelbottom Ck -19.37 146.36 193 38 1968 - 2005 

120120A Mt. Bradley Running -19.13 145.91 490 30 1976 - 2005 

120204B Crediton Recorder Broken -21.17 148.51 41 31 1957 - 1987 

120206A Mt Jimmy Pelican Ck -20.60 147.69 545 27 1961 - 1987 

120216A Old Racecourse Broken -21.19 148.45 100 36 1970 - 2005 

120307A Pentland Cape -20.48 145.47 775 34 1970 - 2003 

121001A Ida Ck Don -20.29 148.12 604 48 1958 - 2005 

121002A Guthalungra Elliot -19.94 147.84 273 32 1974 - 2005 

122004A Lower Gregory Gregory -20.30 148.55 47 33 1973 - 2005 

124001A Caping Siding O'Connell -20.63 148.57 363 35 1970 - 2004 

124002A Calen StHelens Ck -20.91 148.76 118 32 1974 - 2005 

124003A Jochheims Andromache -20.58 148.47 230 29 1977 - 2005 

 

 



Project 5: Regional Flood Methods 

 
P5/S2/015 : 21 June 2012  297 

 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

125002C Sarich's Pioneer -21.27 148.82 757 43 1961 - 2005 

125004B Gargett Cattle Ck -21.18 148.74 326 38 1968 - 2005 

125005A Whitefords Blacks Ck -21.33 148.83 506 32 1974 - 2005 

125006A Dam Site Finch Hatton Ck -21.11 148.63 35 29 1977 - 2005 

126003A Carmila Carmila Ck -21.92 149.40 84 31 1974 - 2004 

129001A Byfield Waterpark Ck -22.84 150.67 212 48 1953 - 2005 

130004A Old Stn Raglan Ck -23.82 150.82 389 41 1964 - 2004 

130108B Curragh Blackwater Ck -23.50 148.88 776 31 1973 - 2005 

130207A Clermont Sandy Ck -22.80 147.58 409 40 1966 - 2005 

130208A Ellendale Theresa Ck -22.98 147.58 758 37 1965 - 2001 

130215A Lilyvale Lagoon Crinum Ck -23.21 148.34 252 29 1977 - 2005 

130319A Craiglands Bell Ck -24.15 150.52 300 44 1961 - 2004 

130321A Mt. Kroombit Kroombit Ck -24.41 150.72 373 41 1964 - 2004 

130334A Pump Stn South Kariboe Ck -24.56 150.75 284 33 1973 - 2005 

130335A Wura Dee -23.77 150.36 472 34 1972 - 2005 

130336A Folding Hills Grevillea Ck -24.58 150.62 233 33 1973 - 2005 

130348A Red Hill Prospect Ck -24.45 150.42 369 30 1976 - 2005 

130349A Kingsborough Don -23.97 150.39 593 28 1977 - 2005 

130413A Braeside Denison Ck -21.77 148.79 757 34 1972 - 2005 

133003A Marlua Diglum Ck -24.19 151.16 203 36 1969 - 2004 

135002A Springfield Kolan -24.75 151.59 551 40 1966 - 2005 

135004A Dam Site Gin Gin Ck -24.97 151.89 531 40 1966 - 2005 

136006A Dam Site Reid Ck -25.27 151.52 219 40 1966 - 2005 

136102A Meldale Three Moon Ck -24.69 150.96 310 32 1949 - 1980 
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136107A Cania Gorge Three Moon Ck -24.73 151.01 370 26 1963 - 1988 

136108A Upper Monal Monal Ck -24.61 151.11 92 43 1963 - 2005 

136111A Dakiel Splinter Ck -24.75 151.26 139 41 1965 - 2005 

136112A Yarrol Burnett -24.99 151.35 370 40 1966 - 2005 

136202D Litzows Barambah Ck -26.30 152.04 681 85 1921 - 2005 

136203A Brooklands Barker Ck -26.74 151.82 249 64 1941 - 2005 

136301B Weens Br Stuart -26.50 151.77 512 66 1936 - 2005 

137001B Elliott Elliott -24.99 152.37 220 52 1949 - 2004 

137003A Dr Mays Crossing Elliott -24.97 152.42 251 30 1975 - 2004 

137101A Burrum HWY Gregory -25.09 152.24 454 36 1967 - 2004 

137201A Bruce HWY Isis -25.27 152.37 446 38 1967 - 2004 

138002C Brooyar Wide Bay Ck -26.01 152.41 655 94 1910 - 2005 

138003D Glastonbury Glastonbury Ck -26.22 152.52 113 81 1921 - 2006 

138009A Tagigan Rd Tinana Ck -26.08 152.78 100 31 1975 - 2005 

138010A Kilkivan Wide Bay Ck -26.08 152.22 322 97 1910 - 2006 

138101B Kenilworth Mary -26.60 152.73 720 52 1921 - 1972 

138102C Zachariah Amamoor Ck -26.37 152.62 133 83 1921 - 2005 

138103A Knockdomny Kandanga Ck -26.40 152.64 142 34 1921 - 1954 

138104A Kidaman Obi Obi Ck -26.63 152.77 174 42 1921 - 1963 

138106A Baroon Pocket Obi Obi Ck -26.71 152.86 67 39 1941 - 1986 

138107B Cooran Six Mile Ck -26.33 152.81 186 58 1948 - 2005 

138110A Bellbird Ck Mary -26.63 152.70 486 45 1960 - 2004 

138111A Moy Pocket Mary -26.53 152.74 820 39 1964 - 2004 

138113A Hygait Kandanga Ck -26.39 152.64 143 34 1972 - 2005 
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140002A Coops Corner Teewah Ck -26.06 153.04 53 27 1975 - 2005 

141001B Kiamba South Maroochy -26.59 152.90 33 65 1938 - 2004 

141003C Warana Br Petrie Ck -26.62 152.96 38 41 1959 - 2004 

141004B Yandina South Maroochy -26.56 152.94 75 27 1959 - 2004 

141006A Mooloolah Mooloolah -26.76 152.98 39 33 1972 - 2004 

142001A Upper Caboolture Caboolture -27.10 152.89 94 40 1966 - 2005 

142201D Cashs Crossing South Pine -27.34 152.96 178 46 1918 - 1963 

142202A Drapers Crossing South Pine -27.35 152.92 156 39 1966 - 2005 

143010B Boat Mountain Emu Ck -26.98 152.29 915 31 1967 - 2005 

143015B Damsite Cooyar Ck -26.74 152.14 963 35 1969 - 2005 

143101A Mutdapily Warrill Ck -27.75 152.69 771 39 1915 - 1953 

143102B Kalbar No.2 Warrill Ck -27.92 152.60 468 55 1913 - 1970 

143103A Moogerah Reynolds Ck -28.04 152.55 190 36 1918 - 1953 

143107A Walloon Bremer -27.60 152.69 622 36 1962 - 1999 

143108A Amberley Warrill Ck -27.67 152.70 914 36 1962 - 2004 

143110A Adams Br Bremer -27.83 152.51 125 29 1972 - 2004 

143113A Loamside Purga Ck -27.68 152.73 215 28 1974 - 2004 

143203C Helidon Number 3 Lockyer Ck -27.54 152.11 357 74 1927 - 2004 

143208A Dam Site Fifteen Mile Ck -27.46 152.10 87 26 1957 - 1985 

143209B Mulgowie2 Laidley Ck -27.73 152.36 167 31 1958 - 2004 

143303A Peachester Stanley -26.84 152.84 104 77 1928 - 2005 

143307A Causeway Byron Ck -27.13 152.65 79 26 1976 - 2005 

145002A Lamington No.1 Christmas Ck -28.24 152.99 95 43 1910 - 1953 

145003B Forest Home Logan -28.20 152.77 175 83 1918 - 2005 
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145005A Avonmore Running Ck -28.30 152.91 89 30 1923 - 1952 

145010A 5.8KM Deickmans Br Running Ckreek -28.25 152.89 128 40 1966 - 2005 

145011A Croftby Teviot Brook -28.15 152.57 83 38 1967 - 2005 

145012A The Overflow Teviot Brook -27.93 152.86 503 39 1967 - 2005 

145018A Up Stream Maroon Dam Burnett Ck -28.22 152.61 82 32 1971 - 2005 

145020A Rathdowney Logan -28.22 152.87 533 32 1974 - 2005 

145101D Lumeah Number 2 Albert -28.06 153.04 169 43 1911 - 1953 

145102B Bromfleet Albert -27.91 153.11 544 85 1919 - 2005 

145103A Good Dam Site Cainbable Ck -28.09 153.08 42 32 1963 - 2004 

145107A Main Rd Br Canungra Ck -28.00 153.16 101 32 1974 - 2005 

146002B Glenhurst Nerang -28.00 153.31 241 85 1920 - 2005 

146003B Camberra Number 2 Currumbin Ck -28.20 153.41 24 55 1928 - 1982 

146004A Neranwood Little Nerang Ck -28.13 153.29 40 35 1927 - 1961 

146005A Chippendale Tallebudgera Ck -28.16 153.40 55 27 1927 -1953 

146010A Army Camp Coomera -28.03 153.19 88 43 1963 - 2005 

146012A Nicolls Br Currumbin Ck -28.18 153.42 30 31 1971 - 2005 

146014A Beechmont Back Ck -28.12 153.19 7 31 1972 - 2004 

146095A Tallebudgera Ck Rd Tallebudgera Ck -28.15 153.40 56 29 1971 - 2004 

416303C Clearview Pike Ck -28.81 151.52 950 48 1935 - 1987 

416305B Beebo Brush Ck -28.69 150.98 335 36 1969 - 2005 

416312A Texas Oaky Ck -28.81 151.15 422 35 1970 - 2004 

416404C Terraine Bracker Ck -28.49 151.28 685 45 1953 - 2001 

416410A Barongarook Macintyre Brook -28.44 151.46 465 32 1968 - 2001 

422210A Tabers Bungil Ck -26.41 148.78 710 32 1967 - 2004 
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422301A Long Crossing Condamine -28.32 152.34 85 66 1912 - 1977 

422302A Killarney Spring Ck -28.35 152.34 21 45 1910 - 1954 

422303A Killarney Spring Ck South -28.36 152.34 10 45 1910 - 1954 

422304A Elbow Valley Condamine -28.37 152.16 275 56 1916 - 1971 

422306A Swanfels Swan Ck -28.16 152.28 83 85 1920 - 2004 

422307A Kings Ck Kings Ck -27.90 151.91 334 42 1921 - 1966 

422313B Emu Vale Emu Ck -28.23 152.23 148 58 1948 - 2005 

422317B Rocky Pond Glengallan Ck -28.13 151.92 520 38 1954 - 1991 

422319B Allora Dalrymple Ck -28.04 152.01 246 36 1969 - 2005 

422321B Killarney Spring Ck -28.35 152.33 35 45 1960 - 2004 

422326A Cranley Gowrie Ck -27.52 151.94 47 34 1970 - 2004 

422332B Oakey Gowrie Ck -27.47 151.74 142 25 1969 - 2006 

422334A Aides Br Kings Ck -27.93 151.86 516 35 1970 - 2004 

422338A Leyburn Canal Ck -28.03 151.59 395 27 1975 - 2004 

422341A Brosnans Barn Condamine -28.33 152.31 92 29 1977 - 2005 

422394A Elbow Valley Condamine -28.37 152.14 325 32 1973 - 2004 

913010A 16 Mile Waterhole Fiery Ck -18.88 139.36 722 29 1973 - 2004 

915011A Mt Emu Plains Porcupine Ck -20.18 144.52 540 31 1972 - 2004 

915206A Railway Crossing Dugald -20.20 140.22 660 31 1970 - 2004 

915211A Landsborough HWY Williams -20.87 140.83 415 31 1971 - 2003 

917104A Roseglen Etheridge -18.31 143.58 867 32 1967 - 2005 

917107A Mount Surprise Elizabeth Ck -18.13 144.31 651 32 1969 - 2002 

919005A Fonthill Rifle Ck -16.68 145.23 366 32 1969 - 2004 

919013A Mulligan HWY McLeod -16.50 145.00 532 25 1973 - 2005 
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919201A Goldfields Palmer -16.11 144.78 533 30 1968 - 2004 

919305B Nullinga Walsh -17.18 145.30 326 35 1957 - 1991 

922101B Racecourse Coen -13.96 143.17 172 32 1968 - 2004 

926002A Dougs Pad Dulhunty -11.83 142.42 332 30 1971 - 2004 
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Table A6 Selected catchments from Western Australia 
 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

601005 Cascades Young -33.54 120.97 88.9 25 1974 - 1998 

601006 Munglinup Young -33.56 120.9 11.5 33 1974 - 2006 

601600 Melaleuka Young -33.58 120.87 3.5 34 1975 - 2008 

602003 Wellards Jackitup Ck -33.95 118.1 88 28 1980 - 2007 

602005 Anderson Farm Chelgiup Ck -34.89 118.01 48 32 1977 - 2008 

602199 Black Cat Goodga -34.95 118.08 49.2 45 1964 - 2008 

602600 Hinkleys Farm Jackitup Ck -33.9 118.12 0.5 27 1972 - 1998 

603003 Kompup Denmark -34.7 117.21 241.9 35 1974 - 2008 

603005 Beigpiegup Mitchell -34.83 117.39 51.4 23 1986 - 2008 

603007 Sleeman Rd Bridge Sleeman -34.96 117.5 75.7 24 1985 - 2008 

603008 Pardelup Prison Farm Upper Hay Trib -34.63 117.38 1.3 20 1989 - 2008 

603013 Eden Rd Cuppup -35 117.49 61.1 20 1989 - 2008 

603136 Mt Lindesay Denmark -34.87 117.31 502.4 49 1960 - 2008 

603190 Woonanup Yate Flat Ck -34.7 117.29 56.3 46 1963 - 2008 

606001 Teds Pool Deep -34.77 116.62 467.8 33 1975 - 2007 

606002 Wattle Block Weld -34.69 116.52 24.2 27 1982 - 2008 

606185 Dog Pool Shannon -34.77 116.38 407.6 35 1964 - 1998 

606218 Baldania Ck Conflu Gardner -34.75 116.19 392.4 33 1966 - 1998 

607004 Quabicup Hill Perup -34.33 116.46 666.7 35 1974 - 2008 

607005 North Catch. B Yerraminnup Ck -34.14 116.32 2.4 23 1975 - 1997 

607006 South Catch.B Yerraminnup Ck -34.15 116.34 2 23 1975 - 1997 

607007 Bullilup Tone -34.25 116.68 983.1 31 1978 - 2008 

607009 Pemberton Weir Lefroy Brook -34.44 116.02 253.6 30 1952 - 1981 

607010 March Rd Catch.E Six Mile Brook Trib -34.48 116.33 2.9 24 1976 - 1999 
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607011 April Rd North Catch.F Quininup Brook Trib -34.5 116.35 2.5 23 1976 - 1998 

607012 April Rd South Catch.G Quininup Brook Trib -34.51 116.35 1.6 24 1976 - 1999 

607013 Rainbow Trail Lefroy Brook -34.43 116.02 249.4 30 1979 - 2008 

607014 Netic Rd Four Mile Brook -34.3 116 13.1 20 1979 - 1998 

607144 Quintarrup Wilgarup -34.35 116.35 460.5 48 1961 - 2008 

607155 Malimup Track Dombakup Brook -34.58 115.97 118.5 39 1961 - 1999 

607600 Manjimup Research Stn Smith Brook Trib -34.37 116.21 0.5 31 1970 - 2007 

608001 Upper Iffley Barlee Brook -34.21 115.77 159.1 28 1972 - 1999 

608002 Staircase Rd Carey Brook -34.39 115.84 30.3 34 1975 - 2008 

608004 Lewin North Catch C Easter Brook Trib -34.21 115.86 1.2 22 1976 - 1997 

608006 Lease Rd Carey Brook -34.33 115.91 2.4 24 1976 - 1999 

608151 Strickland Donnelly -34.33 115.78 782.1 57 1952 - 2008 

608171 Boat Landing Rd Fly Brook -34.45 115.8 62.9 39 1962 - 2008 

609002 Brennans Ford Scott -34.28 115.3 627.7 40 1969 - 2008 

609003 Cambray St Paul Brook -33.9 115.66 161.6 26 1974 - 1999 

609004 Dido Rd St Paul Brook -33.83 115.58 26 26 1974 - 1999 

609005 Mandelup Pool Balgarup -33.91 117.14 82.4 34 1975 - 2008 

609006 Balgarup Weenup Ck -33.95 117.21 13.3 25 1975 - 1999 

609008 Millbrook Apostle Brook -33.8 115.63 27.6 24 1976 - 1999 

609010 Lake Toolibin Inflow Northern Arthur -32.9 117.61 438.5 31 1978 - 2008 

609011 Padbury Rd Balingup Brook Trib -33.81 116 1.7 21 1978 - 1998 

609016 Hester Hill Hester Brook -33.92 116.1 176.6 21 1983 - 2005 

609017 Brooklands Balingup Brook -33.8 115.95 548.9 26 1983 - 2008 

609018 Barrabup Pool St John Brook -33.94 115.69 552.3 26 1983 - 2008 
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610001 Willmots Farm Margaret -33.94 115.05 443 39 1970 - 2008 

610005 Happy Valley Ludlow -33.68 115.62 109.2 26 1973 - 1998 

610006 Woodlands Wilyabrup Brook -33.8 115.02 82.3 36 1973 - 2008 

610007 Claymore Ludlow -33.74 115.7 9.5 22 1977 - 1998 

610008 Whicher Range Margaret R North -33.81 115.44 15.5 23 1977 - 1999 

610219 Yates Bridge Capel -33.65 115.7 315.1 23 1966 - 2008 

611004 Boyanup Bridge Preston -33.48 115.73 808.4 29 1980 - 2008 

611049 Beelerup Preston -33.56 115.88 597.5 21 1955 - 1975 

611111 Woodperry Homestead Thomson Brook -33.63 115.95 102.1 51 1958 - 2008 

611221 Pesconeris Farm Coolingutup Brook -33.53 115.87 3.9 43 1966 - 2008 

612004 Worsley Hamilton -33.31 116.05 32.3 37 1972 - 2008 

612005 Mast View Stones Brook -33.37 115.94 12.9 27 1972 - 1998 

612007 Dons Catchment Bingham R Trib -33.28 116.47 3.5 35 1974 - 2008 

612008 Ernies Catchment Bingham R Trib -33.29 116.44 2.7 35 1974 - 2008 

612009 Lemon Catchment Pollard Brook Trib -33.3 116.41 3.5 29 1974 - 2005 

612010 Wights Catchment Salmon Brook Trib -33.42 115.98 0.9 34 1974 - 2007 

612011 Salmon Catchment Salmon Brook -33.42 115.98 0.8 25 1974 - 1998 

612012 Falcon Rd Falcon Brook -33.41 115.97 5.4 23 1974 - 1996 

612014 Palmer Bingham -33.28 116.28 366.1 34 1975 - 2008 

612016 Maxon Farm Batalling Ck -33.32 116.57 16.8 33 1976 - 2008 

612019 Duces Farm Bussell Brook -33.46 116.02 37.5 22 1977 - 1998 

612021 Stenwood Bingham -33.19 116.47 48.4 21 1978 - 1998 

612022 Sandalwood Brunswick -33.22 115.92 116.2 29 1980 - 2008 

612025 James Well Camballan Ck -33.46 116.43 170 27 1982 - 2008 
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612034 South Branch Collie -33.39 116.16 661.6 53 1952 - 2008 

612036 Stubbs Farm Harris -33.29 116.15 382.2 25 1952 - 1976 

612152 Olive Hill Brunswick -33.24 115.87 225.4 21 1962 - 1982 

612230 James Crossing Collie R East Trib -33.38 116.58 170.6 42 1967 - 2008 

613002 Dingo Rd Harvey -33.09 116.04 147.2 39 1970 - 2008 

613007 Waterous Bancell Brook -32.95 115.95 13.6 34 1975 - 2008 

613013 Wagerup Bancell Brook -32.95 115.96 12.5 25 1954 - 1978 

613018 Urquharts McKnoes Brook -32.89 115.97 24.4 22 1980 - 2001 

613020 Mt William Samson Brook -32.93 116.03 4 21 1981 - 2001 

613146 Hillview Farm Clarke Brook -33 115.92 17.1 39 1962 - 2000 

614003 Brookdale Siding Marrinup Brook -32.7 115.97 45.6 36 1972  - 2007 

614005 Kentish Farm Dirk Brook -32.42 116 35.1 30 1971 - 2000 

614007 Del Park South Dandalup Trib -32.67 116.04 1.3 34 1975 - 2008 

614011 Tunnel Rd Mooradung Bk Trib -32.95 116.48 2.1 22 1976 - 1997 

614017 Warren Catchment Little Dandalup Trib -32.59 116.03 0.9 32 1977 - 2008 

614018 Bennetts Catchment Little Dandalup Trib -32.6 116.03 0.9 32 1977 - 2008 

614019 Hansens Catchment Little Dandalup Trib -32.59 116.05 0.7 22 1977 - 1998 

614020 Higgens Catchment Little Dandalup Trib -32.58 116.09 0.6 21 1978 - 1998 

614021 Lewis Catchment North Dandalup Trib -32.57 116.06 2 32 1977 - 2008 

614024 Jones Catchment North Dandalup Trib -32.55 116.09 0.7 21 1978 - 1998 

614025 Umbucks Catchment Marrinup Brook Trib -32.7 116 3.3 20 1979 - 1998 

614028 Hopelands Rd Dirk Brook -32.43 115.91 63.8 22 1979 - 2000 

614037 O'Neil Rd Big Brook -32.51 116.19 149.4 26 1983 - 2008 

614047 Murray Valley Plntn Davis Brook -32.76 116.1 65.7 46 1956 - 2001 
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614060 Gordon Catchment South Dandalup R Trib -32.63 116.26 2.1 21 1988 - 2008 

614062 Bates Catchment Little Dandalup Trib -32.58 116.03 2.2 20 1989 - 2008 

614073 Mundlimup Gooralong Brook -32.35 116.04 51.5 47 1952 - 1998 

614123 Quindanning Rd Chalk Brook -33.02 116.24 57.1 26 1960 - 1985 

615011 Mooranoppin Rock Mooranoppin Ck -31.6 117.73 83.1 34 1975 - 2008 

615222 Brookton Highway Dale R South -32.4 116.83 286 32 1967 - 1998 

615600 North Kunjin -32.32 117.73 0.2 30 1969 - 1998 

615604 Homestead North Nungarin -31.16 118.15 0.2 26 1972 - 1997 

615605 Jollys Farm South Nungarin -31.18 118.15 0.2 27 1972 - 1998 

616006 Tanamerah Brockman -31.34 116.09 961.2 28 1981 - 2008 

616007 Byfield Rd 
Rushy Ck (Manns 

Gully) 
-31.96 116.21 39.2 30 1969 - 1998 

616009 Slavery Lane Pickering Brook -31.98 116.19 29.4 27 1972 - 1998 

616010 Hairpin Bend Rd Little Darkin -32.03 116.24 37.8 27 1972 - 1998 

616012 Trewd Rd Helena Brook -31.92 116.28 26.7 27 1972 - 1998 

616013 Ngangaguringuring Helena -31.94 116.4 327 36 1973 - 2008 

616014 Furfaros Orchard Piesse Brook -31.95 116.08 55.2 24 1975- 1998 

616022 Ceriani Farm More Seldom Seen Ck -32.25 116.08 3.4 39 1970 - 2008 

616023 Mount Curtis Waterfall Gully -32.21 116.08 8.6 43 1966 - 2008 

616041 Vardi Rd Wungong Brook -32.25 116.11 80.8 27 1982 - 2008 

616189 Railway Parade Ellen Brook -31.75 116.02 581.4 44 1965 - 2008 

616216 Poison Lease Helena -31.97 116.29 590.9 42 1966 - 2007 

617002 Hill R Springs Hill -30.28 115.37 925.9 37 1971 - 2007 

617058 Gingin Gingin Brook -31.34 115.92 105.8 51 1958 - 2008 

617165 Molecap Hill Lennard Brook -31.38 115.92 59 40 1962 - 2001 
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701003 Wootachooka Nokanena Brook -28.37 114.52 235.2 30 1972 - 2001 

701005 Robb Crossing Arrowsmith -29.62 115.29 809.8 29 1972 - 2000 

701006 Buller Buller -28.64 114.62 33.9 26 1975 - 2000 

701601 Wearbe 
Nokanena Brook 

Catch 
-28.33 114.62 0.1 28 1971 - 1998 

704001 Boolathana Yandoo Ck -24.63 113.82 1000 20 1983 - 2002 

706207 Mt Samson Hardey -22.67 117.61 250.3 34 1967 - 2000 

707001 Palra Springs Robe -22.06 117.06 174.3 31 1969 - 1999 

708009 Fish Pool Kanjenjie Ck Trib. -21.66 117.33 41.1 28 1975 - 2002 

708227 Recorder Pool Portland -21.45 116.88 553.4 34 1967 - 2000 

709006 Blue Dog Pool Tanberry Ck -21.59 117.55 128.1 22 1975 - 1996 

709007 Marmurrina Pool U-South Harding -21.3 117.07 49.4 24 1975 - 1998 

709010 Pincunah Turner -21.23 118.83 885 24 1985 - 2008 

802002 Mt Pierre Gorge Mount Pierre Ck -18.62 126.09 318.4 28 1971 - 1998 

802202 Mt Winifred Leopold -18.02 126.31 5115.4 40 1966 - 2008 

802213 Phillips Range Hann -16.87 126.05 5069.9 42 1967 - 2008 

803001 Mt Joseph Lennard -17.37 125.11 1049.8 42 1967 - 2008 

803002 Mt Herbert Lennard -17.17 125.23 441.4 31 1968 - 1998 

803003 Dromedary Fletcher -17.12 124.99 67 31 1968 - 1998 

806003 Crystal Head Crystal Ck -14.49 125.8 68.2 30 1969 - 1998 

806004 Old Theda Carson -14.79 126.79 1288.6 30 1971 - 2000 

809310 Bedford Downs Ord -17.43 127.6 552.2 29 1970 - 1998 

809312 Frog Hollow Fletcher Ck Trib -17.28 128.06 30.6 41 1968 - 2008 

809314 Cockburn North King R -15.7 128.12 850.3 23 1986 - 2008 

809315 Mistake Ck Homestead Negri -17.18 129.09 7405.7 38 1970 - 2008 
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809317 Koongie Park Black Elvire R Trib -18.39 127.77 456.8 30 1971 - 2000 

809321 Dunham Gorge Dunham -16.19 128.3 1631.5 34 1975 - 2008 
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2
) 

Record Length 
(years) 

Period of Record 

G8100189 Victoria HWY Moriarty Ck -16.07 129.19 88 19 1967 - 1985 

G8110004 Victoria HWY East Baines -15.77 130.00 2342 46 1963 - 2008 

G8110014 U/S Fig Tree Yard Sullivan's Ck -15.57 131.29 143 22 1970 - 1992 

G8110110 V.R.D. Rd Crossing Surprise Ck -16.08 130.90 361 31 1960 - 1990 

G8110263 1.5 Miles D/S Bore Bullock Ck -17.13 131.45 474 22 1971 - 1992 

G8140008 Old Railway Br Fergusson -14.07 131.98 1490 51 1957 - 2008 

G8140061 Blue Hole Copperfield Ck -13.99 131.90 306 20 1958 - 1977 

G8140063 D/S Old Douglas H/S Douglas -13.80 131.34 842 51 1957 - 2007 

G8140086 D/S Stuart HWY King -14.63 132.59 484 23 1964 - 1986 

G8140151 Victoria HWY Mathieson Ck -15.07 131.74 725 22 1964 - 1986 

G8140152 Dam Site Edith -14.17 132.08 590 41 1962 - 2008 

G8140158 Dam Site McAdden Ck -14.35 132.34 133 41 1963 - 2006 

G8140159 Waterfall View Seventeen Mile C -14.28 132.40 619 45 1963 - 2007 

G8140161 Tipperary Green Ant Ck -13.74 131.10 435 42 1966 - 2007 

G8140166 Gorge Fish -14.24 130.90 992 23 1963 - 1985 

G8150010 Batchelor Damsite Finniss -13.03 130.95 360 32 1975 - 2006 

G8150018 Stuart HWY Elizabeth -12.61 131.07 101 54 1954 - 2007 

G8150096 Cox Peninsula Carawarra Ck -12.53 130.67 38.5 42 1965 - 2007 

G8150097 Rum Jungle +Ansto Eb4 East Finniss -12.97 130.97 71 43 1965 - 2007 

G8150098 Tumbling Waters Blackmore -12.77 130.95 174 48 1960 - 2007 

G8150127 D/S McMillans Rd Rapid Ck -12.39 130.87 18.3 44 1964 - 2007 

G8150151 U/S Darwin R Dam Celia Ck -12.91 131.05 52 19 1989 - 2007 

G8150180 Gitchams Finniss -12.97 130.76 1048 47 1961 - 2007 

G8150200 Rum Jungle Rd Crossing East Finniss -12.99 131.00 52 23 1982 - 2007 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

G8150233 McArthur Park Palmerston Catc. -12.49 130.98 1.4 20 1984 - 2003 

G8160235 Damsite Takamprimili -11.78 130.78 166 20 1967 - 1986 

G8170002 Railway Br Adelaide -13.24 131.11 632 45 1963 - 2007 

G8170020 Dirty Lagoon Adelaide -12.91 131.24 4325 38 1963 - 2007 

G8170062 
Eighty-Seven Mile 

Jump Up 
Burrell Ck -13.42 131.15 36.8 28 1958 - 1985 

G8170066 Stuart HWY Coomalie Ck -13.01 131.12 82 50 1958 - 2007 

G8170075 U/S Manton Dam Manton -12.88 131.13 28 37 1965 - 2007 

G8170084 Tortilla Flats Adelaide -13.09 131.24 1246 49 1959 - 2007 

G8170085 Stuart HWY Acacia Ck -12.78 131.12 11 45 1963 - 2007 

G8180026 
El Sherana Rd 

Crossing 
Mary -13.60 132.22 466 47 1961 - 2008 

G8180065 
Old Point Stuart Rd 

Crossing 
Opium Ck -12.55 131.79 15.5 22 1964 - 1985 

G8180069 near Burrundie McKinlay -13.53 131.72 352 51 1958 - 2008 

G8180252 D/S El Sherana Rd Harriet Ck -13.68 131.99 122 44 1965 - 2008 

G8190001 U/S Arnhem HWY West Alligator -12.79 132.18 316 33 1976 - 2008 

G8200045 El Sherana (C) South Alligator -13.52 132.52 1300 51 1958 - 2008 

G8200046 Coljon (C Part) Deaf Adder Ck -13.10 133.02 513 20 1972 - 1991 

G8200049 near Nourlangie Rock Koongarra Ck -12.88 132.83 15.4 28 1978 - 2005 

G8200112 Kakadu HWY Nourlangie Ck -12.82 132.74 2220 43 1961 - 2005 

G8210001 Nimbuwah (C) Cooper Ck -12.19 133.35 645 22 1971 - 1992 

G8210009 D/S Jabiru Magela Ck -12.64 132.90 605 37 1971 - 2007 

G8210012 George Town Crossing Gulungul Ck (Bog -12.69 132.89 47 21 1972 - 1992 

G8210016 Mt. Borradaile Cooper Ck -12.08 132.97 1650 26 1980 - 2005 

G8210017 Jabiluka Billabong Magela Ck Plains -12.46 132.88 1134 33 1973 - 2005 

G8210019 Outflow Main Channel Magela Plains -12.30 132.82 1435 29 1975 - 2003 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of Record 

G8210024 D/S Nabarlek Cooper Ck -12.29 133.34 225 28 1978 - 2005 

G8260052 U/S Eldo Rd Crossing Upper Latram -12.32 136.82 31 32 1971 - 2004 

G8260053 above Tidal Reach Lower Latram -12.31 136.78 85 21 1964 - 1984 

G9030089 Rd Br Waterhouse -14.56 133.11 3110 36 1973 - 2008 

G9030090 Wattle Hill Chambers Ck -14.50 133.36 89 19 1974 - 1992 

G9030124 Daly Waters Daly Waters Ck -16.26 133.38 777 29 1977 - 2007 

G9070142 Bailey's Grave McArthur -16.78 135.76 3885 43 1965 - 2008 
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Table A8 Selected catchments for arid/semi arid region from all over Australia 
 

Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of 
Record 

Average Annual 
Rainfall (mm) 

410012 Cocketgedong Billabong Ck -35.31 146.04 4660 33 1973 - 2005 434.35 

409056 Aratula Rd Tuppal Ck -35.63 145.06 300 18 1986 - 2000 412.38 

425028 Quondong Wireyards Ck -32.13 141.85 50 16 1983 - 1999 243.02 

425016 Cobar Box Ck -31.46 145.81 15 35 1974 - 2008 407.93 

408203B Quambatook Avoca -35.91 143.51 4740 29 1973 - 1996 407.9 

407287B U/S Box Ck Bullock Ck -35.92 144.18 1231 16 1990 - 2001 412.75 

407236B Mitiamo Mount Hope Ck -36.17 144.29 1629 41 1968 - 1996 425.6 

415257A Donald Richardson -36.43 142.98 1831 40 1989 - 1999 433.74 

406264A Northern HWY- Echuca Millewa Ck -36.19 144.73 32 17 1992 - 2005 452.85 

G0060008 South Rd Crossing Roe Ck -23.82 133.84 560 41 1967 - 2008 290.56 

G0060003 Soil Erosion Project Gillen Ck -23.70 133.82 3.8 27 1967 - 1993 295 

G0060047 Big Dipper Charles -23.65 133.86 52 14 1973 - 1986 304.96 

G0060012 
Bond Springs (CSIRO 

Site 6 
Stn Ck -23.53 133.92 34 10 1974 - 1982 306.49 

G0060017 U/S Emily Ck -23.69 133.98 60 28 1981 - 2008 318.05 

G0060046 Wigley Gorge Todd -23.64 133.88 360 46 1963 - 2001 318.6 

G0060009 Anzac Oval Todd -23.70 133.89 443 35 1973 - 2007 320.58 

G0060015 Bond Springs Stn Ck -23.53 133.92 34 18 1979 - 1995 326.33 

G0060126 Heavitree Gap Todd -23.73 133.87 502 37 1973 - 2007 329.88 

G0010005 Soudan Homestead Ranken -20.05 137.02 4360 45 1965 - 2009 381.07 

G0290240 Old Telegraph Stn Tennant Ck -19.56 134.23 72.3 37 1973 - 2007 391.42 

G0290012 Kelly Well. Stuart HWY Kelly Ck -19.97 134.21 62 34 1975 - 2008 401.36 

G0290242 Stuart HWY Attack Ck -19.01 134.15 259 22 1967 - 1986 414.48 

G0290228 D/S Morphett Ck -18.88 134.09 211 29 1981 - 2007 428.93 

001204A Camooweal Georgina -19.93 138.11 2875 19 1971 - 1988 393.47 
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Station ID Station Name River Name Lat ( °S) Long ( °E) Area (km
2
) 

Record Length 
(years) 

Period of 
Record 

Average Annual 
Rainfall (mm) 

424202A Yarronvale Paroo -26.79 145.34 1890 20 1968 - 1987 397.53 

915204A Damsite Cloncurry -21.08 140.42 4240 33 1969 - 1994 398.48 

915210A Agate Downs Cloncurry -21.36 140.41 1089 17 1971 - 1987 411.71 

003205A Darr Darr -23.22 144.08 2700 38 1971 - 2006 415.69 

915211A Landsborough HWY Williams -20.87 140.83 415 36 1971 - 2006 417.56 

915205A Black Gorge Malbon -21.06 140.08 425 17 1971 - 1987 423.63 

912115A Morestone O Shannassy -19.60 138.38 425 18 1971 - 1988 431.19 

422211A Woolerbilla-Hebel Rd Briarie Ck -28.91 147.68 410 32 1968 - 2004 436.01 

915203A Cloncurry Cloncurry -20.67 140.49 5975 33 1969 - 1997 439.12 

915203B Cloncurry Cloncurry -20.70 140.50 5859 37 1969 - 2006 440.8 

915209A Main Rd Corella -20.45 140.32 1587 17 1972 - 1987 442.72 

915001A Richmond Mitchell Grass C -20.76 143.14 6 22 1969 - 1990 443.63 

913009A Flinders HWY Gorge Ck -20.69 139.65 248 17 1971 - 1987 444.2 

913005A Damsite Paroo Ck -20.34 139.52 305 19 1969 - 1987 450.59 

915006A Revenue Downs Mountain Ck -20.64 143.22 203 17 1972 - 1988 454.65 

A0040502 Terrapinna Springs Hamilton Ck -29.92 139.67 326 10 1984 - 1990 209.43 

A5100510 Leigh Creek Windy Ck -30.61 138.39 448 18 1986 - 2006 226.58 

A5100511 Leigh Creek Emu Ck -30.62 138.39 224 18 1986 - 2006 226.58 

A5100507 Maynards Well Windy Ck -30.64 138.65 170 15 1974 - 1988 288.09 

A5090503 Old Kanyaka Ruins Kanyaka Creek -32.09 138.29 186.7 36 1977 - 2008 289.54 

A5100502 Sugarloaf Hill 
Mernmerna 

Creek 
-31.75 138.45 346 18 1973 - 1989 302.34 
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