





# Australian Rainfall & Runoff

**Revision Projects** 

**PROJECT 5** 

Regional Flood Methods

**STAGE 3 REPORT** 

P5/S3/025

**MARCH 2015** 





Engineers Australia Engineering House 11 National Circuit Barton ACT 2600

Tel: (02) 6270 6528 Fax: (02) 6273 2358 Email:arr\_admin@arr.org.au Web: http://www.arr.org.au/

## AUSTRALIAN RAINFALL AND RUNOFF PROJECT 5: REGIONAL FLOOD METHODS: STAGE 3 REPORT

**MARCH, 2015** 

| Project                                   | ARR Report Number           |
|-------------------------------------------|-----------------------------|
| Project 5 Regional Flood Methods: Stage 3 | P5/S3/025                   |
|                                           |                             |
| Date                                      | ISBN                        |
| 4 March 2015                              | 978-0-85825-869-3           |
| Contractor                                | Contractor Reference Number |
| University of Western Sydney              | 20721.64138                 |
| Authors                                   | Verified by                 |
| Ataur Rahman                              |                             |
| Khaled Haddad                             | James Gall                  |
| Md Mahmudul Haque                         | (   <del>E</del>            |
| George Kuczera                            |                             |
| Erwin Weinmann                            |                             |
|                                           |                             |

### **ACKNOWLEDGEMENTS**

This project was made possible by funding from the Federal Government through Geoscience Australia. This report and the associated project are the result of a significant amount of in kind hours provided by Engineers Australia Members.



#### Contractor Details

The University of Western Sydney
School of Computing, Engineering and Mathematics, Building XB, Kingswood
Locked Bag 1797, Penrith South DC, NSW 2751, Australia

Tel: (02) 4736 0145 Fax: (02) 4736 0833 Email: a.rahman@uws.edu.au Web: www.uws.edu.au



P5/S3/025 : 3 March 2015

#### **FOREWORD**

#### ARR Revision Process

Since its first publication in 1958, Australian Rainfall and Runoff (ARR) has remained one of the most influential and widely used guidelines published by Engineers Australia (EA). The current edition, published in 1987, retained the same level of national and international acclaim as its predecessors.

With nationwide applicability, balancing the varied climates of Australia, the information and the approaches presented in Australian Rainfall and Runoff are essential for policy decisions and projects involving:

- infrastructure such as roads, rail, airports, bridges, dams, stormwater and sewer systems;
- town planning;
- mining;
- developing flood management plans for urban and rural communities;
- flood warnings and flood emergency management;
- operation of regulated river systems; and
- estimation of extreme flood levels.

However, many of the practices recommended in the 1987 edition of ARR are now becoming outdated, no longer representing the accepted views of professionals, both in terms of technique and approach to water management. This fact, coupled with greater understanding of climate and climatic influences makes the securing of current and complete rainfall and streamflow data and expansion of focus from flood events to the full spectrum of flows and rainfall events, crucial to maintaining an adequate knowledge of the processes that govern Australian rainfall and streamflow in the broadest sense, allowing better management, policy and planning decisions to be made.

One of the major responsibilities of the National Committee on Water Engineering of Engineers Australia is the periodic revision of ARR. A recent and significant development has been that the revision of ARR has been identified as a priority in the Council of Australian Governments endorsed National Adaptation Framework for Climate Change.

The update will be completed in three stages. Twenty one revision projects have been identified and will be undertaken with the aim of filling knowledge gaps. Of these 21 projects, ten projects commenced in Stage 1 and an additional 9 projects commenced in Stage 2. The remaining two projects will commence in Stage 3. The outcomes of the projects will assist the ARR Editorial Team with the compiling and writing of chapters in the revised ARR.

Steering and Technical Committees have been established to assist the ARR Editorial Team in guiding the projects to achieve desired outcomes. Funding for Stages 1 and 2 of the ARR revision projects has been provided by the Federal Department of Climate Change and Energy Efficiency. Funding for Stages 2 and 3 of Project 1 (Development of Intensity-Frequency-Duration information across Australia) has been provided by the Bureau of Meteorology.

P5/S3/025 : 3 March 2015

#### Project 5: Regional Flood Methods

The most commonly encountered hydrological problem associated with estimating flood flows is that of estimating the flood flow of a given Annual Exceedence Probability (AEP) at a location where no historical monitored information exists. Numerous alternative techniques have been developed in the different regions (primarily, the states) of Australia to provide flow estimates in ungauged catchments. The current diversity of approaches has resulted in predicted flows varying significantly at the interfaces between regions. There is a need to develop generic techniques that can be applied across the country, to test these techniques, and to develop appropriate guidance in their usage.

The aim of Project 5 is to collate techniques and guidelines for peak flow estimation at ungauged sites across Australia.

Mark Babister

Chair Technical Committee for ARR Research Projects

MK Beled

**Dr James Ball**ARR Editor

P5/S3/025 : 3 March 2015

#### **ARR REVISION PROJECTS**

The 21 ARR revision projects are listed below:

| ARR Project No. | Project Title                                                            | Starting Stage |
|-----------------|--------------------------------------------------------------------------|----------------|
| 1               | Development of intensity-frequency-duration information across Australia | 1              |
| 2               | Spatial patterns of rainfall                                             | 2              |
| 3               | Temporal pattern of rainfall                                             | 2              |
| 4               | Continuous rainfall sequences at a point                                 | 1              |
| 5               | Regional flood methods                                                   | 1              |
| 6               | Loss models for catchment simulation                                     | 2              |
| 7               | Baseflow for catchment simulation                                        | 1              |
| 8               | Use of continuous simulation for design flow determination               | 2              |
| 9               | Urban drainage system hydraulics                                         | 1              |
| 10              | Appropriate safety criteria for people                                   | 1              |
| 11              | Blockage of hydraulic structures                                         | 1              |
| 12              | Selection of an approach                                                 | 2              |
| 13              | Rational Method developments                                             | 1              |
| 14              | Large to extreme floods in urban areas                                   | 3              |
| 15              | Two-dimensional (2D) modelling in urban areas.                           | 1              |
| 16              | Storm patterns for use in design events                                  | 2              |
| 17              | Channel loss models                                                      | 2              |
| 18              | Interaction of coastal processes and severe weather events               | 1              |
| 19              | Selection of climate change boundary conditions                          | 3              |
| 20              | Risk assessment and design life                                          | 2              |
| 21              | IT Delivery and Communication Strategies                                 | 2              |

#### **ARR Technical Committee:**

Chair: Mark Babister, WMAwater

Members: Associate Professor James Ball, Editor ARR, UTS

Professor George Kuczera, University of Newcastle Professor Martin Lambert, University of Adelaide

Dr Rory Nathan, Jacobs

Dr Bill Weeks

Associate Professor Ashish Sharma, UNSW

Dr Bryson Bates, CSIRO

Steve Finlay, Engineers Australia

Related Appointments:

ARR Project Engineer: Monique Retallick, WMAwater ARR Admin Support: Isabelle Testoni, WMAwater

#### PROJECT TEAM AND CONTRIBUTORS

(# indicates unpaid team members)

#### **Project Team**

Ataur Rahman - Team Leader, University of Western Sydney, NSW #
Khaled Haddad - Project Engineer, University of Western Sydney, NSW
George Kuczera - EA Project Manager, The University of Newcastle, NSW #
Erwin Weinmann, Victoria #

#### **Core Contribution**

Mark Babister, WMAwater, NSW #

James Ball, University of Technology Sydney, NSW #

Md Mahmudul Haque, University of Western Sydney, NSW

Peter Stensmyr, WMAwater, NSW #

William Weeks, Department of Transport and Main Roads, Queensland #

Mohammad Zaman, University of Western Sydney, NSW

#### **Other Contribution**

Mohammed Abedin, University of Western Sydney, NSW #
Tarik Ahmed, University of Western Sydney, NSW
Kashif Aziz, University of Western Sydney, NSW
Peter Brady, WMAwater, NSW #

Wilfredo Caballero, University of Western Sydney, NSW Neil Coles, University of Western Australia, WA #

Robin Connolly, GHD, WA#

Trevor Daniell, Adelaide University, SA #

Jim Davies, JDA Consultant Hydrologists, WA #

Robert French, NSW #

Sithara Walpita Gamage, University of South Australia, SA

Jerome Goh, Main Roads, WA#

Bryce Graham, Department of Primary Industries, Parks, Water and Environment,

Tasmania#

Andre Hackelbusch, The University of Newcastle, NSW #

Guna Hewa, University of South Australia, SA#

Subhashini Wella Hewage, University of South Australia, SA

Elias Ishak, University of Western Sydney, NSW

Tanmila Islam, University of Western Sydney, NSW

David Kemp, Department for Transport, Energy and Infrastructure, SA #

Fiona Ling, Entura, Tasmania #

Melanie Loveridge, University of Western Sydney, NSW #

Chris MacGeorge, Bureau of Meteorology, Tasmania #

Gavin McPherson, University of Western Sydney, NSW #

Fotos Melaisis, University of Western Sydney, NSW #

Tom Micevski, The University of Newcastle, NSW #

Steve Muncaster, Department of Environment and Primary Industries, Victoria #

Luke Palmen, Department of Transport and Main Roads, Queensland #

Leanne Pearce, Water Corporation, WA #

Mark Pearcey, Department of Water, WA #

James Pirozzi, University of Western Sydney, NSW #

Syed Quddusi, University of Western Sydney, NSW

Ayesha Rahman, University of Western Sydney, NSW

Lakshman Rajaratnam, Department of Land Resource Management, NT #

Chris Randall, University of Western Sydney, NSW #

Monique Retallick, WMAwater, NSW #

Khaled Rima, University of Western Sydney, NSW #

Simon Rodgers, Department of Water, WA #

John Ruprecht, Department of Agriculture and Food, WA#

Sabine Schreiber, Department of Environment and Primary Industries, Victoria #

Ashish Sharma, University of New South Wales, NSW #

Crispin Smythe, Entura, Tasmania #

Patrick Thompson, BG&E, WA #

Md Jalal Uddin, University of Western Sydney, NSW

Taugir Ullah, University of Western Sydney, NSW

#### **Organisations that Provided Data and Technical Support**

- Bureau of Meteorology, Melbourne
- Department of Environment and Primary Industries, Victoria
- Department of Environment, Water and Natural Resources, SA
- Department of Land Resource Management, NT
- Department of Natural Resources and Mines, Queensland
- Department of Primary Industries, Parks, Water and Environment, Tasmania
- Department of Transport and Main Roads, Queensland
- Department of Water, WA
- Hydro Tasmania, Tasmania
- Office of Water, NSW

- The University of Newcastle, NSW
- Thiess, Victoria
- University of Western Sydney, NSW
- WMAwater, NSW

### **Executive Summary**

To upgrade the Regional Flood Frequency Estimation (RFFE) method in Australian Rainfall and Runoff (ARR) as a part of ARR *Project 5 Regional Flood Methods*, a project team undertook extensive data collation and modelling tasks during 2006 to 2014. The principal objectives of ARR Project 5 were to collate a quality controlled national database and to develop a new RFFE technique based on the collated database for the new ARR (4<sup>th</sup> edition). ARR Project 5 has been completed in three stages. Stage 1 and Stage 2 reports (Rahman et al., 2009; 2012) contained details of initial investigations in relation to the development of a national database and testing of different regional flood estimation methods to select a method for inclusion in the ARR (4<sup>th</sup> edition). This report summarises the analyses and outcomes from Project 5 Stage 3 (final stage), which forms the basis of a new RFFE technique for Australia known as 'RFFE Technique 2015'.

The data from 853 gauged catchments in Australia have been used in Stage 3 to develop and test RFFE Technique 2015. Australia has been divided into data-rich and arid (data-poor) areas. There are 798 gauged catchments in the data-rich areas and 55 gauged catchments in the data-poor areas.

In flood frequency analysis, the newly developed Multiple Grubbs-Beck (MGB) test has been adopted to detect Potentially Influential Low Flows (PILFs). It has been found that the MGB test identifies a greater number of PILFs than the original Grubbs-Beck test. The outcome from the MGB test is found to be consistent with the judgement of experienced hydrologists who often adopt an interactive censoring in flood frequency analysis.

For each of the selected gauged catchments, flood quantiles are estimated for 6 annual exceedance probabilities (AEPs), which are 50%, 20%, 10%, 5%, 2% and 1%. For the datarich areas, flood quantiles are estimated from the annual maximum flood series data using FLIKE software adopting an LP3 distribution and Bayesian parameter estimation procedure. For the data-poor areas, partial duration series data (considering average number of events per year = 0.5) is used to estimate flood quantiles by a Generalised Pareto distribution and L moments procedure.

In the application of RFFE Technique 2015, the data-rich areas of Australia have been divided into five different regions. The data-poor areas have been divided into two different regions. The boundaries between the data-rich and data-poor regions are drawn approximately based on the 500 mm mean annual rainfall contour line. To reduce the effects

of sharp variation in quantile estimates for the ungauged catchments located close to these regional boundaries, six fringe zones have been delineated.

For the data-rich regions, a region-of-influence approach has been adopted to define a sub-region for each of the 798 gauged sites. A Bayesian generalised least squares (GLS) regression approach has been adopted to develop prediction equations for three parameters/moments of the LP3 distribution (parameter regression technique). These prediction equations require two to three predictor variables (catchment area, design rainfall intensity (Bureau of Meteorology 2013 design rainfall data at catchment centroid) and shape factor). These prediction equations largely satisfy the assumptions of the regression analysis.

For the two arid regions, an index type approach has been applied where 10% AEP flood quantile has been used as the index variable. The prediction equation for the index variable has been developed based on a fixed-region approach using an ordinary least squares regression. These prediction equations require two predictor variables (catchment area and design rainfall intensity).

A leave-one-out validation approach has been adopted to assess the performance of the RFFE Technique 2015. Based on this, it has been found that for AEPs of 50% to 1%, the median relative error values (with respect to at-site flood frequency analysis results) for the RFFE Technique 2015 range from 33% to 69% for the data-rich regions and 35% to 67% for the arid regions. The distributions of median relative error values for small and medium catchment sizes (in the model dataset) have been found to be similar. Also, no relationship has been found between relative error and catchment size. However, the applicability of the RFFE Technique to very small catchments (beyond the lower limit of the model catchments) could not be checked due to unavailability of gauged streamflow data for these catchments.

The coefficients of the developed regression equations at each of the 798 gauged locations and for the two arid regions are estimated, stored and embedded in a computer-based application tool (called RFFE Model 2015). The user is required to enter simple input data like latitude, longitude, catchment area and design rainfall intensity for the ungauged catchment of interest. The RFFE Model 2015 then generates design flood estimates and 90% confidence limits for AEPs of 50%, 20%, 10%, 5%, 2% and 1%. The output also includes a set of the nearest gauged catchments (which have been used to develop RFFE Model 2015) so that the user can compare the characteristics of the ungauged catchment of interest with the nearest gauged catchments used in the model development.

Despite the best possible efforts in data collation, some errors in the data might have remained undetected. Given the high variability of Australian hydrology and the current density and streamflow record lengths of the gauged stations used to develop the RFFE Technique 2015, the degree of uncertainty associated with the RFFE technique is considered acceptable. To enhance the accuracy of the RFFE Technique 2015, a greater number of stations with longer period of streamflow records should be used when these become available.

The development of the RFFE Technique 2015 is based on the assumption that the catchment characteristics represented in the regression equation (e.g. catchment area, design rainfall intensity and shape factor) account for the important differences in flood characteristics between sites in a region. It should be recognised that flood estimates generated by the RFFE Model 2015 for a catchment with flood characteristics that are distinctly different from typical gauged catchments in the region may not only be associated with larger error margins but also significant bias. In such situations hydrological judgment must be used to assess if any adjustment of the regional flood frequency estimate is required (based on comparison of other relevant catchment characteristics). To support such an assessment, the RFFE Model 2015 output describes the set of gauged catchments used in developing the RFFE Model, which are located closest to the ungauged catchment of interest.

## **TABLE OF CONTENTS**

| EXECUTIVE SUMMARY                                                               | v         |
|---------------------------------------------------------------------------------|-----------|
| TABLE OF CONTENTS                                                               | viii      |
| LIST OF FIGURES                                                                 | x         |
| LIST OF TABLES                                                                  | хi        |
| LIST OF APPENDICES                                                              | xii       |
| 1. Introduction                                                                 | 1         |
| 1.1 Background                                                                  | 1         |
| 1.2 Scope of the report                                                         | 1         |
| 1.3 Outline of the report                                                       | 1         |
| 2. Selection of catchments and preparation of streamflow and ca                 | tchment   |
| characteristics data                                                            | 3         |
| 2.1 Overview                                                                    | 3         |
| 2.2 Selection of catchments from data-rich areas                                | 3         |
| 2.2.1 Catchments from New South Wales and ACT (data-rich                        | parts) 4  |
| 2.2.2 Catchments from Victoria (data-rich parts)                                | 7         |
| 2.2.3 Catchments from South Australia (data-rich parts)                         | 8         |
| 2.2.4 Catchments from Tasmania (data-rich parts)                                | 11        |
| 2.2.5 Catchments from Queensland (data-rich parts)                              | 13        |
| 2.2.6 Catchments from Western Australia (data-rich parts)                       | 15        |
| 2.2.7 Catchments from Northern Territory (data-rich parts)                      | 17        |
| 2.3 Catchments from arid areas of Australia                                     | 19        |
| 2.4 Catchments from all Australia (data-rich areas without arid are catchments) | ea 21     |
| 2.5 Summary of the selected catchments (data-rich and arid area                 | as) 23    |
| 2.6 Selection of climatic and catchment characteristics variables               | 24        |
| 2.7 Streamflow data preparation and at-site flood frequency analy               | ysis 26   |
| 2.7.1 Infilling the gaps in the streamflow data                                 | 26        |
| 2.7.2 Detection of Potentially Influential Low Flows (PILFs) in t               | the AM 26 |
| flood series                                                                    |           |

| 2.7.3 Impact of rating curve extrapolation error on flood quantile estimates | 28 |
|------------------------------------------------------------------------------|----|
| 2.7.4 At-site flood frequency analysis                                       | 35 |
| 2.8 Archiving of the data                                                    | 37 |
| 3. Description of adopted statistical methods                                | 38 |
| 3.1 Region-of-influence (ROI) approach                                       | 38 |
| 3.2 Parameter regression technique (PRT)                                     | 39 |
| 3.3 Bayesian Generalised Least Squares Regression                            | 39 |
| 3.4 Model validation approach                                                | 41 |
| 3.5 RFFE method adopted in the data-poor (arid) areas                        | 41 |
| 3.6 Development of confidence limits for the estimated flood quantiles       | 42 |
| 4. Formation of regions in the RFFE technique                                | 43 |
| 5. Development of regional prediction equations for the data-rich regions    | 46 |
| 5.1 Searching for the best regression equation using Bayesian GLS regression | 46 |
| 5.2 Implementation of region-of-influence (ROI) approach                     | 51 |
| 5.3 Model diagnostics                                                        | 52 |
| 5.4 Results from leave-one-out validation                                    | 54 |
| 6. Development of regional prediction equations for arid (data-poor) regions | 59 |
| 7. Application tool                                                          | 64 |
| 8. Supplementary information                                                 | 64 |
| 9. Summary                                                                   | 65 |
| References                                                                   | 69 |
| Annandicae                                                                   | 72 |

## **LIST OF FIGURES**

| Figure 2.1 Distribution of streamflow record lengths of 176 stations from NSW and ACT         | 5  |
|-----------------------------------------------------------------------------------------------|----|
| Figure 2.2 Geographical distribution of the selected 176 stations from NSW and ACT            | 6  |
| Figure 2.3 Distribution of catchment areas of 176 stations from NSW and ACT                   | 6  |
| Figure 2.4 Distribution of streamflow record lengths of 186 stations from Victoria            | 7  |
| Figure 2.5 Geographical distribution of the selected 186 stations from Victoria               | 8  |
| Figure 2.6 Distribution of catchment areas of 186 stations from Victoria                      | 8  |
| Figure 2.7 Distribution of streamflow record lengths of 28 stations from South Australia      | 9  |
| Figure 2.8 Geographical distribution of the selected 28 stations from South Australia         | 10 |
| Figure 2.9 Distribution of catchment areas of 28 stations from South Australia                | 10 |
| Figure 2.10 Distribution of streamflow record lengths of 51 stations from Tasmania            | 11 |
| Figure 2.11 Geographical distribution of the selected 51 stations from Tasmania               | 12 |
| Figure 2.12 Distribution of catchment areas of 51 stations from Tasmania                      | 12 |
| Figure 2.13 Distribution of streamflow record lengths of 196 stations from Queensland         | 13 |
| Figure 2.14 Geographical distribution of the selected 196 stations from Queensland            | 14 |
| Figure 2.15 Distribution of catchment areas of 196 stations from Queensland                   | 14 |
| Figure 2.16 Distribution of streamflow record lengths of 111 stations from                    |    |
| Western Australia                                                                             | 15 |
| Figure 2.17 Geographical distribution of the selected 111 stations from                       |    |
| Western Australia                                                                             | 16 |
| Figure 2.18 Distribution of catchment areas of 111 stations from Western Australia            | 16 |
| Figure 2.19 Distribution of streamflow record lengths of 50 stations from Northern Territory  | 17 |
| Figure 2.20 Geographical distribution of the selected 50 stations from Northern Territory     | 18 |
| Figure 2.21 Distribution of catchment areas of 50 stations from Northern Territory            | 18 |
| Figure 2.22 Distribution of streamflow record lengths of 55 stations from the arid areas      | 19 |
| Figure 2.23 Geographical distribution of the selected 55 stations from the arid areas         | 20 |
| Figure 2.24 Distribution of catchment areas of 55 stations from arid areas                    | 20 |
| Figure 2.25 Distribution of streamflow record lengths of 798 stations from data-rich areas    |    |
| of Australia                                                                                  | 21 |
| Figure 2.26 Geographical distribution of the selected 798 stations from data-rich areas       | 22 |
| Figure 2.27 Distribution of catchment areas of 798 stations from data-rich areas of Australia | 22 |
| Figure 2.28 Geographical distribution of the selected 853 stations (data-rich and arid areas) | 24 |
| Figure 2.29 Summary results of censoring Potentially Influential Low Flows (PILFs)            |    |
| from NSW and ACT (176 stations) using MGB test                                                | 28 |
| Figure 2.30 Plot of rating ratios (RR) for Station 201001 in NSW                              | 30 |
| Figure 2.31 Histogram of rating ratio (RR) of AM flood data points from 96 catchments in NSW  | 30 |
| Figure 2.32 Catchment size vs. differences in flood quantile estimates between CV of 0%       |    |
| and CV of 20% for 96 NSW catchments (for 2% AEP flood)                                        | 33 |

| Figure 2.33 Plot of SD of log <sub>e</sub> (Q) vs. differences in flood quantile estimates between CV of 0% |    |
|-------------------------------------------------------------------------------------------------------------|----|
| and CV of 20% (96 catchments from NSW) (for 2% AEP flood)                                                   | 33 |
| Figure 2.34 Plot of skew of loge(Q) vs. differences in flood quantile estimates between CV of 0%            |    |
| and CV of 20% (96 catchments from NSW) (for 2% AEP flood)                                                   | 33 |
| Figure 2.35 Difference in flood quantiles between CV of 0% and CV of 20%                                    |    |
| for 2% AEP flood quantiles (96 catchments from NSW)                                                         | 34 |
| Figure 2.36 Differences in quantile estimates (expected quantiles from FLIKE) between CV = 0%               |    |
| and CV = 20% for 96 catchments in NSW (for 5% AEP flood)                                                    | 34 |
| Figure 2.37 Differences in quantile estimates (expected quantiles from FLIKE) between CV = 0%               |    |
| and CV = 20% for 96 catchments in NSW (for 1% AEP flood)                                                    | 35 |
| Figure 2.38 Relationship between SD of log <sub>e</sub> (Q) and catchment area for NSW 176 catchments       | 36 |
| Figure 2.39 Relationship between Skew of log <sub>e</sub> (Q) and catchment area for NSW 176 catchments     | 36 |
| Figure 4.1 Adopted regions in the RFFE technique                                                            | 44 |
| Figure 5.1 Selection of predictor variables for mean $(M)$ , standard deviation $(S)$                       |    |
| and skew (SK) models,                                                                                       |    |
| AVPN = average variance of prediction (new) AIC = Akaike information criterion,                             |    |
| BIC = Bayesian information criterion, C(X) = combination selected                                           | 48 |
| Figure 5.2 Standardised residuals vs. Z score for AEPs of 50% to 1% for Region 1                            | 55 |
| Figure 5.3 Observed vs. predicted quantiles (in log space) for AEPs of 50% to 1%                            |    |
| for Region 1                                                                                                | 56 |
| Figure 5.4 Plot showing relationship between catchment area and absolute RE (Region 2)                      | 58 |
| Figure 6.1 Standardised residuals vs. predicted quantiles for 10% AEP (Region 6)                            | 61 |
| Figure 6.2 Standardised residuals vs. predicted quantiles for 10% AEP (Region 7)                            | 61 |
| Figure 6.3 QQ-plot of the standardised residuals for 10% AEP (Region 6)                                     | 62 |
| Figure 6.4 QQ-plot of the standardised residuals for 10% AEP (Region 7)                                     | 62 |
| LIST OF TABLES                                                                                              |    |
| Table 2.1 Summary of the selected 853 catchments (data-rich and arid areas)                                 | 23 |
| Table 2.2 Impact of censoring Potentially Influential Low Flows (PILFs)                                     |    |
| on flood quantile estimates (Site 130319A from QLD, AM data covered 1961-2011)                              |    |
| (Method used in quantile estimation: Bayesian LP3 method)                                                   | 27 |
| Table 2.3 Selected 12 catchments from NSW for investigating impacts of rating curve                         |    |
| error on flood quantile estimates                                                                           | 31 |
| Table 2.4 Example demonstrating impact of rating curve uncertainty on flood quantile estimates              | 32 |
| Table 4.1 Details of five data-rich regions in RFFE Techniuqe 2015                                          | 44 |
| Table 4.2 Details of two data-poor/arid regions in RFFE Techniuqe 2015                                      | 45 |
| Table 4.3 Details of six fringe zones in REFE Technique 2015                                                | 45 |

| Table 5.1 Median number of sites in the ROI sub-regions for the five data-rich regions       | 51  |
|----------------------------------------------------------------------------------------------|-----|
| Table 5.2 Average variance of prediction (AVP), average standard error of prediction (SEP),  |     |
| and pseudo coefficient of determination (R2_GLSR) for the regional ROI-based                 |     |
| regression equations for five data-rich regions                                              | 53  |
| Table 5.3 Median of absolute relative error (RE) (%) for data-rich regions by REEF technique | 57  |
| Table 5.4 Median of absolute RE values for different catchment sizes (Region 2, 5% AEP)      | 57  |
| Table 5.5 Median of absolute RE values for different catchment sizes (Region 4, 5% AEP)      | 58  |
| Table 5.6 Median of absolute RE values for different catchment sizes (Region 1, 5% AEP)      | 58  |
| Table 6.1 Growth factors for the aris regions                                                | 59  |
| Table 6.2 Regression statistics of the developed prediction equations for arid regions       | 60  |
| Table 6.3 Median of absolute relative error (RE) (%) for two arid regions                    | 63  |
|                                                                                              |     |
| LIST OF APPENDICES                                                                           |     |
| LIST OF AFFENDICES                                                                           |     |
| Appendix A List of selected catchments (and catchment data summary) in ARR Project 5 Stage 3 | 73  |
| Table A1 Selected catchments from New South Wales                                            | 74  |
| Table A2 Selected catchments from Victoria                                                   | 82  |
| Table A3 Selected catchments from South Australia                                            | 90  |
| Table A4 Selected catchments from Tasmania                                                   | 92  |
| Table A5 Selected catchments from Queensland                                                 | 95  |
| Table A6 Selected catchments from Western Australia                                          | 104 |
| Table A7 Selected catchments from the Northern Territory                                     | 109 |
| Table A8 Selected catchments from the semi-arid and arid areas                               | 112 |
| Table A9 Summary statistics of the climatic and catchment characteristics for Region 1       | 115 |
| Table A10 Summary statistics of the climatic and catchment characteristics for Region 2      | 116 |
| Table A11 Summary statistics of the climatic and catchment characteristics for Region 3      | 117 |
| Table A12 Summary statistics of the climatic and catchment characteristics for Region 4      | 118 |
| Table A13 Summary statistics of the climatic and catchment characteristics for Region 5      | 119 |
| Table A14 Summary statistics of the climatic and catchment characteristics for Region 6      | 120 |
| Table A15 Summary statistics of the climatic and catchment characteristics for Region 7      | 121 |
| Appendix B Additional results from the data-rich regions                                     | 123 |
| Appendix C Additional results from the arid regions                                          | 128 |
| Appendix D List of publications originated from Project 5                                    | 139 |

## 1. Introduction

### 1.1 Background

To upgrade the Regional Flood Frequency Estimation (RFFE) method in Australian Rainfall and Runoff (ARR) as a part of ARR *Project 5 Regional Flood Methods*, a project team undertook extensive data collation and modelling tasks during 2006 to 2014. The principal objectives of ARR Project 5 were to collate a quality controlled national database and to develop a new RFFE technique based on the collated database for the new ARR (4<sup>th</sup> edition). ARR Project 5 has been completed in three stages. Stage 1 and Stage 2 reports (Rahman et al., 2009; 2012) contained details of initial investigations in relation to the development of a national database and testing of different regional flood estimation methods to select a method for inclusion in the ARR (4<sup>th</sup> edition).

This report contains information on the final national database that has been used in the development of the RFFE Technique 2015 and results related to the development and testing of the RFFE Technique 2015.

## 1.2 Scope of the report

The report provides information on the selected catchments and database used in the development of the RFFE Technique 2015.

The report also presents the adopted methodology in forming the regions and developing the regional prediction equations. This also presents results on the development and testing of the RFFE Technique 2015.

## 1.3 Outline of the report

There are 8 chapters and three appendices in the report, as follows.

Chapter 1 provides the background, scope and outline of the report.

Chapter 2 provides details of the database that has been used in the development and testing of the RFFE Technique 2015. This covers selection of catchments and preparation of streamflow and catchment characteristics data.

Chapter 3 describes the adopted statistical methods in the development of the RFFE Technique 2015 i.e. region-of-influence approach, parameter regression technique (PRT) and generalised least squares (GLS) regression.

Chapter 4 presents results on the formation of regions in the data-rich and data-poor areas of Australia.

Chapter 5 presents the development and validation of prediction equations for the data-rich areas by applying region-of-influence approach and GLS regression.

Chapter 6 presents the development and validation of prediction equations for the data-poor (arid) areas.

Chapter 7 provides information on the development of the application tool (known as RFFE Model 2015), which is a computer-based tool that incorporates the model coefficients derived in this study. This enables the user to estimate flood quantiles at the ungauged catchment location with simple input data.

Chapter 8 provides a summary of the results and findings from this study.

Appendix A contains the list of the selected catchments, river name, gauge location, area of the catchments and streamflow record lengths used to develop the RFFE Technique 2015. This also provides summary statistics of the relevant catchment characteristics data for different regions.

Appendix B provides additional results from the data-rich regions in relation to the development and testing of the prediction equations for the RFFE Technique 2015.

Appendix C provides additional results from the arid regions in relation to the development and testing of the prediction equations for the RFFE Technique 2015.

Appendix D provides list of publications originated from Project 5.

## 2. Selection of catchments and preparation of streamflow and catchment characteristics data

#### 2.1 Overview

This chapter provides information on the selection of catchments and the preparation of streamflow and catchment characteristics data used to develop and test the RFFE Technique 2015. The selection of catchments from the data-rich areas of Australia is presented first, followed by the selection of catchments from the arid areas and a summary of all the selected catchments. The selection of climatic and catchment characteristics data is provided next. Thereafter, the streamflow data preparation and at-site flood frequency analysis are presented. Finally, the method of data archiving is described.

#### 2.2 Selection of catchments from data-rich areas

The following six criteria were considered in making the initial selection of the study catchments:

**Catchment area**: The primary objective here is to develop prediction equations for flood estimation in small to medium sized ungauged catchments. The flood frequency behaviour of large catchments has been shown to significantly differ from smaller catchments. ARR (I.E Aust., 1987) suggested an upper limit of 1000 km² for small to medium sized catchments, a criterion adopted in this study. However, for a few states (e.g. the Northern Territory and Tasmania), the upper limit was relaxed to increase the number of catchments, as too small a number of catchments may not able to capture the variability in flood characteristics within a region.

Record length: The streamflow record at a stream gauging location should be long enough to characterise the underlying flood probability distribution with reasonable accuracy. In most practical situations, streamflow records at many gauging stations in a given study area are not long enough and hence a balance is required between obtaining a sufficient number of stations (which captures greater spatial information) and a reasonably long record length (which enhances accuracy of at-site flood quantile estimates). The cut-off record length was selected to maximise the potential number of stations with the expectation that further culling will reduce that number. The cut off record length was set to be 20 years; however, for Tasmania and the Northern Territory, it was taken to be 19 years.

**Regulation**: Ideally, the selected streams should be unregulated, since major regulation affects the rainfall-runoff relationship significantly (e.g., storage effects). Streams with minor regulation, such as small farm dams and diversion weirs, may be included because this type of regulation is unlikely to have a significant effect on annual floods. Gauging stations on streams subject to major upstream regulation (e.g. a large dam on the stream) were excluded from the data set.

**Urbanisation**: Urbanisation can affect flood behaviour dramatically (e.g. decreased infiltration losses and increased flow velocity). Therefore catchments with more than 10% of the area affected by urbanisation were excluded from the data set.

Landuse change: Major landuse changes, such as the clearing of forests, changing agricultural practices or urbanisation modify flood generation mechanisms and make streamflow records heterogeneous over the period of record length. Catchments which are known to have undergone major landuse changes over the period of streamflow records were excluded from the data set.

**Quality of data**: Most statistical analyses of flood data assume that the available data are error free; however, at some stations it is recognised that this assumption may be grossly violated. Stations graded as 'poor quality' or with specific comments by the gauging authority regarding quality of the data were assessed in greater detail; if flood data were deemed 'low quality', these stations were excluded.

The annual maximum flood series data may be affected by multi-decadal climate variability and climate change, which are not easy to deal with. The effects of multi-decadal climate variability can be accounted for by increasing the cut-off record length at an individual station; however, the impacts of climate change present a serious problem in terms of the applicability of the past data in predicting future flood frequency, which needs further research (Ishak et al., 2013).

## 2.2.1 Catchments from New South Wales and ACT (data-rich parts)

A total of 176 catchments have been selected from New South Wales (NSW) and the Australian Capital Territory (ACT) (listed in Appendix Table A1).

The record lengths of annual maximum flood series of these 176 stations range from 20 to 82 years (mean: 35.76 years, median: 34 years and standard deviation: 12.20 years). The distribution of record lengths is shown in Figure 2.1.

The catchment areas of the selected 176 catchments range from 1 km² to 1,036 km² (mean: 311 km² and median: 204 km²). The geographical distribution of the selected 176 catchments is shown in Figure 2.2. The distribution of catchment areas of these stations is shown in Figure 2.3.

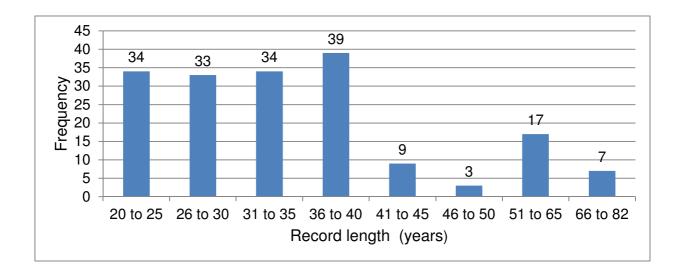



Figure 2.1 Distribution of streamflow record lengths of 176 stations from NSW and ACT

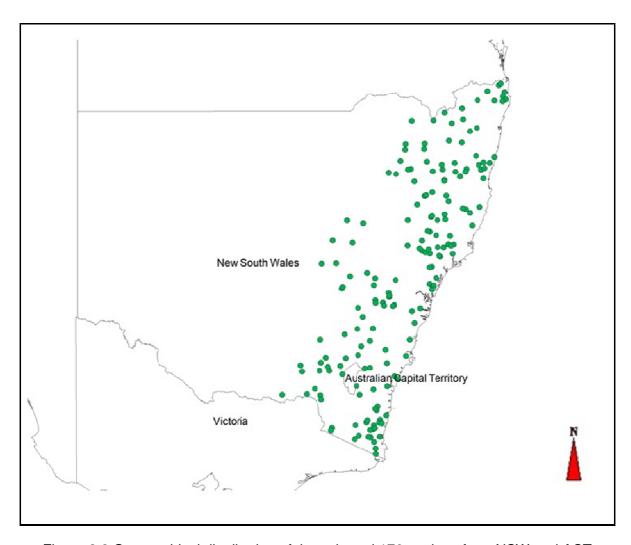



Figure 2.2 Geographical distribution of the selected 176 stations from NSW and ACT

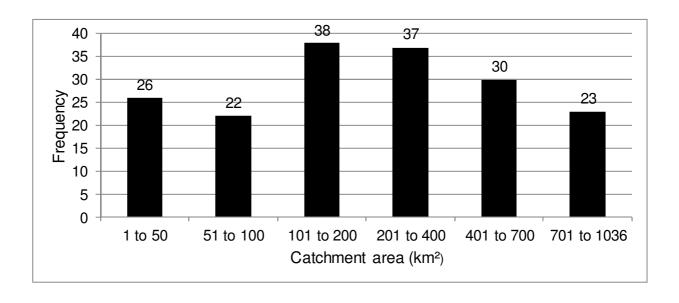



Figure 2.3 Distribution of catchment areas of 176 stations from NSW and ACT

## 2.2.2 Catchments from Victoria (data-rich parts)

A total of 186 catchments have been selected from Victoria (listed in Appendix Table A2).

The record lengths of annual maximum flood series of these 186 stations range from 20 to 60 years (mean: 37 years, median: 38 years and standard deviation: 7.30 years). The distribution of record lengths is shown in Figure 2.4.

The catchment areas of the selected 186 catchments range from 3 km² to 997 km² (mean: 271 km² and median: 209 km²). The geographical distribution of the selected 186 catchments is shown in Figure 2.5. The distribution of catchment areas of these stations is shown in Figure 2.6.

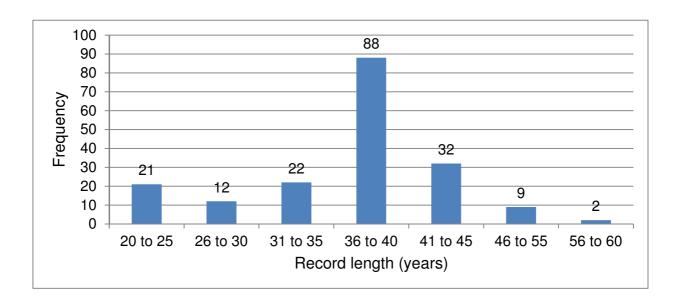



Figure 2.4 Distribution of streamflow record lengths of 186 stations from Victoria

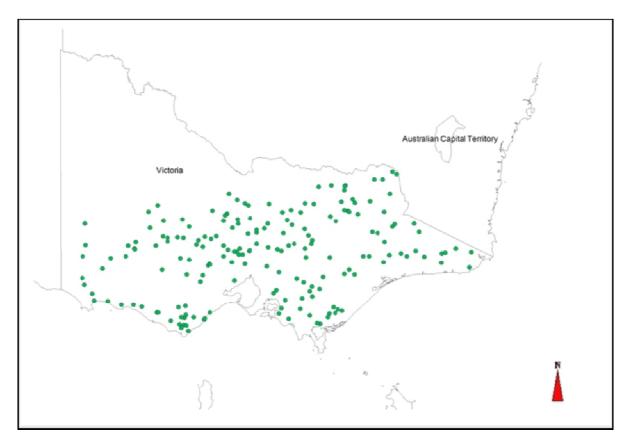



Figure 2.5 Geographical distribution of the selected 186 stations from Victoria

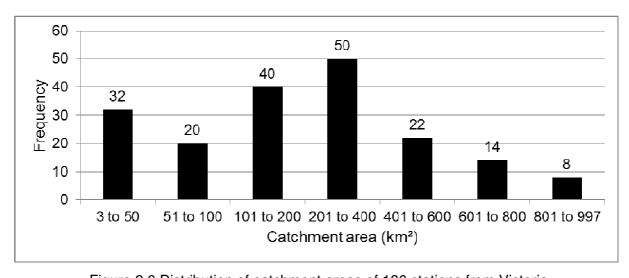



Figure 2.6 Distribution of catchment areas of 186 stations from Victoria

## 2.2.3 Catchments from South Australia (data-rich parts)

A total of 28 catchments have been selected from South Australia (listed in Appendix Table A3).

The record lengths of annual maximum flood series of these 28 stations range from 20 to 63 years (mean: 36.64 years, median: 37 years and standard deviation: 9.15 years). The distribution of record lengths is shown in Figure 2.7.

The catchment areas of the selected 28 catchments range from 0.6 km² to 708 km² (mean: 161 km² and median: 63 km²). The geographical distribution of the selected 28 catchments is shown in Figure 2.8. The distribution of catchment areas of these stations is shown in Figure 2.9.

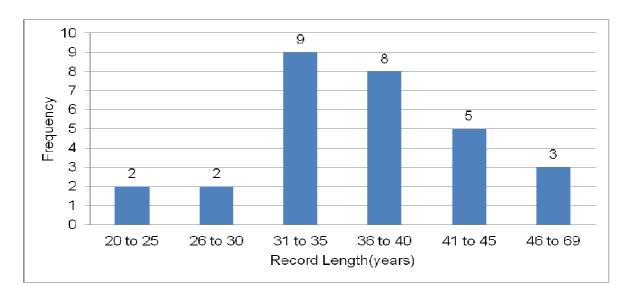



Figure 2.7 Distribution of streamflow record lengths of 28 stations from South Australia



Figure 2.8 Geographical distribution of the selected 28 stations from South Australia

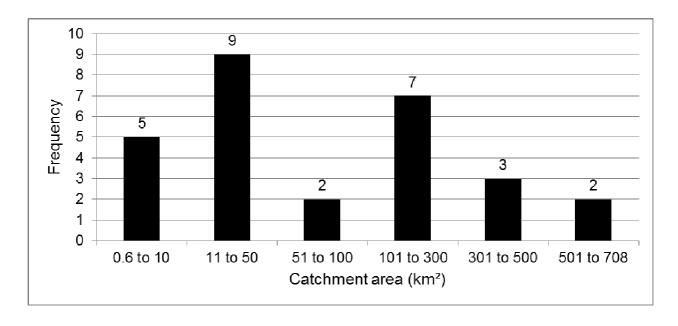



Figure 2.9 Distribution of catchment areas of 28 stations from South Australia

## 2.2.4 Catchments from Tasmania

A total of 51 catchments have been selected from Tasmania (listed in Appendix Table A4).

The record lengths of annual maximum flood series of these 51 stations range from 19 to 74 years (mean: 30.51 years, median: 28 years and standard deviation: 11.05 years). The distribution of record lengths is shown in Figure 2.10.

The catchment areas of the selected 51 catchments range from 1.3 km² to 1,900 km² (mean: 320 km² and median: 158 km²). The geographical distribution of the selected 51 catchments is shown in Figure 2.11. The distribution of catchment areas of these stations is shown in Figure 2.12.

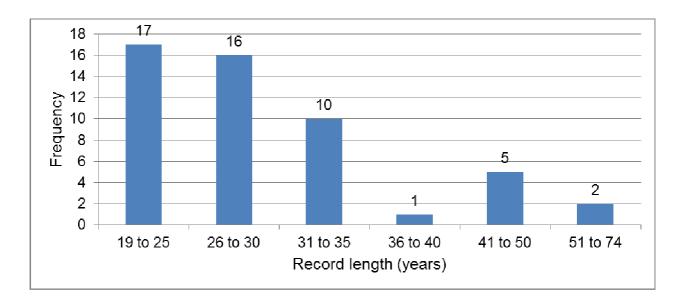



Figure 2.10 Distribution of streamflow record lengths of 51 stations from Tasmania

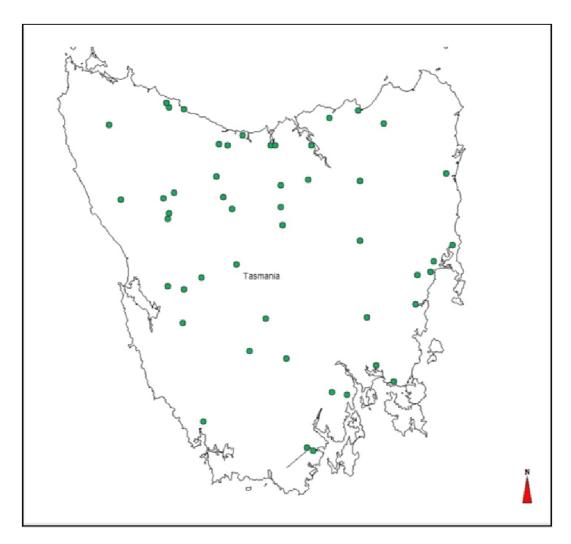



Figure 2.11 Geographical distribution of the selected 51 stations from Tasmania

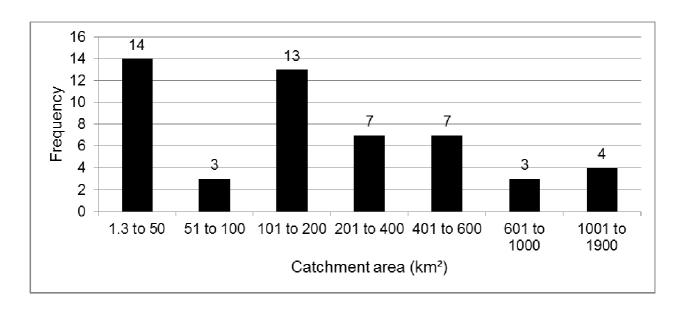



Figure 2.12 Distribution of catchment areas of 51 stations from Tasmania

## 2.2.5 Catchments from Queensland (data-rich parts)

A total of 196 catchments have been selected from Queensland (listed in Appendix Table A5).

The record lengths of annual maximum flood series of these 196 stations range from 20 to 102 years (mean: 43 years, median: 42 years and standard deviation: 17.05 years). The distribution of record lengths is shown in Figure 2.13.

The catchment areas of the selected 196 catchments range from 7 km² to 963 km² (mean: 304 km², median: 227 km²). The geographical distribution of the selected 196 catchments is shown in Figure 2.14. The distribution of catchment areas of these stations is shown in Figure 2.15.

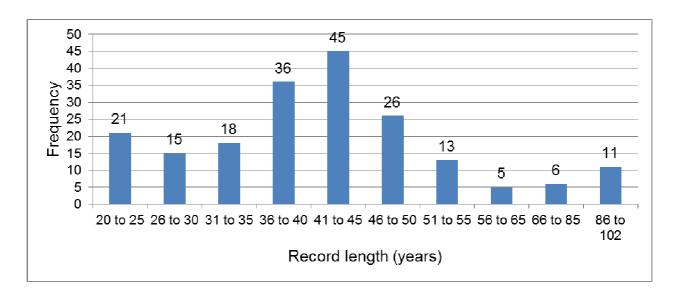



Figure 2.13 Distribution of streamflow record lengths of 196 stations from Queensland

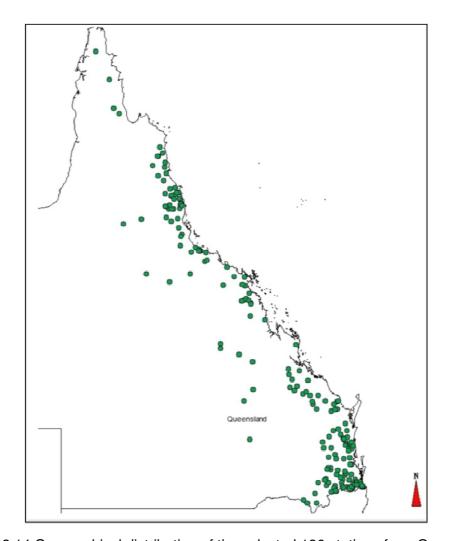



Figure 2.14 Geographical distribution of the selected 196 stations from Queensland

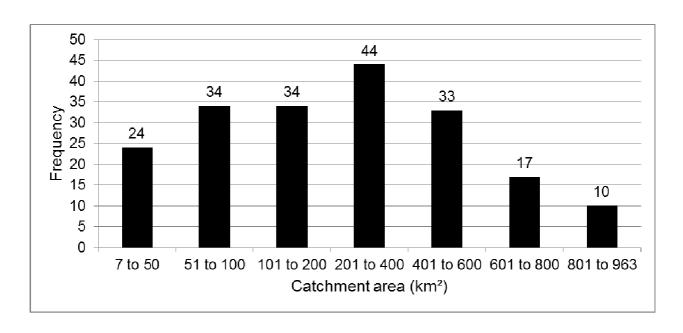



Figure 2.15 Distribution of catchment areas of 196 stations from Queensland

## 2.2.6 Catchments from Western Australia (data-rich parts)

A total of 111 catchments have been selected from Western Australia (listed in Appendix Table A6).

The record lengths of annual maximum flood series of these 111 stations range from 20 to 60 years (mean: 32.17 years, median: 30 years and standard deviation: 9.78 years). The distribution of record lengths is shown in Figure 2.16.

The catchment areas of the selected 111 catchments range from 0.5 km² to 1049.8 km² (mean: 160 km² and median: 49 km²). The geographical distribution of the selected 111 catchments is shown in Figure 2.17. The distribution of catchment areas of these stations is shown in Figure 2.18.

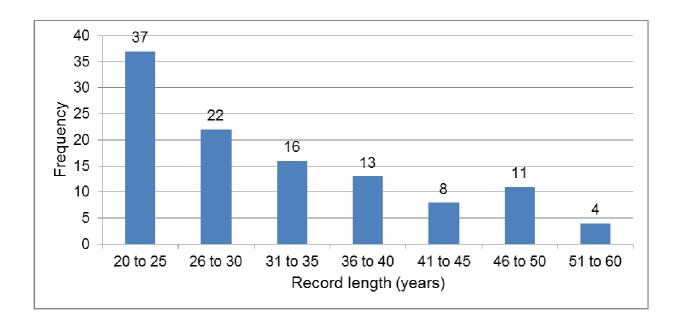



Figure 2.16 Distribution of streamflow record lengths of 111 stations from Western Australia

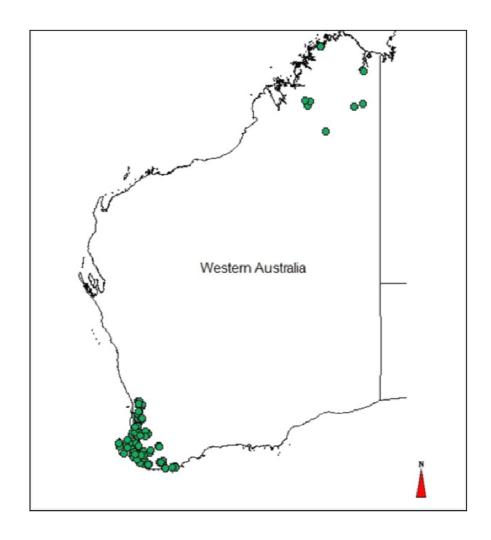



Figure 2.17 Geographical distribution of the selected 111 stations from Western Australia

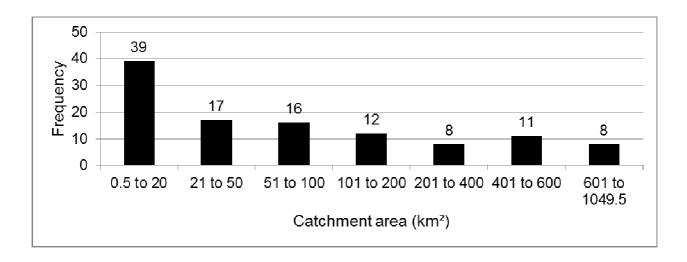



Figure 2.18 Distribution of catchment areas of 111 stations from Western Australia

## 2.2.7 Catchments from the Northern Territory (data-rich parts)

A total of 50 catchments have been selected from the Northern Territory (listed in Appendix Table A7).

The record lengths of annual maximum flood series of these 50 stations range from 19 to 57 years (mean: 37.68 years, median: 42 years and standard deviation: 12.58 years). The distribution of record lengths is shown in Figure 2.19.

The catchment areas of the selected 50 catchments range from 1.4 km² to 4,325 km² (mean: 641 km² and median: 352 km²). The geographical distribution of the selected 50 catchments is shown in Figure 2.20. The distribution of catchment areas of these stations is shown in Figure 2.21.

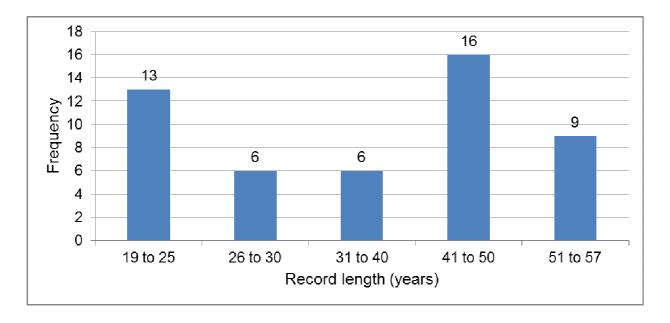



Figure 2.19 Distribution of streamflow record lengths of 50 stations from the Northern Territory

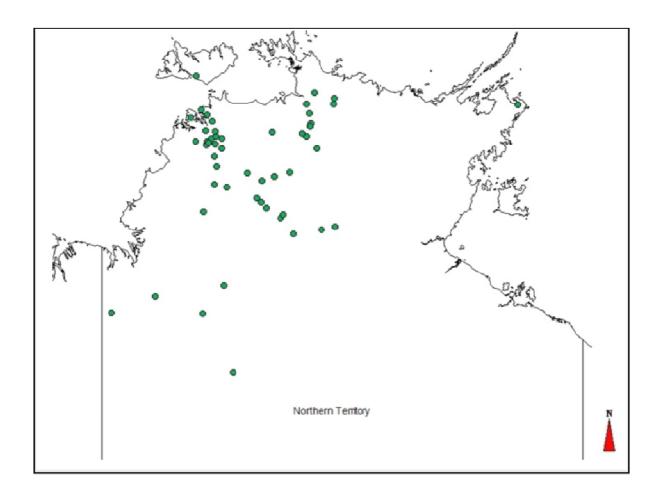



Figure 2.20 Geographical distributions of the selected 50 stations from the Northern Territory

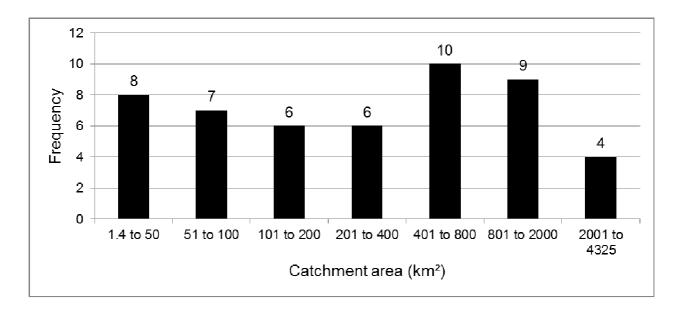



Figure 2.21 Distribution of catchment areas of 50 stations from the Northern Territory

#### 2.3 Catchments from arid areas of Australia

A total of 55 catchments have been selected from the arid areas including the Pilbara area in Western Australia and other arid areas (listed in Appendix Table A8).

The record lengths of flood series of these 55 stations range from 10 to 46 years (mean: 26.75 years, median: 27 years and standard deviation: 9.07 years). The distribution of record lengths is shown in Figure 2.22.

The catchment areas of the selected 55 catchments range from 0.1 km² to 5,975 km² (mean: 760 km² and median: 259 km²). The geographical distribution of the selected 55 catchments is shown in Figure 2.23. The distribution of catchment areas of these stations is shown in Figure 2.24.

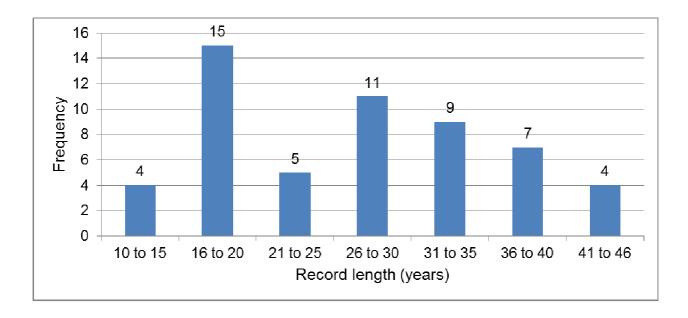



Figure 2.22 Distribution of streamflow record lengths of 55 stations from the arid areas

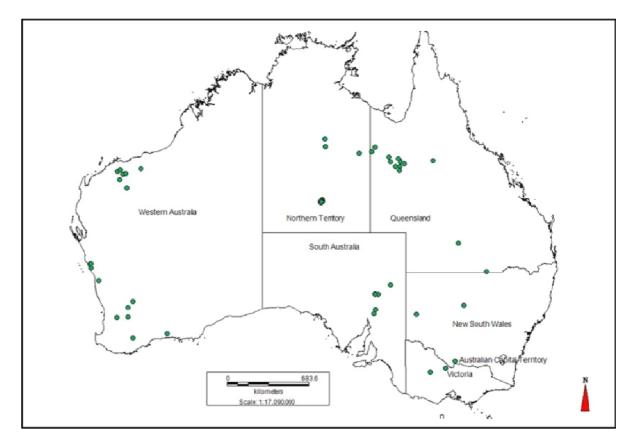



Figure 2.23 Geographical distribution of the selected 55 stations from the arid areas

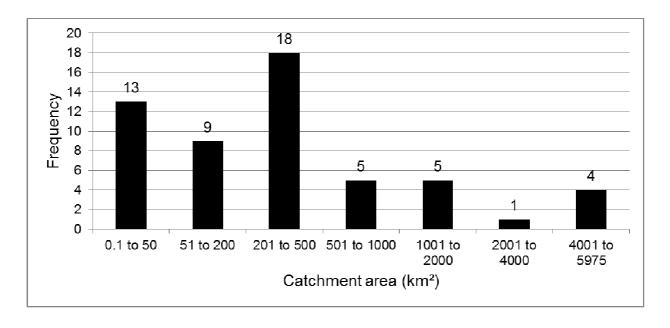



Figure 2.24 Distribution of catchment areas of 55 stations from the arid areas

# 2.4 Catchments from all Australia (data-rich areas without arid area catchments)

A total of 798 catchments have been selected from the data-rich areas of Australia.

The record lengths of the annual maximum flood series of these 798 stations range from 19 to 102 years (mean: 37.18 years, median: 37 years and standard deviation: 12.89 years). The distribution of record lengths of these 798 stations is shown in Figure 2.25.

The catchment areas of the selected 798 catchments range from  $0.5~\rm km^2$  to  $4,325~\rm km^2$  (mean: 294 km², median: 178 km²). However, for Victoria, New South Wales, South Australia, Queensland and South-west Western Australia, the catchment areas range from  $0.6~\rm km^2$  to  $1,049~\rm km^2$ . Only few catchments in Tasmania and the Northern Territory are in the range of  $1,000~\rm km^2$  to  $4,325~\rm km^2$ .

The geographical distribution of the selected 798 catchments from the data-rich areas is shown in Figure 2.26. The distribution of catchment areas of these stations is shown in Figure 2.27.

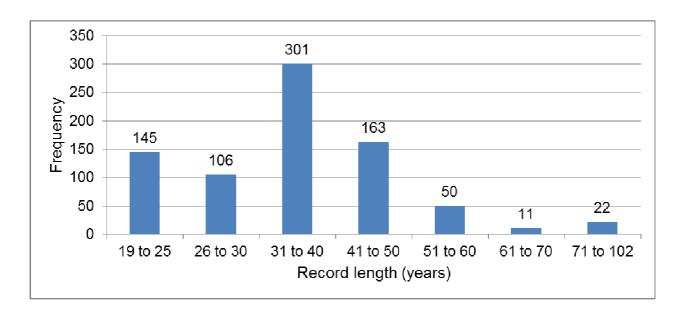



Figure 2.25 Distribution of streamflow record lengths of 798 stations from all data-rich areas of Australia

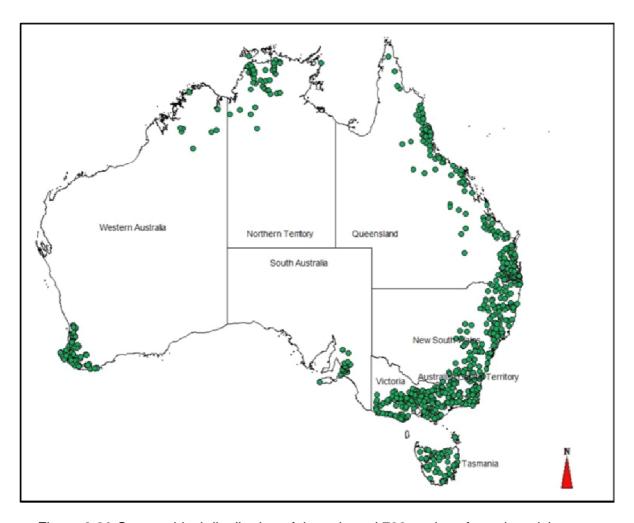



Figure 2.26 Geographical distribution of the selected 798 stations from data-rich areas

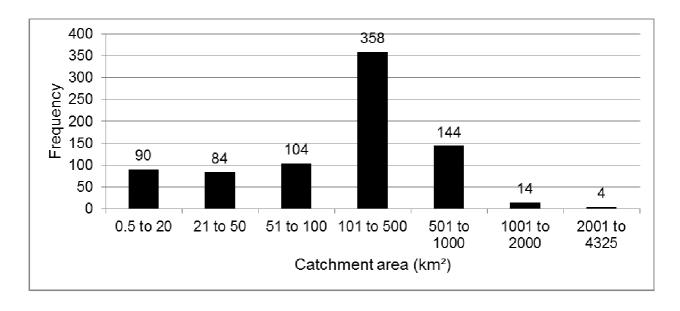



Figure 2.27 Distribution of catchment areas of 798 stations from data-rich areas of Australia

### 2.5 Summary of the selected catchments (data-rich and arid areas)

A total of 798 catchments are selected from the data-rich areas and 55 catchments from arid areas i.e. a total of 853 catchments from all over Australia. A summary of these 853 selected catchments from data-rich and arid areas is provided in Table 2.1. The geographical distribution of the selected 853 catchments is shown in Figure 2.28.

Table 2.1 Summary of the selected 853 catchments (data-rich and arid areas)

| State              | No. of stations | Streamflow record length (years) (range and median) | Catchment size (km²) (range and median) |
|--------------------|-----------------|-----------------------------------------------------|-----------------------------------------|
| New South Wales &  |                 |                                                     | ,                                       |
| Australian Capital | 176             | 20 – 82 (34)                                        | 1 – 1036 (204)                          |
| Territory          |                 |                                                     |                                         |
| Victoria           | 186             | 20 – 60 (38)                                        | 3 – 997 (209)                           |
| South Australia    | 28              | 20 – 63 (37)                                        | 0.6 – 708 (62.6)                        |
| Tasmania           | 51              | 19 – 74 (28)                                        | 1.3 – 1900 (158.1)                      |
| Queensland         | 196             | 20 – 102 (42)                                       | 7 - 963 (227)                           |
| Western Australia  | 111             | 20 – 60 (30)                                        | 0.5 – 1049.8 (49.2)                     |
| Northern Territory | 50              | 19 – 57 (42)                                        | 1.4 - 4325 (352)                        |
| Sub Total          | 798             | 19 – 102 (37)                                       | 0.5 – 4325 (178.5)                      |
| Arid areas         | 55              | 10 – 46 (27)                                        | 0.1 - 5975 (259)                        |
| TOTAL              | 853             | 10 – 102 (36)                                       | 0.1 – 5975 (181)                        |

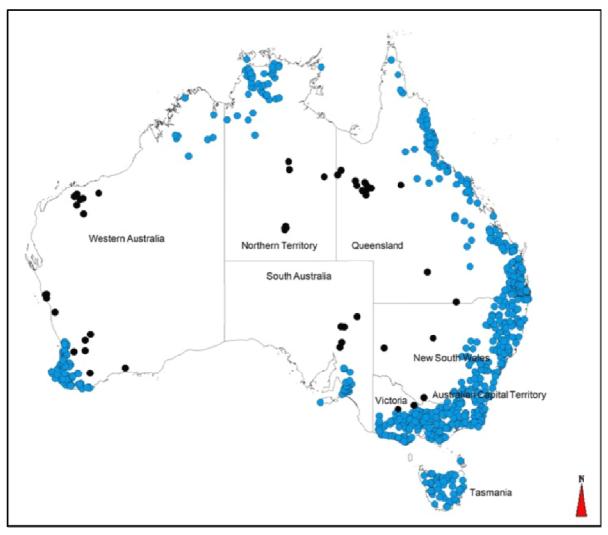



Figure 2.28 Geographical distribution of the selected 853 catchments (data-rich and arid areas)

#### 2.6 Selection of climatic and catchment characteristics variables

A total of nine predictor variables are used in the development and testing of the RFFE Technique 2015, as outlined below:

- i. catchment area in km² (area);
- ii. mean annual rainfall at catchment centroid in mm (rain);
- iii. design rainfall intensity at catchment centroid (in mm/h) for 6-hour duration and AEP of 50% ( $I_{6.50}$ );
- iv. design rainfall intensity at catchment centroid (in mm/h) for 6-hour duration and AEP of 2% ( $I_{6,2}$ );
- v. a ratio of design rainfall intensities of  $I_{6,2}$  and  $I_{6,50}$  ( $I_{6,2}/I_{6,50}$ );

- vi. design rainfall intensity at catchment centroid (in mm/h) for duration equal to  $t_c$  hours and AEP of 50% ( $I_{tc,50}$ );
- vii. design rainfall intensity at catchment centroid (in mm/h) for duration equal to  $t_c$  hours and AEP of 2% ( $I_{tc,2}$ );
- viii. a ratio of design rainfall intensities of  $I_{tc,2}$  and  $I_{tc,50}$  ( $I_{tc,2}/I_{tc,50}$ ); and
- ix. *shape factor*, which is defined as the shortest distance between catchment outlet and centroid divided by the square root of catchment area.

The time of concentration ( $t_c$ ) was approximated by Equation 2.1 (which was also recommended for use with the probabilistic rational method for eastern New South Wales and Victoria in ARR1987 (I. E. Aust., 1987). It is noted that other equations to estimate time of concentration (e.g. French, 2002 and Pegram, 2002) could have been adopted, but use of Equation 2.1 is deemed adequate as in the RFFE technique a measure of time of concentration is needed which can be applied consistently all over Australia relatively easily.

$$t_c = 0.76 \, (area)^{0.38}$$
 (2.1)

where  $t_c$  is the time of concentration (hours) and area is the catchment area (km<sup>2</sup>).

Design rainfall intensities were extracted (at catchment centroid) using the new intensity-frequency-duration (IFD) data from Australian Bureau of Meteorology website (BOM, 2013).

Summary statistics of the relevant catchment characteristics data for different regions (Table 4.1 shows regions) are provided in Appendix A (Tables A9 to A15).

# 2.7 Streamflow data preparation and at-site flood frequency analysis

For the 798 selected stations from the data-rich regions, the gaps in the annual maximum (AM) flood series were filled as far as could be justified, outliers were detected and error associated with rating curve extrapolation was investigated, as presented below.

## 2.7.1 Infilling the gaps in the streamflow data

The rationale adopted for filling gaps in the flood record was that the infilled data would provide more useful information than 'noise'. Any gap in the AM flood data series was in-filled by one of the two methods. Method 1 involved comparison of the monthly instantaneous maximum (IM) data with monthly maximum mean daily (MMD) data at the same station for years with data gaps (Haddad et al., 2010). If a missing month of instantaneous maximum flow corresponded to a month of very low maximum mean daily flow, then that was taken to show the annual maximum did not occur during that missing month. Method 2 involved a simple linear regression of the annual MMD flow series against the annual IM series of the same station. Regression equations developed were used for filling gaps in the IM record, but not to extend the overall period of record. For Victoria, 407 data points were in-filled by Method 1 and 96 data points were in-filled by Method 2. This represents about 6% of the total data points for Victoria. Overall, about 7% of the data points were in-filled for 798 Australian stations from the data-rich regions.

# 2.7.2 Detection of Potentially Influential Low Flows (PILFs) in the AM flood series

In the flood frequency analyses for the development of the RFFE Technique 2015, the interest was on defining flood frequencies for AEPs from 50% to 1%. The objective of low outlier tests is to identify those small annual floods which might have an undue influence on the fitting of the distribution in the AEP range of interest and should thus be censored from the AM series.

In the identification of low outliers, the Bulletin 17 B method, known as the Grubbs and Beck (GB) test (Grubbs and Beck, 1972) was initially tested, but it was found to be unsatisfactory failing to identify many potential low outlier values from the AM series. In one example (Site

130319A from QLD), it was found that use of GB test did not detect any low outlier; however an interactive method resulted in the detection of 7 low outliers, which produced quite different quantile estimates as shown in Table 2.2.

In USA, Lamontagne et al. (2013) and Cohn et al. (2013) presented a new Multiple Grubbs-Beck (MGB) test as part of the update to USA flood frequency guidelines, which will be part of Bulletin 17C. The MGB test is a statistical method designed to detect multiple low outliers, which are referred to as Potentially Influential Low Flows (PILFs) in this study. The MGB test is based on the probability distribution of the  $k^{th}$  smallest sample in a normally distributed sample. The MGB test has been incorporated into FLIKE (Kuczera, 1999); this has been adopted in this study to check for PILFs in the AM flood data preparation.

The summary of censoring of PILFs from the 176 stations from NSW and ACT is presented in Figure 2.29, which shows that in 18 cases greater than 40% data points needed censoring as per the new MGB test, 65 stations (37% of the stations) did not require any censoring and 111 stations (63% of the stations) required censoring. Although, in few cases the results might be thought to be 'unusual' e.g. about 40 to 50% of the AM data points need to be censored, in the investigation, it was found to be consistent with the judgement of experienced hydrologists who often adopt an interactive censoring. Interestingly, the flood quantile results based on MGB test censoring agreed very well with the GEV-L moments method, which provided added assurance for the MGB test.

Table 2.2 Impact of censoring Potentially Influential Low Flows (PILFs) on flood quantile estimates (Site 130319A from QLD, AM data covered 1961-2011) (Method used in quantile estimation: Bayesian LP3 method)

|     | Flood discharge (m³/s) |                      |  |  |  |  |  |
|-----|------------------------|----------------------|--|--|--|--|--|
| AEP | All 51 AM data         | 7 low values removed |  |  |  |  |  |
| 50% | 34                     | 46                   |  |  |  |  |  |
| 20% | 234                    | 192                  |  |  |  |  |  |
| 10% | 456                    | 441                  |  |  |  |  |  |
| 5%  | 683                    | 921                  |  |  |  |  |  |
| 2%  | 943                    | 2224                 |  |  |  |  |  |
| 1%  | 1098                   | 4129                 |  |  |  |  |  |

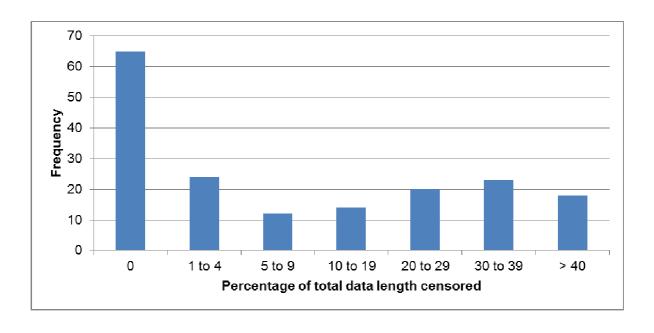



Figure 2.29 Summary results of censoring *Potentially Influential Low Flows (PILFs)* from NSW and ACT (176 stations) using MGB test

# 2.7.3 Impact of rating curve extrapolation error on flood quantile estimates

A rating curve is generally constructed based on the assumption that a one to one correlation exists between the river discharge and stage, which is generally referred to as the "true rating curve". However, the true rating curve is unknown and the standard method of constructing a rating curve consists of taking field measurements of water stage, h, and river discharge, Q. These measurements help to identify discrete points Q, h that are subsequently interpolated through an analytical relationship that generates the rating curve. Then the rating curve extension is needed to get the discharge value for the larger floods, which can introduce systematic uncertainty, either over or under estimation of true river discharge. The rating curve uncertainty is generally unknown but can be expected to increase as the water level rises above the highest measured flow. Potter and Walker (1981) suggested it could be as high as 30% in the extrapolation zone. In the interpolation zone, the uncertainty would be smaller (e.g. 1-5%) where the fitted rating curve is well supported by discharge-stage measurements (Kuczera, 1996; Reis and Stedinger, 2005). The rating curve related uncertainty in flow estimation has been widely researched (e.g. WMO, 1980; 2007; ASI, 2001a, b).

In this study, a "rating ratio" (RR) (Haddad et al., 2010) was used to identify the stations which would have annual maximum flood data associated with a high degree of rating curve extrapolation uncertainty. The RR is estimated by dividing the annual maximum flood series data point for each year (estimated flow  $Q_E$ ) by the maximum measured flow ( $Q_M$ ) at that station. The RR can be expressed as:

$$RR = \frac{Q_E}{Q_M}$$
(2.2)

Since the rating curve for a gauging station is usually updated with the availability of new measured flow data, a station may have several rating curves, each with a unique  $Q_M$  value applicable for a set period of time. Therefore, the appropriate  $Q_M$  value applicable for the respective rating curve for a given year was used to estimate the RR value in this study.

If the RR value is smaller than 1, the corresponding AM flood data points may be considered to be free from rating curve extrapolation uncertainty. However, the AM flood data points are considered to be associated with a higher degree of rating curve uncertainty when the RR values are well above 1. These data points can cause significant uncertainty in flood frequency analysis.

As an example, potential rating curve uncertainty of the AM flood data points for station 201001 in NSW is presented in Figure 2.30. It can be seen that, 34 out of 54 AM data points (63% of total data points) have RR values greater than 1 and the maximum RR value is 6.47. The largest measured flow has an approximate AEP of 50%. These data points with RR >> 1 are associated with a higher degree of rating curve uncertainty, which will translate into flood frequency estimates with a higher degree of uncertainty, especially for smaller AEP floods such as 2% and 1%.

As seen in the histogram of rating ratios (RR) of annual maximum flood data points for 96 stations in NSW and ACT (this is a subset of the 176 stations selected from NSW and ACT) (Figure 2.31), 60.5% of the RR values are less than 1 and 39.5% values between 1 and 47.29. A RR value well above 1 could amplify the uncertainty in flood frequency analysis. However, eliminating all stations with RR value greater than 1 would affect the results in the RFFE as it would reduce the number of stations below the minimum required for a meaningful RFFE.

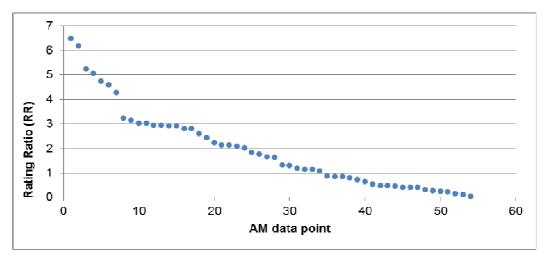



Figure 2.30 Plot of rating ratios (RR) for Station 201001 in NSW

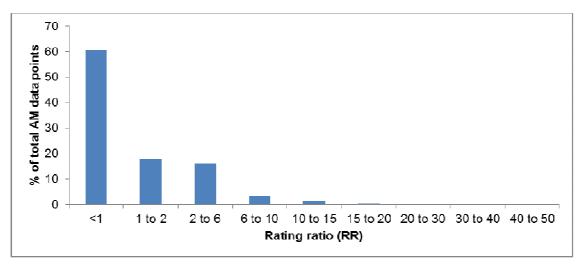



Figure 2.31 Histogram of rating ratio (RR) of AM flood data points from 96 catchments in NSW

In this investigation, log-log extrapolation of rating curve was explored as this is the most commonly adopted technique to extend the rating curve, among many other techniques. In log-log extrapolation, the uncertainty from the true rating curve increases systematically as the river discharge value increases beyond the range of discharge measurements. Therefore, an extrapolation zone is created as the rating curve is extended. The extrapolation zone is characterised based on the distance from the anchor point and not from the origin. Thus the systematic uncertainty is proportional to the distance from the anchor point (in log space). Here, the flow that has the RR value just greater than one was used as the "anchor point". The flows with RR value greater than one are expected to be associated with rating curve extrapolation uncertainty. The higher the RR value for a data point, the greater the rating curve uncertainty associated with the data point.

In this investigation, the FLIKE software, which implements the principles outlined in Kuczera (1999), was adopted to fit the LP3 distribution using the Bayesian parameter fitting procedure to assess the impact of rating curve uncertainty on flood quantile estimates. No prior information was used in the FLIKE with both the "no rating curve" and the "rating curve uncertainty" cases. In the "no rating curve uncertainty" cases, the uncertainty coefficient of variation (CV) value was considered to be 0% for simplicity. In the "rating curve uncertainty" cases, three scenarios were considered where flows in the extrapolation zone were corrupted by a multiplicative uncertainty assumed to be log-normally distributed with mean one and CV values equal to 10%, 20% and 30%.

From the selected 96 catchments, 12 were selected for in-depth investigation (Table 2.3). As can be seen from Table 2.3, these 12 catchments range from 66 km² to 900 km² and the annual maximum flood record length ranges from 32 years to 60 years. The skew of  $\log_e(Q)$ , where Q is annual maximum flood series, is presented in the last column, which shows that 8 of these catchments have negative skew, including one having a value very close to zero, and 4 have positive skew values. These different skew values are useful to assess whether the impact of rating curve uncertainty on flood quantile estimates is affected by skew of the flood series for the catchment.

Table 2.3 Selected 12 catchments from NSW for investigating impacts of rating curve extrapolation error on flood quantile estimates

| Station ID | Maximum RR | Average RR | Catchment area (km²) | Record Length (years) | Period of Record | mean  | SD    | skew   |
|------------|------------|------------|----------------------|-----------------------|------------------|-------|-------|--------|
| 203030     | 1.25       | 0.60       | 332                  | 32                    | 1980-2011        | 4.736 | 0.280 | -0.607 |
| 204037     | 4.01       | 0.89       | 62                   | 40                    | 1972-2011        | 3.087 | 1.594 | -0.854 |
| 204906     | 2.63       | 1.06       | 446                  | 39                    | 1973-2011        | 5.569 | 0.924 | -0.995 |
| 207006     | 20.73      | 5.85       | 363                  | 36                    | 1976-2011        | 6.493 | 0.536 | -0.159 |
| 209001     | 30.11      | 11.35      | 203                  | 34                    | 1946-1979        | 5.513 | 0.445 | 0.083  |
| 212008     | 2.33       | 0.29       | 199                  | 60                    | 1952-2011        | 4.290 | 0.907 | 0.262  |
| 218005     | 1.91       | 0.52       | 900                  | 47                    | 1965-2011        | 6.791 | 0.664 | -0.553 |
| 219025     | 2          | 0.49       | 717                  | 35                    | 1977-2011        | 5.155 | 1.615 | -0.263 |
| 222016     | 5.10       | 2.36       | 155                  | 35                    | 1976-2010        | 2.411 | 0.459 | -0.004 |
| 410038     | 5.11       | 1.47       | 411                  | 43                    | 1969-2011        | 4.108 | 0.441 | 0.993  |
| 416008     | 8.89       | 2.84       | 866                  | 40                    | 1972-2011        | 5.776 | 0.387 | 0.515  |
| 419051     | 47.29      | 6.18       | 454                  | 35                    | 1977-2011        | 3.702 | 1.570 | -0.429 |

The results of 12 selected stations are shown in Table 2.4. The results show that with the increasing CV values, the uncertainty in quantile estimates increases, in some cases reaching over 50% for 2% AEP, which indicates that the rating curve uncertainty has a notable impact on flood quantile estimates. The flood estimates for lower AEPs are found to be more affected by the rating curve uncertainties. Interestingly, there is no notable relationship between the RR values of the selected stations (shown in Table 2.3) and

percentage differences in quantile estimates for different CVs, which is somewhat unexpected, and needs further investigation.

Figure 2.32 plots the differences in flood quantile estimates (between CV of 0% and CV of 20%) (for 2% AEP flood) with catchment size for the selected 96 catchments; this shows no linkage between the degree of differences in flood quantile estimates for different CVs and catchment area. Figures 2.33 and 2.34 show no relationship between differences in flood quantiles (for 2% AEP flood) due to different CVs (a measure of rating curve extrapolation error) and skew and SD of  $\log_e(Q)$ . Figure 2.35 shows that difference in flood quantiles between no rating curve uncertainty (CV = 0%) and CV = 20% can vary up to 50% for 2% AEP flood. The median difference for different AEPs (between CV of 0% and CV of 20%) based on 96 catchments in NSW and ACT are 1%, 2%, 3%, 6%, 9% and 12% for AEPs of 50%, 20%, 10%, 5%, 2% and 1%, respectively.

Table 2.4 Example demonstrating impact of rating curve uncertainty on flood quantile estimates

|         | 2% AEP flood quantile (m³/s)                                   |          |                             |                       |                                  |          |                             |  |  |
|---------|----------------------------------------------------------------|----------|-----------------------------|-----------------------|----------------------------------|----------|-----------------------------|--|--|
| Station | No rating uncertainty (CV = 0%)  Rating uncertainty (CV = 10%) |          |                             | incertainty<br>= 20%) | Rating uncertainty<br>(CV = 30%) |          |                             |  |  |
| Station | Expected                                                       | Expected | % change<br>from<br>CV = 0% | Expected              | % change<br>from<br>CV = 0%      | Expected | % change<br>from<br>CV = 0% |  |  |
| 203030  | 171                                                            | 179      | 5                           | 190                   | 11                               | 205      | 20                          |  |  |
| 204037  | 250                                                            | 268 7    |                             | 296                   | 19                               | 330      | 32                          |  |  |
| 204906  | 978                                                            | 1076 10  |                             | 1209                  | 24                               | 1352     | 38                          |  |  |
| 207006  | 1953                                                           | 2392 22  |                             | 2538                  | 30                               | 2600     | 33                          |  |  |
| 209001  | 645                                                            | 687 6    |                             | 753                   | 17                               | 845      | 31                          |  |  |
| 212008  | 501                                                            | 515 3    |                             | 534                   | 7                                | 560      | 12                          |  |  |
| 218005  | 2640                                                           | 2891 10  |                             | 3375                  | 28                               | 4036     | 53                          |  |  |
| 219025  | 2340                                                           | 2499 7   |                             | 2770                  | 18                               | 3094     | 32                          |  |  |
| 222016  | 29                                                             | 31 5     |                             | 34                    | 15                               | 39       | 33                          |  |  |
| 410038  | 176                                                            | 192 9    |                             | 227                   | 29                               | 277      | 57                          |  |  |
| 416008  | 790                                                            | 831 5    |                             | 890                   | 13                               | 967      | 22                          |  |  |
| 419051  | 773                                                            | 806      | 4                           | 903                   | 17                               | 1014     | 31                          |  |  |

The results indicated that a higher assumed value of rating curve uncertainty (i.e. a higher CV) in flood frequency analysis) increased estimated flood quantiles and inflated the uncertainty bounds around the estimated flood quantiles (i.e. increases the width of the 90% confidence limits). This was more noticeable for smaller AEP floods.

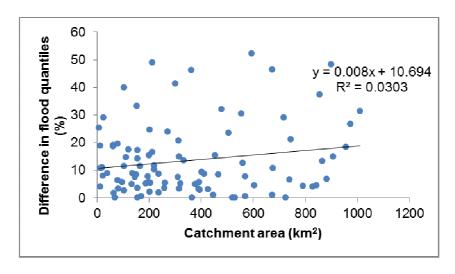



Figure 2.32 Catchment size vs. differences in flood quantile estimates between CV of 0% and CV of 20% for 96 NSW catchments (for 2% AEP flood)

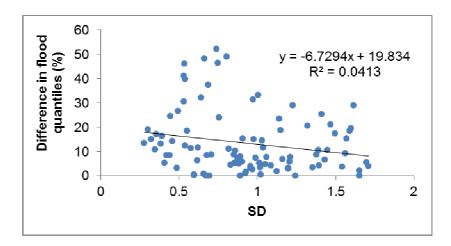



Figure 2.33 Plot of SD of  $log_e(Q)$  vs. differences in flood quantile estimates between CV of 0% and CV of 20% (96 catchments from NSW) (for 2% AEP flood)

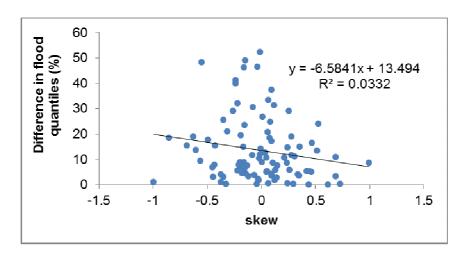



Figure 2.34 Plot of skew of log<sub>e</sub>(*Q*) vs. differences in flood quantile estimates between CV of 0% and CV of 20% (96 catchments from NSW) (for 2% AEP flood)

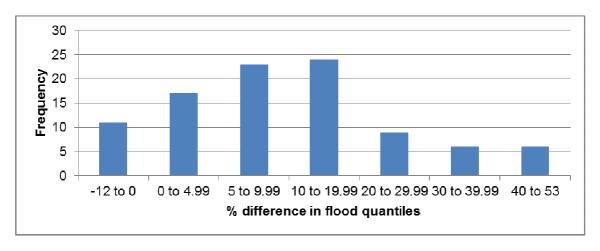



Figure 2.35 Difference in flood quantiles between CV of 0% and CV of 20% for 2% AEP flood quantiles (96 catchments from NSW)

The expected quantiles show notable differences between CV = 0% and CV = 20%, as can be seen in Figures 2.36 and 2.37 for 96 NSW catchments. These figures show that in most cases the expected quantile estimates increase as CV increases. Moreover, the differences in quantile estimates between CV = 0% and CV = 20% increase with a decrease in AEP. In the development of ARR Project 5 RFFE Technique 2015, it was decided to take flood quantile estimates with CV = 0% since it was felt that more research needs to be undertaken to understand the implication of rating curve extrapolation error on flood quantile estimates.

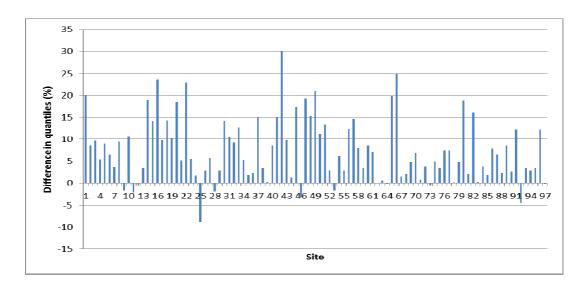



Figure 2.36 Differences in quantile estimates (expected quantiles from FLIKE) between CV = 0% and CV = 20% for 96 catchments in NSW (for 5% AEP flood)

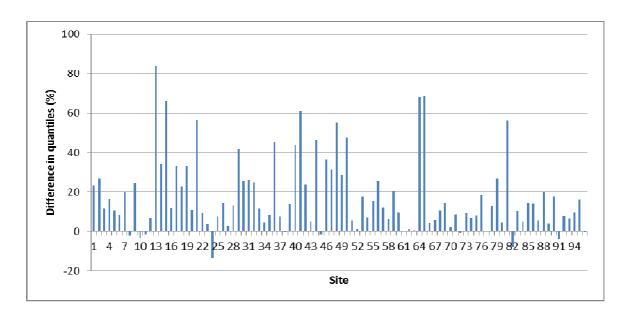



Figure 2.37 Differences in quantile estimates (expected quantiles from FLIKE) between CV = 0% and CV = 20% for 96 catchments in NSW (for 1% AEP flood)

#### 2.7.4 At-site flood frequency analysis

For at-site flood frequency analysis, the LP3 distribution was fitted with the Bayesian parameter estimation procedure using the FLIKE software (Kuczera, 1999). The potentially influential low flows (PILFs) were identified using the multiple Grubbs-Beck test (Lamontagne et al., 2013; Cohn et al., 2013) (as mentioned in Section 2.7.2) and were censored in the flood frequency analysis.

The standard deviation (SD) and skew of the  $\log_e(Q)$  series (where Q represents the AM flood series) were estimated after necessary censoring of PILFs from the respective AM flood series. It was found that the standard deviation (SD) of  $\log_e(Q)$  AM flood series was not dependent on catchment size (for example see Figure 2.38). Likewise Figure 2.39 shows that skew (of  $\log_e(Q)$ ) did not depend on catchment area, the average skew of NSW catchments was close to zero and there were almost equal numbers of catchments with negative and positive skew values.

Although the impacts of rating curve error on flood quantile estimation was investigated (as mentioned in Section 2.7.3), it was decided to take flood quantile estimates with CV = 0% (here CV is a measure of rating curve extrapolation error) in developing the RFFE Technique 2015 since it was felt that more research needs to be undertaken to understand the implication of rating curve extrapolation error on flood quantile estimates.

For each of the 798 stations selected from the data-rich areas, flood quantiles were estimated for AEPs of 50%, 20%, 10%, 5%, 2% and 1%.

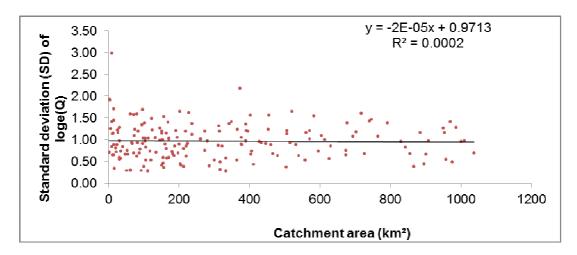



Figure 2.38 Relationship between SD of log<sub>e</sub>(*Q*) and catchment area for NSW 176 catchments

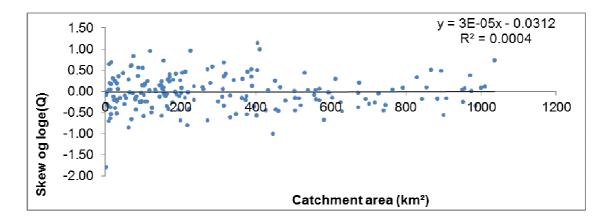



Figure 2.39 Relationship between skew of log<sub>e</sub>(*Q*) and catchment area for NSW 176 catchments

Most of Australia's interior falls into the arid and semi-arid areas (referred to as arid areas), which are characterised by low mean annual rainfall in relation to mean annual potential evaporation. Rainfall events tend to be infrequent and their occurrence and severity are highly variable. Typically dry antecedent conditions may result in many rainfall events not producing any significant runoff. However, severe rainfall events can still result in significant flooding with serious consequences for a range of activities. Large transmission losses may also result in discharge reducing in a downstream direction, particularly in the lower river reaches of larger catchments in arid areas. The special flooding characteristics of

catchments in arid areas make it desirable to treat them separately from catchments in more humid areas. In arid areas, annual maximum flood series generally contain many zero values and hence it is more appropriate to use the partial duration series in flood frequency analysis, which is adopted here. For the data-poor (arid) areas, the flood quantiles were estimated for AEPs of 50%, 20%, 10%, 5%, 2% and 1% at each of the 55 stations based on the abstracted partial duration series data (considering average number of events per year = 0.5) by fitting a Generalised Pareto distribution using L moments.

## 2.8 Archiving of the data

The list of selected catchments, annual maximum flood series data from the data-rich areas, partial duration series data for the arid areas, estimated flood quantiles and abstracted catchment characteristics data of all the 853 stations have been saved in a CD and archived with Engineers Australia (National Committee on Water Engineering).

### 3 Description of adopted statistical methods

## 3.1 Region-of-influence (ROI) approach

Acreman and Wiltshire (1987) proposed regions without fixed boundaries. Based on this concept, Burn (1990a, 1990b) and Zrinji and Burn (1994) proposed the region of influence (ROI) approach where each site of interest (i.e. a catchment where flood quantiles are to be estimated) can form its own local region. A key advantage of the ROI approach is that it can overcome the inconsistency in flood quantile estimates at the boundary of two neighbouring administrative regions (e.g. state borders).

A recent study by Eng et al. (2005) compared the performance of ROI approaches based on predictor-variable similarity or geographical proximity for estimating the 2% AEP peak discharge, using an ordinary least squares approach with 1091 sites in south-eastern USA. They found that using geographical proximity produced the smallest predictive errors over the study region. Similar results demonstrating the superiority of geographical proximity over predictor-variable similarity have been shown by others (e.g. Merz and Blöschl, 2005; Kjeldsen and Jones, 2007). Hence, Haddad and Rahman (2012), Haddad, Rahman and Stedinger (2012) and Micevski et al. (2014) applied the ROI approach to Australian regional flood studies using geographical proximity as a measure to form ROI regions, and this approach has also been adopted in this study.

In the formation of regions, the ROI approach has been adopted in this study for the parts of Australia where there are adequate numbers of gauged stations within close proximity to form ROI sub-regions (i.e. for the data-rich areas). The adopted ROI approach uses the geographical distance between stations as the distance metric.

One of the apparent limitations of the ROI approach for practical application is that for each of the gauged sites in the region, the regional prediction equation has a different set of model parameters; hence a single regional prediction equation cannot be pre-specified. To overcome this problem, the parameters of the regional prediction model for all the gauged catchment locations in a ROI region have been pre-estimated, stored and integrated with the RFFE Model 2015.

### 3.2 Parameter regression technique (PRT)

In this study for the data-rich regions of Australia, the first three moments of the LP3 distribution (i.e. the mean, standard deviation and skewness of the logarithm of the annual maximum flood series) are regionalised. This method is referred to as parameter regression technique (PRT). The LP3 distribution is described by the following equation:

$$ln Q_x = M + K_x S$$
(3.1)

where  $Q_x$  = the discharge having an AEP of x% (design flood or flood quantile);

M = mean of the natural logarithms of the annual maximum flood series;

S = standard deviation of the natural logarithms of the annual maximum flood series; and

 $K_x$  = frequency factor for the LP3 distribution for AEP of x%, which is a function of the AEP and the skewness (SK) of the natural logarithms of the annual maximum flood series.

The prediction equations for the mean (M), standard deviation (S) and skewness (SK) were developed for all the gauged catchment locations in the data-rich areas using Bayesian GLS regression. These equations are used to predict the M, S and SK for an ungauged catchment of interest within the data-rich areas.

# 3.3 Bayesian Generalised Least Squares Regression

In developing the prediction equations, the Bayesian generalised least squares (GLS) regression (Stedinger and Tasker, 1985; Tasker and Stedinger, 1989) has been adopted in the data-rich areas. The GLS regression model explicitly accounts for the sampling variability in the dependent variable data, e.g. inter-station correlation and variation in record lengths of the annual maximum flood data from site to site. The GLS regression assumes that the hydrological variable of interest (e.g. a parameter of the LP3 distribution such as mean, M) denoted by  $y_i$  for a given site i can be described by a function of catchment characteristics (explanatory variables) with an additive error (Griffis and Stedinger, 2007):

$$y_i = \beta_0 + \sum_{j=1}^k \beta_j X_{ij} + \delta_i \; ; \; i = 1, 2, ..., n$$
 (3.2)

where  $X_{ij}$  (j = 1,..., k) are explanatory variables,  $\beta_j$  are the regression coefficients,  $\delta_i$  is the

model error which is assumed to be normally and independently distributed with model error variance  $\sigma_{\delta}^2$ , and n is the number of sites in the region. In all cases only an at-site estimate of  $y_i$  denoted as  $\hat{y}_i$  is available. To account for the error in the at-site estimate, a sampling error  $\eta_i$  must be introduced into the model so that:

$$\hat{\mathbf{y}} = \mathbf{X}\mathbf{\beta} + \mathbf{\eta} + \mathbf{\delta} = \mathbf{X}\mathbf{\beta} + \mathbf{\varepsilon} \quad \text{where} \quad \hat{\mathbf{y}}_i = \mathbf{y}_i + \mathbf{\eta}_i; i = 1, 2, ..., n$$
 (3.3)

Thus the observed regression model error  $\varepsilon$  is the sum of the model error  $\delta$  and the sampling error  $\eta$ . The total error vector has a mean of zero and a covariance matrix:

$$E\left[\mathbf{\epsilon}\mathbf{\epsilon}^{T}\right] = \mathbf{\Lambda}(\sigma_{\delta}^{2}) = \sigma_{\delta}^{2}\mathbf{I} + \sum(\hat{\mathbf{y}})$$
(3.4)

where  $\Sigma(\hat{\mathbf{y}})$  is the covariance matrix of the sampling error in the estimate of the flood quantile or the parameter of the LP3 distribution,  $\mathbf{I}$  is a  $(n\times n)$  identity matrix. The covariance matrix for  $\eta_i$  depends on the record length available at each site and the cross correlation among annual maximum floods at different sites. Therefore, the observed regression model error is a combination of time-sampling error  $\eta_i$  and an underlying model error  $\delta_i$ .

The GLS estimator of  $\beta$  and its covariance matrix for a known  $\sigma_{\delta}^2$  is given by:

$$\hat{\boldsymbol{\beta}}_{GLS} = \left[ \mathbf{X}^T \Lambda (\boldsymbol{\sigma}_{\delta}^2)^{-1} \mathbf{X} \right]^{-1} \mathbf{X}^T \Lambda (\boldsymbol{\sigma}_{\delta}^2)^{-1} \hat{\mathbf{y}}$$
(3.5)

$$\Sigma[\hat{\beta}_{GLS}] = \left[ \mathbf{X}^T \Lambda(\sigma_{\delta}^2)^{-1} \mathbf{X} \right]^{-1}$$
(3.6)

The model error variance  $\sigma_{\delta}^2$  can be estimated by either generalised method of moments (MOM) or maximum likelihood estimators. The MOM estimator is determined by iteratively solving Equation 3.5 along with the generalised residual mean square error equation:

$$(\hat{\mathbf{y}} - \mathbf{X}\hat{\boldsymbol{\beta}}_{GLS})^T [\hat{\boldsymbol{\sigma}}_{\delta}^2 \mathbf{I} + \sum (\hat{\mathbf{y}})]^{-1} (\hat{\mathbf{y}} - \mathbf{X}\hat{\boldsymbol{\beta}}_{GLS}) = n - (k+1)$$
(3.7)

In some situations, the sampling covariance matrix explains all the variability observed in the data, which means the left-hand side of Equation 3.7 will be less than n - (k + 1) even if  $\hat{\sigma}_{\delta}^2$  is zero. In these circumstances, the MOM estimator of the model error variance is generally taken to be zero.

With the Bayesian approach, it is assumed that there is no prior information on any of the  $\beta$  parameters; thus a multivariate normal distribution with mean zero and a large variance (e.g. greater than 100) is used as a prior for the regression coefficient parameters. This prior is considered to be almost non-informative, which produces a probability distribution function that is generally flat in the region of interest. The prior information for the model error variance  $\sigma_{\delta}^2$  is represented by a one-parameter exponential distribution. Further description of the adopted Bayesian GLS regression can be found in Haddad, Rahman and Kuczera (2011) and Haddad and Rahman (2012).

## 3.4 Model validation approach

To assess the performance of the developed RFFE technique, a leave-one-out (LOO) validation approach was applied where one catchment was left out and a model was developed using the remaining catchments and then the developed model was tested on the single catchment that was left out. The procedure was repeated until all the catchments were tested once. This ensures an independent testing of the RFFE technique for each of the catchments in the database. For both the data-rich and data-poor regions, the LOO validation approach was adopted. Further information on the LOO validation approach can be found in Haddad et al. (2013).

# 3.5 RFFE method adopted in the data-poor (arid) areas

The application of ROI and PRT methods was deemed inappropriate in the arid areas as ROI approach requires a number of gauging stations to form sub-regions and the number of gauging stations in the arid areas of Australia is insufficient for this purpose. Hence a simpler RFFE method was considered more appropriate for the arid areas. Here, an index type approach as suggested by Farquharson et al. (1992) and tested by Zaman, Rahman and Haddad (2012) was adopted. The 10% AEP flood quantile ( $Q_{10}$ ) was used as the index variable and a dimensionless growth factor for AEP of x% (GF<sub>x</sub>) was used to estimate  $Q_x$ :

$$Q_{x} = Q_{10} \times GF_{x} \tag{3.8}$$

A prediction equation was developed for  $Q_{10}$  as a function of catchment characteristics, and regional growth factors were developed based on the observed partial duration series flood data. In the arid areas, significant storm events do not typically occur every year, and some of these events do not produce significant floods. A partial duration series analysis with an average occurrence of less than one flood event per year was thus considered appropriate. In the application, partial series—based  $Q_x$  estimates can be converted to equivalent annual maximum flood series estimates using the Langbein transformation (Langbein, 1949).

The flood quantiles are estimated for AEPs of 50%, 20%, 10%, 5%, 2% and 1% at each of the 55 stations based on the abstracted partial duration series data (adopting the average number of events per year = 0.5) by fitting a Generalised Pareto distribution using L moments. The  $Q_x/Q_{10}$  values are first estimated at individual stations; the weighted average of these values (weighting is done based on record length at individual sites) over all the stations in a region then defines the growth factors (GF<sub>x</sub>) for the region.

# 3.6 Development of confidence limits for the estimated flood quantiles

In developing the confidence limits for the estimated flood quantiles, a Monte Carlo simulation approach was adopted by assuming that the uncertainty in the first three parameters of the LP3 distribution (i.e. the mean, standard deviation and skewness of the logarithms of the annual maximum flood series) can be specified by a multivariate normal distribution. Here the correlations among the three parameters for a given region were estimated from the residuals of the GLS regression models of the LP3 parameters. The mean of the LP3 parameter was given by its regional predicted value and the standard deviation of the LP3 parameter was the square root of the average variance of prediction of the parameter at the nearest gauged site. Based on 10,000 simulated values of the LP3 parameters from the multivariate normal distribution as defined above, 10,000  $Q_x$  values were estimated, which were then used to develop the 90% confidence intervals.

# 4 Formation of regions in the RFFE technique

In the adopted RFFE technique, Australia is divided into seven regions. There are five datarich regions, as shown in Figure 4.1 and Table 4.1. For each of these data-rich regions, the ROI approach was implemented e.g. for data-rich Region 2, ROI was implemented using 51 stations from Tasmania. All the 558 stations from Victoria (VIC), the Australian Capital Territory (ACT), New South Wales (NSW) and Queensland (QLD) form Region 1. A total of 28 stations from South Australia (SA) form Region 3. Fifty stations from the Northern Territory (NT) and 8 stations from the Kimberley region of Western Australia (WA) i.e. a total of 58 stations are combined to form Region 4. A total of 103 stations from south-west Western Australia (WA) form Region 5.

The formation of regions in the arid areas in Australia is a difficult task, as there are only 55 catchments available from a vast area of Australia. There are two alternatives: (i) formation of one region with all the 55 stations; and (ii) formation of smaller sub-regions based on geographical proximity, noting that too small a region makes the developed RFFE technique of little statistical significance. Examination of a number of alternative sub-regions led to the formation of two regions from the 55 arid catchments: Region 6 (11 catchments from the Pilbara area of WA) and Region 7 (44 catchments from all other arid areas except Pilbara) (see Figure 4.1 for the extent of these two arid regions).

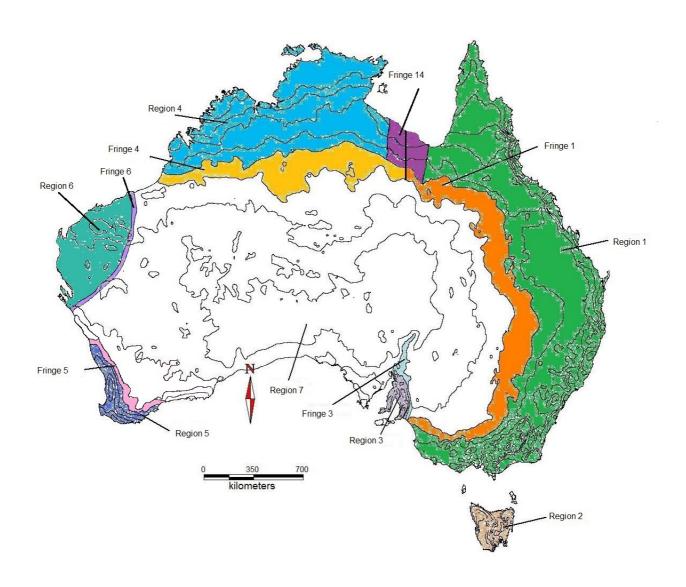



Figure 4.1 Adopted regions in the RFFE Technique 2015

Table 4.1 Details of five data-rich regions in RFFE Technique 2015

| Region                         | Method to   | Number of | Estimation model |
|--------------------------------|-------------|-----------|------------------|
|                                | form region | stations  |                  |
| Region 1: VIC + NSW + ACT +    | ROI         | 558       | Bayesian GLS     |
| QLD                            |             |           | regression-PRT   |
| Region 2: Tasmania             |             | 51        |                  |
| Region 3: South Australia      |             | 28        |                  |
| Region 4: NT + Kimberley WA    |             | 58        |                  |
| Region 5: SW Western Australia |             | 103       |                  |

Table 4.2 Details of two data-poor/arid regions in RFFE Technique 2015

| Region              | No. of stations | Estimation model                                       |  |  |  |  |
|---------------------|-----------------|--------------------------------------------------------|--|--|--|--|
| Region 6: Pilbara   |                 | Fixed region                                           |  |  |  |  |
| arid area           | 11              | Index flood method with $Q_{10}$ as the index variable |  |  |  |  |
| Region 7: All other | 4.4             | Fixed region                                           |  |  |  |  |
| arid areas          | 44              | Index flood method with $Q_{10}$ as the index variable |  |  |  |  |

The boundaries between the arid (data-poor) and data-rich regions in Figure 4.1 are drawn approximately based on the 500 mm mean annual rainfall contour line. To reduce the effects of sharp variation in quantile estimates for the ungauged catchments located close to these regional boundaries, six fringe zones are delineated, as shown in Figure 4.1 and summarised in Table 4.3. For these fringe zones, the flood quantile at an ungauged catchment location is taken as the inverse distance weighted average value of the two nearby regional estimates.

Table 4.3 Details of six fringe zones in RFFE Technique 2015

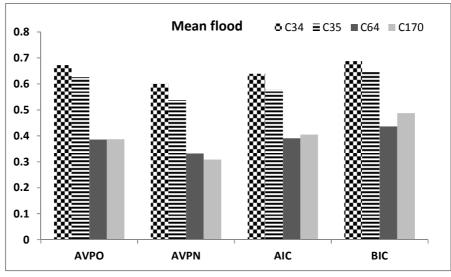
| Name      | Location                      |
|-----------|-------------------------------|
| Fringe 1  | Between Region 1 and Region 7 |
| Fringe 3  | Between Region 3 and Region 7 |
| Fringe 4  | Between Region 4 and Region 7 |
| Fringe 5  | Between Region 5 and Region 7 |
| Fringe 6  | Between Region 6 and Region 7 |
| Fringe 14 | Between Region 1 and Region 4 |

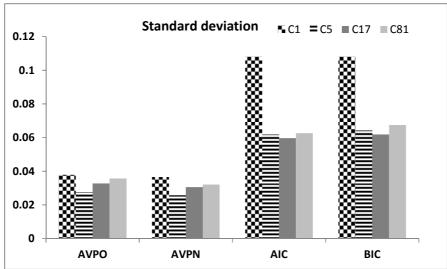
# 5 Development of regional prediction equations for the data-rich regions

# 5.1 Searching for the best regression equation using Bayesian GLS regression

For each of the five data-rich regions shown in Table 4.1, prediction equations for M, S and SK for the regional LP3 model (Equation 3.1) were developed using Bayesian GLS regression, as discussed below. Initially a fixed region regression approach and an exploratory data analysis, using all the catchments (for a given data-rich region) and catchment predictor variables were considered. This was carried out to determine the best functional form of the regression equation for use with the ROI method. The fixed region regression using Bayesian GLS regression was carried out for each of the three parameters of the LP3 distributions (i.e. M, S and SK).

A total of nine predictor variables were considered in the analysis (see Section 2.6 for details of these predictor variables). The variables associated with rainfall duration equal to time of concentration ( $t_c$ ) were not considered as these were found to be highly correlated with catchment area (in some cases the correlation coefficients were greater than 0.9). In all, 511 (i.e.  $2^{9}$ - 1) different combinations are possible for nine predictor variables; however, 256 models were trialled for each of the M, S and SK, only taking the models that have an intercept.


In the preliminary analysis, the relation between M and catchment area was found to be curvilinear; however, the relation between M and logarithms of catchment area was generally found to be linear. Homoscedasticity (a constant variance in the response variable over the range of the predictor variables) and normality of the residuals are requirements for regression. The logarithmic transformation of the predictor variables enhances the homoscedasticity of the data and was therefore applied in this analysis.


The final selection of predictor variables for inclusion into a model for a given region was made based on several statistical criteria, including model error variance (MEV), GLS coefficient of determination (R<sup>2</sup>\_GLSR), average variance of prediction at a new site (AVPN), average variance of prediction at an old site (AVPO), Akaike information criterion (AIC),

Bayesian information criterion (BIC) and statistical significance of a predictor variable using the Bayesian plausibility value (BPV).

The analysis for Region 2 (Tasmania) is provided here as an example. Figure 5.1 shows example plots of the statistics used in selecting the best set of predictor variables for M, S and SK models for Region 2. According to the model error variance and  $R^2$ \_GLSR, a number of combinations of the predictor variables (out of the possible 256 combinations) appeared to be feasible. For the M model, combinations 34, 35, 64 and 170 were finally shortlisted. Combinations 170 and 64 contained 6 and 8 predictor variables respectively and had lower model error variances and larger  $R^2$ \_GLSR compared to combinations 34 and 35. Combinations 34 and 35 contained two predictor variables (area and  $l_{6,50}$ ) and 3 predictor variables (area,  $l_{6,50}$  and SF), respectively. The gain from the 3 to 6 extra predictor variables in combinations 170 and 64 was relatively modest. Combination 35 had slightly smaller model error variance compared with combination 34 (0.58 as compared to 0.63) and slightly larger  $R^2$ \_GLSR (0.78 compared to 0.75). The AVPO, AVPN, AIC and BIC values favoured combination 35 over combination 34, and hence combination 35 (having three predictor variables: area,  $l_{6,50}$  and shape factor) was finally selected as the best set of predictor variables for the mean (M) model for Region 2 (Tasmania).

For the standard deviation (S) model, combination 1 (a constant value i.e. no predictor variable model) showed a slightly higher model error variance (0.036) than combinations 5 (0.025), 17 (0.030), and 81 (0.028) (which contain one to three predictor variables). The lowest AIC and BIC values were found for combination 17; and the lowest AVPO and AVPN values were found for combination 5 (having one predictor variable). These combinations needed one to three predictor variables adding extra complexity to the model without much gain. Combination 1 without any predictor variable, while showing a slightly larger AVPO and AVPN, was the preferred option both from an application and statistical point of view; however, both combinations 1 and 5 were trialled in this study for the standard deviation (S) model for Region 2 (Tasmania). It was found that combination 1 provided slightly better results in the flood quantile estimation than combination 5 and hence was finally adopted. For the skew (SK) model, combination 5 (one predictor variable, ratio  $I_{6,2}/I_{6,50}$ ) showed a slightly smaller model error variance than combination 1 (a constant value i.e. no predictor variable model). Combination 5 also showed a reasonable R<sup>2</sup> GLSR value (52%). The lowest AIC and BIC values were found for combination 179, which had 6 predictor variables. Combination 1 however showed lower AVPO and AVPN values compared to combination 5. Both combinations 1 and 5 were trialled in this study. It was found that combination 1 provided slightly better results in the flood quantile estimation and hence was finally adopted.








Figure 5.1 Selection of predictor variables for mean (*M*), standard deviation (*S*) and skew (*SK*) models, AVPO = average variance of prediction (old), AVPN = average variance of prediction (new) AIC = Akaike information criterion, BIC = Bayesian information criterion

The significance of the estimated regression coefficient values of the finally adopted models were then evaluated using the Bayesian plausibility value (BPV) test as described by Gruber et al. (2007). The BPV allows one to perform the equivalent of a classical hypothesis p-value test within a Bayesian framework. The BPV test was carried out at the 5% significance level. The advantage of the BPV is that it uses the posterior distribution of each  $\beta$ -parameter. For the mean (M) model flood, the BPV values for the regression coefficients associated with the predictor variables area, and design rainfall intensity  $I_{6,50}$  were found to be smaller than 0%. For the predictor variable shape factor the BPV was found to be 6%. Thus the inclusion of these predictor variables for M model for Region 2 (Tasmania) was justified as they were significantly different from zero.

For the standard deviation (S) model, the BPV value for combination 1 (no predictor variable model) was found to be 0%. For combination 5 (with predictor variable ratio  $I_{6,2}/I_{6,50}$ ), the BPV value was found to be 2%. For the skew (SK) model, the BPV for combination 1 (no predictor variable model) was found to be 0%. For combination 5 (with predictor variable ratio  $I_{6,2}/I_{6,50}$ ), the BPV value was found to be 4%.

The prediction equations for *M*, *S* and *SK* for the regional LP3 model (Equation 3.1) for each of the five data-rich regions (shown in Table 4.1) were developed following the above procedure. The general forms of these prediction equations are provided below (Equations 5.1 to 5.9). It should be noted that the regression coefficients for each of these prediction equations were developed at each of the gauged locations in a given region based on ROI approach as mentioned in Section 5.2.

Region 1: 
$$VIC + NSW + ACT + QLD$$
 $M = b_0 + b_1(\ln(area)) + b_2(\ln(l_{6,50})) + b_3(\ln(shape\ factor))$ 
 $S = \text{regional weighted average value}$ 
 $SK = \text{regional weighted average value}$ 

(5.1)

Region 2: Tasmania 
$$M = b_0 + b_1(\ln(area) - 4.90) + b_2(\ln(I_{6,50}) - 1.776) + b_3(\ln(shape\ factor) - (-0.2586))$$
 (5.2) 
$$S = \text{regional weighted average value}$$
 
$$SK = \text{regional weighted average value}$$

Region 3: South Australia

$$M = b_0 + b_1(\ln(area) - 4.07) + b_2(\ln(I_{6,50}) - 1.60)$$
(5.3)

S = regional weighted average value

$$SK = c_0 + c_1(\ln(area) - 4.07)$$
 (5.4)

Region 4: NT + Kimberley WA

$$M = b_0 + b_1(\ln(area) - 5.51) + b_2(\ln(I_{6.50}) - 2.546)$$
 (5.5)

S = regional weighted average value

$$SK = c_0 + c_1(\ln(I_{6,2}/I_{6,50}) - 0.699)$$
(5.6)

Region 5: SW Western Australia

$$M = b_0 + b_1(\ln(area) - 3.40) + b_2(\ln(l_{6,50}) - 1.746)$$
 (5.7)

$$S = c_0 + c_1(\ln(I_{6.2}/I_{6.50}) - 0.725)$$
(5.8)

$$SK = d_0 + d_1(\ln(I_{6,2}/I_{6,50}) - 0.725) + d_2(\ln(I_{6,2}) - 2.472)$$
(5.9)

where

area = catchment area (km2);

 $I_{6,50}$  = design rainfall intensity (mm/h) at catchment centroid for 6-hour duration and AEP of 50%;

shape factor = shortest distance between catchment outlet and centroid divided by  $area^{0.5}$ ; and

 $I_{6,2}$  = design rainfall intensity (mm/h) at catchment centroid for 6-hour duration and AEP of 2%.

The weighted average values of *S* and *SK* were determined on the basis of record lengths at the stations within the ROI sub-region as mentioned in Section 5.2.

The values of  $b_0$ ,  $b_1$ ,  $b_2$ ,  $b_3$ ,  $c_0$ ,  $c_1$ ,  $d_0$ ,  $d_1$  and  $d_2$  and regional weighted average values of S and SK (where appropriate) at all the 798 individual gauged catchment locations (in the datarich regions) are estimated as noted in Section 5.2 and embedded in the application tool (REEF Model 2015). To derive flood quantile estimate at an ungauged catchment of interest, RFFE Model 2015 takes the inverse distance weighted average value of flood quantile estimates based on up to 15 nearest gauged catchment locations within 300 km radius from

the catchment of interest. This ensures a smooth variation of flood quantile estimates over the space.

#### 5.2 Implementation of region-of-influence (ROI) approach

The ROI approach in this study adopted the physical distance between sites as the distance metric (i.e. geographic proximity) as mentioned in Section 3.1. In applying the ROI approach, in the first iteration, a ROI sub-region consisting of the ten nearest stations to the site of interest was formed, the regional prediction equation was developed and its prediction error variance was noted. At each of the subsequent iterations, the radius of the ROI sub-region was increased by 10 km and new stations were added to the previously selected stations. This procedure ended when all the eligible stations were included in the ROI sub-region. The final ROI sub-region for the site of interest was then selected as the one exhibiting the lowest prediction error variance.

Table 5.1 shows the median number of sites in a ROI sub-region for the data-rich regions. This shows that the ROI for the mean flood (M) model has fewer sites than the standard deviation (S) and skew (SK) models for all the five data-rich regions. Taking Region 2 (Tasmania) as an example, the ROI for the mean flood model has 19 sites (median value) out of 51 i.e. 37% of the available sites, and the ROI for the skew model has the highest number of sites. This shows that the mean flood model does experience a greater degree of heterogeneity than the standard deviation and skew models.

Table 5.1 Median number of sites in the ROI sub-regions for the five data-rich regions

| Region   | Number of s | Total number of     |          |     |
|----------|-------------|---------------------|----------|-----|
|          |             | sites in the region |          |     |
|          | M model     | S model             | SK model |     |
| Region 1 | 77          | 127                 | 249      | 558 |
| Region 2 | 19          | 48                  | 50       | 51  |
| Region 3 | 25          | 26                  | 27       | 28  |
| Region 4 | 24          | 38                  | 57       | 58  |
| Region 5 | 26          | 27                  | 102      | 103 |

### 5.3 Model diagnostics

The regression equations developed in this study using Bayesian GLS regression and ROI approach are statistical models and as such are associated with different types of errors/uncertainties due to errors/uncertainties in the data and modelling approaches. The results from the developed regression equations represent best-fit estimates with an associated scatter or variance.

To assess the degree of uncertainty associated with the developed regression equations, the predicted flood quantiles need to be compared with the true values, which are however "unknown". Differences between the predicted quantiles by the developed regression equations and at-site flood frequency analysis can be used to indicate the relative accuracy of the developed regression equations.

The Bayesian GLS regression depends on both the model and sampling error. Here the model error measures the ability of a set of predictor variables to predict a given parameter of the LP3 distribution (i.e. M, S or SK). The model error depends on the number and predictive power of the predictor variables in a particular regression equation. Sampling error measures the ability of a limited number of sites with a limited record length to describe the flood characteristics at a site. The sampling error depends on the number of sites in a ROI sub-region and the record length of the annual maximum series for each site in the ROI sub-region. The sampling error decreases as either the number of sites in the ROI sub-region or the length of record increases.

A measure of the uncertainty in the estimate by a regression equation for a given site *i*, is the variance of prediction (VP) (Stedinger and Tasker, 1985). The VP is the sum of the model error variance and sampling error variance. Assuming that the predictor variables for the sites in a regression analysis are representative of all possible sites in the region, the average accuracy of prediction for a regression equation can be determined by computing the average variance of prediction (AVP) (Griffis and Stedinger, 2007) for *n* number of sites in a ROI region. In this study the AVP was calculated using the Bayesian framework (more details can be seen in Gruber et al. (2007) and Rahman et al. (2012)).

A more traditional measure of the accuracy of the regression equations (developed here to estimate the parameters of the LP3 distribution) is the standard error of prediction (SEP),

which is simply the square root of the variance of prediction. The average SEP for a regression equation can be computed in error percentage by using AVP in log units.

A measure of the proportion of the variance in the dependent variable explained by the independent variables in the ordinary least squares regression (OLSR) is the coefficient of determination, R<sup>2</sup>. For GLSR regression, a more appropriate performance metric than R<sup>2</sup> is the R<sup>2</sup><sub>pseudo</sub> or R<sup>2</sup>\_GLSR described by Griffis and Stedinger (2007). Unlike the R<sup>2</sup> in the OLSR, the R<sup>2</sup>\_GLSR is based on the variability in the dependent variable explained by the regression after removing the effect of the time-sampling error.

The AVP, SEP and  $R^2$ \_GLSR for the final set of regional regression equations for the parameters (M, S and SK) of the LP3 distribution for each of the five data-rich regions are presented in Table 5.2. For a constant (i.e. only intercept) model,  $R^2$ \_GLSR is not reported in Table 5.2. The results in Table 5.2 indicate that the average SEP values for the mean flood (M) model ranges from 46% to 83% and the SEP values of the M model are notably higher than those of the standard deviation (S) and skew (SK) models. The results in Table 5.2 indicate that the  $R^2$ \_GLSR for the M model are in the range of 69% to 90%, the highest being for Region 2 and smallest being for Region 1. The average  $R^2$ \_GLSR values for the S and SK models are considerably smaller than those of the S model, as shown in Table 5.2. For the S and SK models with no predictor variable, the S\_GLSR is not reported. For these cases, no predictor variable is found useful and a regional weighted average value is adopted (e.g. for Region 1 and Region 2).

Table 5.2 Average variance of prediction (AVP), average standard error of prediction (SEP), and pseudo coefficient of determination (R<sup>2</sup>\_GLSR) for the regional ROI-based regression equations for five data-rich regions

| LP3 parameter    | M                    |       |     | S                    |       |     | SK                   |       |     |
|------------------|----------------------|-------|-----|----------------------|-------|-----|----------------------|-------|-----|
|                  | R <sup>2</sup> _GLSR | AVP   | SEP | R <sup>2</sup> _GLSR | AVP   | SEP | R <sup>2</sup> _GLSR | AVP   | SEP |
| Statistic metric | (%)                  |       | (%) | (%)                  |       | (%) | (%)                  |       | (%) |
| Region 1         | 69                   | 0.32  | 61  | -                    | 0.041 | 21  | -                    | 0.001 | 3   |
| Region 2         | 90                   | 0.25  | 54  | -                    | 0.148 | 40  | -                    | 0.026 | 16  |
| Region 3         | 87                   | 0.523 | 83  | -                    | 0.098 | 32  | 29                   | 0.066 | 26  |
| Region 4         | 84                   | 0.19  | 46  | -                    | 0.077 | 28  | 2                    | 0.052 | 23  |
| Region 5         | 87                   | 0.50  | 81  | 7                    | 0.12  | 36  | 91                   | 0.008 | 9   |

#### 5.4 Results from leave-one-out validation

The reliability and accuracy of the quantile estimates by the RFFE technique was assessed using leave-one-out (LOO) validation. In the LOO validation, one catchment was left out from the model data set and the RFFE technique was applied to the catchment that was left out. The flood quantiles estimated using the RFFE technique were then compared with the at-site flood frequency estimates obtained by FLIKE (Kuczera, 1999) as mentioned in Section 2.7.4. The procedure was repeated for each catchment in the regional data set to provide an overall assessment of the performance of the RFFE technique.

The reliability of the RFFE flood quantile confidence limits described in Section 3.6 was assessed empirically using standardised quantile residuals. The quantile residual is the difference between the logarithm of flood quantile estimates obtained using at-site flood frequency analysis and the RFFE technique. The standardised quantile residual is the quantile residual divided by its standard deviation which is the square root of the sum of the RFFE predictive variance of the flood quantile and at-site quantile variance (Haddad and Rahman, 2012; Micevski et al., 2014). This accounts for both the model error (e.g. inadequacy of the RFFE model) and the sampling error (e.g. due to limited streamflow record length). If the uncertainty in the log quantile estimates has been adequately described, the standardized quantile residuals should be consistent with a standard normal distribution.

Figure 5.2 shows the plots of standardised residuals vs. normal scores for Region 1 for AEPs of 50% to 1%. The plots for Regions 2, 3, 4 and 5 are shown in Appendix B (Figures B.1, Figure B.3, Figure B.5 and Figure B.7, respectively). Figure 5.2 reveals that most of the 558 catchments closely follow a 1:1 straight line indicating that the assumption of normality of the residuals is not inconsistent with the evidence; this is supported by the application of the Anderson-Darling and Kolmogorov-Smirnov tests which show that the assumption of the normality of the residuals cannot be rejected at the 10% level of significance. Under the assumptions of normality, approximately 90% of the standardised quantile residuals should lie between  $\pm$  2, which is largely satisfied. There are a few catchments with standardised residual values close to  $\pm$  3. These correspond to instances where the RFFE confidence limits may not be reliable. Same conclusion applies to the other data-rich regions. The main conclusion from this analysis is that the quantification of uncertainty in the quantile estimates by the RFFE technique is reliable for the vast majority of the cases. Figures 5.2, B.1, B.3, B.5 and B.7 serve as a reminder that some catchments may not be adequately represented by the catchments used in the RFFE analysis. Users of the RFFE Model 2015 should check that

the catchment of interest is not atypical compared with the gauged catchments included in the ROI used to develop the RFFE estimate. To assist users in this regard the RFFE Model 2015 lists the RFFE Model gauged catchments located nearest to the ungauged catchment of interest.

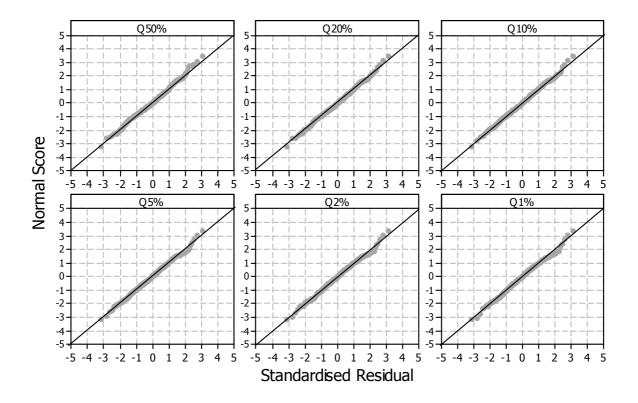



Figure 5.2 Standardised residuals vs. Z score for AEPs of 50% to 1% for Region 1

The observed and predicted flood quantiles are plotted in Figure 5.3 for Region 1. These plots for other regions are shown in Appendix B (Figure B.2 for Region 2, Figure B.4 for Region 3, Figure B.6 for Region 4 and Figure B.8 for Region 5). These plots generally show a good agreement between the observed and predicted quantiles; however, there are few outliers as expected.

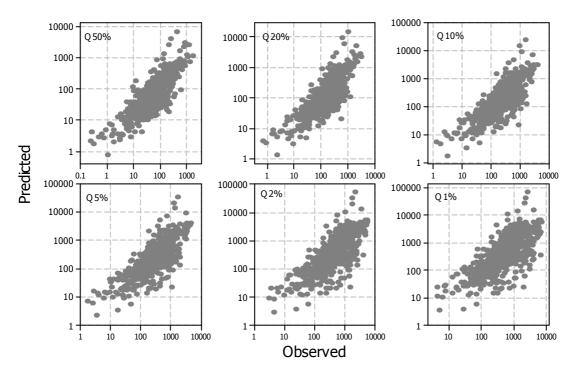



Figure 5.3 Observed vs. predicted quantiles (in log space) for AEPs of 50% and 1% for Region 1 (flood discharges are in m³/s)

The accuracy of the flood quantile estimates provided by the RFFE technique was evaluated by using the relative error (RE) defined by Equation 5.10. It should be noted that the relative error given by Equation 5.10 makes no allowance for the fact that the at-site flood frequency estimates are themselves subject to sampling error. Therefore, this error should be seen as an upper bound on the true relative error.

It should be noted here that LOO is a more rigorous validation technique compared with the split-sample validation where the model is tested on a smaller number of catchments (e.g. 10% of the total catchments). Hence, the relative error that is generated by LOO is expected to be higher than if split-sample validation were used. The medians of the absolute relative error values from the LOO validation for different regions are reported in Table 5.3. It can be seen that for the data-rich regions, Region 5 (SW Western Australia) has the highest relative error (59 to 69%) and Region 3 (South Australia) has the smallest relative error (33 to 41%).

$$RE(\%) = \frac{Q_{RFFE} - Q_{FFA}}{Q_{FFA}} \times 100 \tag{5.10}$$

where  $Q_{RFFE}$  = flood quantile estimate at a given site for a given AEP by RFFE Technique 2015; and

 $Q_{\text{FFA}}$  = flood quantile estimate from at-site flood frequency analysis using LP3 distribution by FLIKE (Kuczera, 1999).

Table 5.3 Median of absolute relative error (RE) values (%) for data-rich regions by REEF

Technique 2015

| Region   | Median RE (%) |                   |    |    |    |    |  |  |  |  |
|----------|---------------|-------------------|----|----|----|----|--|--|--|--|
|          |               | AEP               |    |    |    |    |  |  |  |  |
|          | 50%           | 50% 20% 10% 5% 2% |    |    |    |    |  |  |  |  |
| Region 1 | 51            | 49                | 52 | 53 | 57 | 59 |  |  |  |  |
| Region 2 | 53            | 46                | 46 | 46 | 46 | 45 |  |  |  |  |
| Region 3 | 38            | 39                | 33 | 35 | 39 | 41 |  |  |  |  |
| Region 4 | 33            | 36                | 36 | 38 | 39 | 47 |  |  |  |  |
| Region 5 | 61            | 59                | 66 | 68 | 68 | 69 |  |  |  |  |

The distribution of median RE values were examined for different catchment sizes. The median RE values for small and medium catchment sizes (in the model dataset) were found to be quite similar (for example, see Tables 5.4 to 5.6). No relationship was found between RE and catchment size, with coefficient of determination (R²) values of the regression between RE and catchment area were found to be smaller than 1% (for example see Figure 5.4). Similar results were found for other regions and AEPs. However, the applicability of the RFFE Technique to very small catchments (beyond the lower limit of the model catchments) could not be checked due to unavailability of gauged streamflow data for these catchments.

Table 5.4 Median of absolute RE values for different catchment sizes (Region 2, 5% AEP) by RFFE Technique 2015

| Catchment area (km²) | No. of catchments | RE (%) |
|----------------------|-------------------|--------|
| 1 to 5               | 3                 | 42     |
| 6 to 10              | 0                 | -      |
| 11 to 20             | 4                 | 36     |
| 21 to 50             | 7                 | 57     |
| 51 to 100            | 3                 | 46     |
| 101 to 200           | 13                | 46     |
| 201 to 500           | 12                | 47     |
| 501 to 1000          | 5                 | 36     |
| 1001 to 2000         | 4                 | 95     |
| All data             | 51                | 46     |

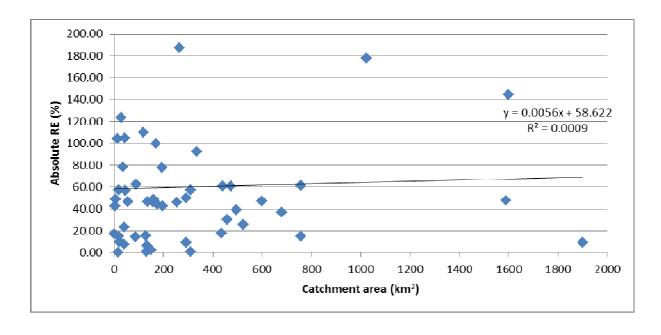



Figure 5.4 Plot showing relationship between catchment area and absolute RE (Region 2, 5% AEP)

Table 5.5 Median of absolute RE values for different catchment sizes (Region 4, 5% AEP)

| Catchment area (km²) | No. of catchments | RE (%) |
|----------------------|-------------------|--------|
| 1 to 5               | 1                 | 2      |
| 6 to 10              | 0                 | -      |
| 11 to 20             | 3                 | 26     |
| 21 to 50             | 5                 | 21     |
| 51 to 100            | 9                 | 78     |
| 101 to 200           | 6                 | 51     |
| 201 to 500           | 12                | 34     |
| 501 to 1000          | 10                | 36     |
| 1001 to 2000         | 8                 | 26     |
| 2001 to 4500         | 4                 | 40     |
| All data             | 58                | 38     |

Table 5.6 Median of absolute RE values for different catchment sizes (Region 1, 5% AEP)

| Catchment area (km²) | No. of catchments | RE (%) |
|----------------------|-------------------|--------|
| 1 to 5               | 6                 | 51     |
| 6 to 10              | 8                 | 34     |
| 11 to 20             | 19                | 52     |
| 21 to 50             | 49                | 57     |
| 51 to 100            | 76                | 41     |
| 101 to 200           | 112               | 51     |
| 201 to 500           | 170               | 55     |
| 501 to 1000          | 118               | 53     |
| All data             | 558               | 53     |

# 6 Development of regional prediction equations for arid (data-poor) regions

As mentioned in Section 3.5, an index type approach was adopted for the data-poor/arid regions (see Equation 3.8). The estimated growth factors for Pilbara arid area (Region 6) and all other arid areas (Region 7) are presented in Table 6.1, which shows that the growth factors for the Pilbara arid area (Region 6) for smaller AEP floods (5%, 2% and 1%) are higher than Region 7 case.

**AEP** Region 6: Pilbara arid area Region 7: All other arid areas 50% 0.285 0.293 20% 0.687 0.719 10% 1.000 1.000 1.306 5% 1.376 2% 2.044 1.794 1% 2.755 2.267

Table 6.1 Growth factors for the arid regions

The adopted prediction equation for the index variable  $Q_{10}$  has the following form:

$$\log_{10}(Q_{10}) = b_0 + b_1(\log_{10}(area)) + b_2(\log_{10}(I_{6.50}))$$
(6.1)

where b<sub>0</sub>, b<sub>1</sub> and b<sub>2</sub> are regression coefficients, estimated using ordinary least squares regression;

area represents catchment area in km2, and

 $l_{6,50}$  is design rainfall intensity (mm/h) at catchment centroid for 6-hour duration and AEP of 50%. The values of  $b_0$ ,  $b_1$  and  $b_2$  and the regional growth factors are embedded into the application tool (REEF Model 2015).

Results in Table 6.2 show that the adopted regression coefficients are significantly different from zero. The  $R^2$  values for Regions 6 and 7 are found to be 0.96 and 0.87, respectively, which represents quite a good fit. For both the arid regions, the regression coefficients

associated with the predictor variables catchment area ( $b_1$ ) and  $l_{6,50}$  ( $b_2$ ) are found to be positive, which indicate that  $Q_{10}$  increases with increasing catchment area and rainfall intensity, which is as expected.

Table 6.2 Regression statistics of the developed prediction equations for the arid regions

| Region                                                | Regression coefficients | Probability (p) | Coefficient of determination (R <sup>2</sup> ) |
|-------------------------------------------------------|-------------------------|-----------------|------------------------------------------------|
| Danian C. Dillana anidana                             | b <sub>o</sub>          | 0.000           |                                                |
| Region 6: Pilbara arid area (No. of stations = 11)    | b <sub>1</sub>          | 0.000           | 0.96                                           |
| (140. 01 Stations = 11)                               | $b_2$                   | 0.000           |                                                |
| Danian 7. All allege and                              | b <sub>o</sub>          | 0.000           |                                                |
| Region 7: All other arid areas (No. of stations = 44) | b <sub>1</sub>          | 0.000           | 0.87                                           |
| areas (140. or stations = 44)                         | b <sub>2</sub>          | 0.000           |                                                |

The standardised residuals vs. predicted flood quantiles (for  $Q_{10}$ ) for Region 6 and Region 7 are presented in Figures 6.1 and 6.2, respectively. It can be seen from these figures that most of the standardised residuals are within  $\pm$  2.0 × standard deviation, which indicate the absence of any notable outlier data point. Similar results are obtained for AEPs of 50%, 20%, 10%, 5% and 1% (as can be seen in Appendix C).

The quantile-quantile plots (QQ-plot) of the standardised residuals for Region 6 and Region 7 are presented in Figures 6.3 and 6.4 (for  $Q_{10}$ ), respectively, which indicate that the residuals are near-normally distributed. Similar results are obtained for AEPs of 50%, 20%, 10%, 5% and 1% (as can be seen in Appendix C).

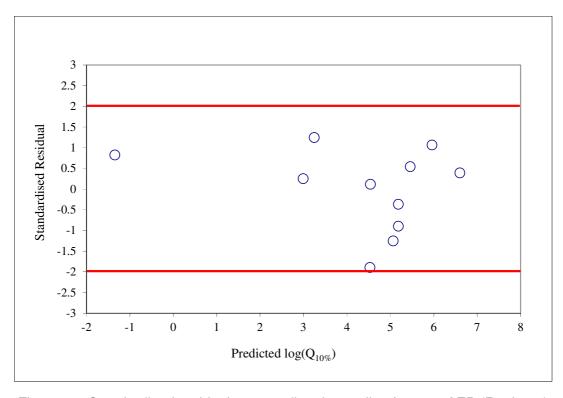



Figure 6.1 Standardised residuals vs. predicted quantiles for 10% AEP (Region 6)

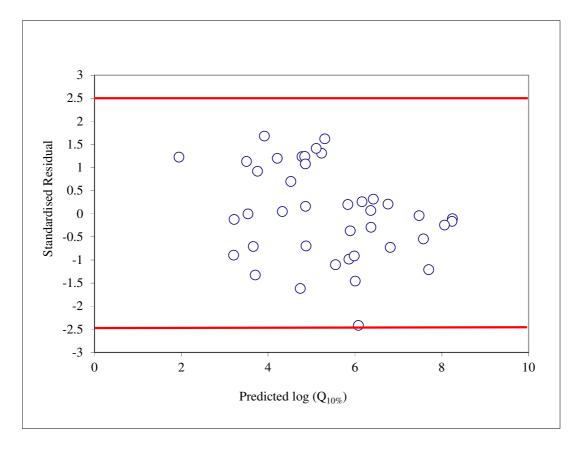



Figure 6.2 Standardised residuals vs. predicted quantiles for 10% AEP (Region 7)

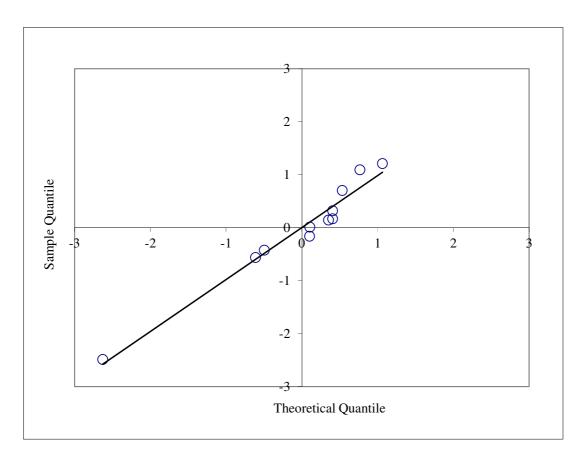



Figure 6.3 QQ-plot of the standardised residuals for 10% AEP (Region 6)

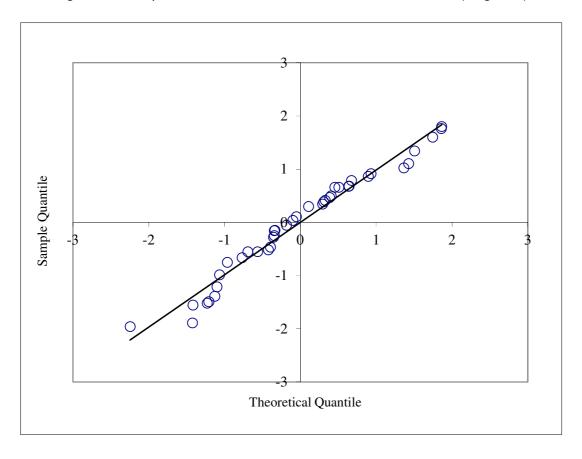



Figure 6.4 QQ-plot of the standardised residuals for 10% AEP (Region 7)

A leave-one-out (LOO) cross validation approach was adopted to test the performance of the developed RFFE technique for the arid regions (similar to data-rich regions). The predicted flood quantiles from LOO for each of the study catchments were compared with the at-site flood quantile estimates. The at-site flood quantiles were estimated using a GPA distribution and L moments procedure as mentioned in Section 3.5. The median relative error (RE) values (based on LOO validation) for Region 6 and Region 7 are presented in Table 6.3. It can be seen that median relative error values range from 35% to 43% for Region 6 and 49% to 67% for Region 7.

Table 6.3 Median of absolute relative error (RE) (%) for two arid regions by RFFE Technique 2015

| AEP      | 50%           | 20% | 10% | 5% | 2% | 1% |  |  |  |
|----------|---------------|-----|-----|----|----|----|--|--|--|
|          | Median RE (%) |     |     |    |    |    |  |  |  |
| Region 6 | 35            | 37  | 35  | 42 | 37 | 43 |  |  |  |
| Region 7 | 63            | 67  | 67  | 61 | 57 | 49 |  |  |  |

### 7 Application tool

The coefficients of the developed regression equations (Equations 5.1 to 5.9 for the five data-rich regions at each of the 798 gauged catchment locations and Equation 6.1 for the two arid regions) are embedded in a computer-based application tool (called RFFE Model 2015). The user is required to enter simple data input like latitude, longitude, catchment area and design rainfall intensity for the ungauged catchment of interest to generate the design flood estimates and 90% confidence limits for AEPs of 50%, 20%, 10%, 5%, 2% and 1%. It also provides a set of the nearest gauged catchments (which have been used in developing the RFFE Model 2015) so that the user can compare the characteristics of the ungauged catchment of interest with the nearest gauged catchments of the model data set. The chapter on regional flood frequency estimation in Australian Rainfall and Runoff (4<sup>th</sup> edition) provides further information on the application tool with worked examples.

# 8 Supplementary information

A large number of peer reviewed technical papers and reports have been produced from Project 5, which are listed in Appendix D. These provide important information on preliminary data preparation and analyses.

### 9 Summary

As a part of ARR Project 5 Regional Flood Methods (Stage 3), an extensive data collation and modelling exercise have been undertaken to develop Regional Flood Frequency Estimation (RFFE) Technique 2015 and the application tool RFFE Model 2015. The major outcomes of this study are provided below:

- The flood data from 853 gauged catchments in Australia have been collated covering data till 2012 for most of these catchments. Australia has been divided into data-rich and data-poor (arid) regions. The record lengths of the annual maximum flood series data of the 798 catchments from the data-rich regions range from 19 to 102 years (mean: 37 years and median: 37 years). The catchment areas of the selected 798 catchments from data-rich regions range from 0.5 km² to 4,325 km² (mean: 295 km² and median: 179 km²). However, for Victoria, the Australian Capital Territory, New South Wales, South Australia, Queensland and South-west Western Australia, the catchment areas range from 0.6 km² to 1,049 km². Only few catchments in Tasmania and the Northern Territory are in the range of 1,000 km² to 4,325 km². The record lengths of the flood series of the 55 stations from the arid regions range from 10 to 46 years (mean: 27 years and median: 27 years). For each of these 55 stations, partial duration series are extracted for estimating flood quantiles. The catchment areas of the selected 55 catchments from the arid regions range from 0.1 km² to 5,975 km² (mean: 760 km² and median: 259 km²).
- The newly developed Multiple Grubbs-Beck (MGB) test has been adopted to detect Potentially Influential Low Flows (PILFs) in the annual maximum flood series data which have to be censored from the series. It has been found that MGB test identifies a greater number of PILFs than the original Grubbs-Beck test. The outcome from the MGB test is found to be consistent with the judgement of experienced hydrologists who often adopt an interactive censoring in flood frequency analysis.
- The peak flows of many events in the annual maximum series analysed are considerably larger than the largest measured flow and are thus subject to rating curve extrapolation error. The impacts of rating curve error on flood quantile estimates have been investigated. The expected quantiles show notable differences between coefficient of variation (CV) = 0% (no rating curve error case) and CV = 20% (rating curve error is estimated by assuming a CV of 20%). In most cases, the

expected quantile estimates increase as CV increases. Moreover, the differences in quantile estimates between CV = 0% and CV = 20% increase with a decrease in AEP. In the development of the RFFE Technique 2015, it has been decided to consider flood quantile estimates with CV = 0% since it is felt that more research needs to be undertaken to understand the implication of rating curve extrapolation error on flood quantile estimates.

- Flood quantiles are estimated for 6 AEPs, which are 50%, 20%, 10%, 5%, 2% and 1%. For the data-rich regions, flood quantiles are estimated from the annual maximum flood series data using FLIKE software assuming an LP3 distribution and Bayesian parameter estimation procedure. For the data-poor regions, partial duration series data (considering average number of events per year = 0.5) is used to estimate flood quantiles by using a Generalised Pareto distribution and L moments procedure.
- Five data-rich regions and two data-poor (arid) regions have been identified, as can be seen in Figure 4.1, Table 4.1 and Table 4.2. The boundaries between the arid and data-rich regions are drawn approximately based on the 500 mm mean annual rainfall contour line. To reduce the effects of sharp variation in quantile estimates for the ungauged catchments located close to these regional boundaries, six fringe zones have been delineated, as shown in Figure 4.1 and Table 4.3.
- For the data-rich regions, a region-of-influence approach has been adopted to define sub-region for each of the 798 gauged sites. A Bayesian generalised least squares (GLS) regression approach has been used to develop prediction equations for three parameters/moments of the LP3 distribution (parameter regression technique). The developed prediction equations for each of the five data-rich regions are provided by Equations 5.1 to 5.9. These prediction equations require two to three predictor variables (catchment area, design rainfall intensity (Bureau of Meteorology 2013 design rainfall data at catchment centroid) and shape factor), which are relatively easy to obtain. These prediction equations largely satisfy the assumptions of the regression analysis.
- For the two arid regions, an index type approach has been applied where 10% AEP flood quantile has been used as the index variable. The prediction equations for the index variable are developed based on a fixed-region approach for each of the two arid regions (Equation 6.1). These equations require two predictor variables

(catchment area and design rainfall intensity). The estimated regional growth factors for the two arid regions are presented in Table 6.1.

- A leave-one-out validation approach has been used to assess the performance of the developed RFFE technique. Based on this, it has been found that the median of the absolute relative error values range from 33% to 69% for the data-rich regions (Table 5.3) and 35% to 67% for the arid regions (Table 6.3). It should be noted that there are few cases where the relative error values exceed 100%. The distributions of median relative error values for small and medium catchment sizes (in the model dataset) have been found to be similar. Also, no relationship has been found between relative error and catchment size. However, the applicability of the RFFE Technique to very small catchments (beyond the lower limit of the model catchments) could not be checked due to unavailability of gauged streamflow data for these catchments.
- The coefficients of the developed regression equations for the LP3 parameters at each of the 798 gauged locations and for the two arid regions are estimated and embedded in a computer-based application tool (called RFFE Model 2015). The user is required to enter simple data input like latitude, longitude, catchment area and design rainfall intensity for the ungauged catchment of interest to generate the design flood estimates and 90% confidence limits for the ungauged catchment of interest.

Despite the best possible efforts in data collation, some errors in the data might have remained. Given the high variability of Australian hydrology and the current density and streamflow record lengths of the gauged stations used to develop the RFFE Technique 2015, the degree of error associated with the RFFE technique may not be reduced. To enhance the accuracy of the RFFE Technique 2015, a greater number of stations with longer period of streamflow records should be used when they become available in future.

The development of the RFFE Technique 2015 is based on the assumption that the catchment characteristics represented in the regression equation (e.g. catchment area, design rainfall intensity and shape factor) account for the important differences in flood characteristics between sites in a region. It should be recognised that flood estimates generated by the RFFE Model 2015 for a catchment with flood characteristics that are distinctly different from typical gauged catchments in the region may not only be associated with larger error margins but also significant bias. In such situations hydrological judgment must be used to assess if any adjustment of the regional flood frequency estimate is required (based on comparison of other relevant catchment characteristics). To support such an

assessment, the RFFE Model 2015 output describes the set of gauged catchments used in developing the RFFE Model, which are located closest to the ungauged catchment of interest.

# References

Acreman, M. C., Wiltshire, S. E. (1987). Identification of regions for regional flood frequency analysis, Abstract, EOS, 68(44), 1262, 1987.

BOM (2013). New intensity-frequency-duration data, Australian Bureau of Meteorology (BOM), Melbourne, http://www.bom.gov.au/water/designRainfalls/ifd/index.shtml.

Australian Standards International (ASI) (2001a). Australian standard, measurement of water flow in open channels, part 2.3: General—determination of the stage-discharge relationship, AS 3778.2.3-2001, Australian Standards International, Sydney, Australia.

Australian Standards International (ASI, 2001b). Australian standard, measurement of water flow in open channels, part 3.1: Velocity-area methods—measurement by current-meters and floats, AS 3778.3.1-2001, Australian Standards International, Sydney, Australia.

Burn, D. H. (1990a). An appraisal of the "region of influence" approach to flood frequency analysis, Hydrological Sciences Journal, 35(2), 149-165.

Burn, D. H. (1990b). Evaluation of Regional Flood Frequency Analysis with a Region of Influence Approach, Water Resources Research, 26(10), 2257-2265.

Cohn, T. A., England, J. F., Berenbrock, C. E., Mason, R. R., Stedinger, J. R., Lamontagne, J. R. (2013). A generalized Grubbs-Beck test statistic for detecting multiple potentially influential low outliers in flood series, Water Resources Research, 49, 5047–5058.

Eng, K., Tasker, G. D., Milly, P. C. D. (2005). An analysis of Region-of-influence methods for Flood Frequency Regionalization in the Gulf-Atlantic rolling plains, Journal of the American Water Resources Association, 41(1), 135-143.

Farquharson, F. A. K., Meigh, J. R., Sutcliffe, J. V. (1992). Regional flood frequency analysis in arid and semi-arid areas, Journal of Hydrology, 138, 487-501.

French, R. (2002). Flaws in the rational method, Proc. 27th National Hydrology and Water Resources Symp., Melbourne.

Griffis, V. W., Stedinger, J. R. (2007). The use of GLS regression in regional hydrologic analyses, Journal of Hydrology, 344, 82-95.

Grubbs, F. E., Beck, G. (1972). Extension of sample sizes and percentage points for significance tests of outlying observations, Technometrics 4 (14), pp. 847–853.

Gruber, A., Reis, Jr., D., Stedinger, J. (2007). Models of regional skew based on Bayesian GLS regression, World Environmental and Water Resources Congress 2007, Tampa, Florida.

Haddad, K., Rahman, A., Weinmann, P. E., Kuczera, G., Ball, J. E. (2010). Streamflow data preparation for regional flood frequency analysis: Lessons from south-east Australia. Australian Journal of Water Resources, 14, 1, 17-32.

Haddad, K., Rahman, A., Kuczera, G. (2011). Comparison of Ordinary and Generalised Least Squares Regression Models in Regional Flood Frequency Analysis: A Case Study for New South Wales, Australian Journal of Water Resources, 15, 2, 59-70.

Haddad, K., Rahman, A. (2012). Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework – Quantile Regression vs. Parameter Regression Technique, Journal of Hydrology, 430-431, 142-161.

Haddad, K., Rahman, A., Stedinger, J. R. (2012). Regional Flood Frequency Analysis using Bayesian Generalized Least Squares: A Comparison between Quantile and Parameter Regression Techniques, Hydrological Processes, 26, 1008-1021.

Haddad, K., Rahman, A., Zaman, M., Shrestha, S. (2013). Applicability of Monte Carlo cross validation technique for model development and validation using generalised least squares regression, Journal of Hydrology, 482, 119-128.

Institution of Engineers Australia (IEAust) (1987, 2001). Australian Rainfall and Runoff: A Guide to Flood Estimation. Pilgrim, D. H. (editor), Vol. 1, IEAust, Canberra.

Ishak, E., Rahman, A., Westra, S., Sharma, A. and Kuczera, G. (2013). Evaluating the non-stationarity of Australian annual maximum floods. Journal of Hydrology, 494, 134-145.

Kjeldsen, T. R., Jones, D. A. (2007). Estimation of an index flood using data transfer in the UK, Hydrological Sciences Journal, 52(1), 86-98.

Kuczera, G. (1996). Correlated rating curve uncertainty in flood frequency inference, Water Resources Research, 32(7), 2119-2127.

Kuczera, G. (1999). Comprehensive atsite flood frequency analysis using Monte Carlo Bayesian inference, Water Resources Research, 35, 5, 1551–1557.

Lamontagne, J. R., Stedinger, J. R., Cohn, T. A., Barth, N. A. (2013). Robust National Flood Frequency Guidelines: What is an Outlier? World Environmental and Water Resources Congress 2013, 2013, pp. 2454-2466.

Langbein, W. B. (1949). Annual floods and the partial duration flood series, EOS, Trans., AGU, 30, 6, 879-881.

Merz, R., Blöschl, G. (2005). Flood frequency regionalisation—spatial proximity vs. catchment attributes, Journal of Hydrology, 302(1-4), 283-306.

Micevski, T., Hackelbusch, A., Haddad, K., Kuczera, G., Rahman, A. (2014). Regionalisation of the parameters of the log-Pearson 3 distribution: a case study for New South Wales, Australia, Hydrological Processes, DOI: 10.1002/hyp.10147.

Pegram, G. (2002). Rainfall, rational formula and regional maximum flood – some scaling links, Proc. 27th Hydrology and Water Resources Symp., Melbourne.

Potter, K. W., Walker, J. F. (1981). A model of discontinuous measurement uncertainty and its effects on the probability distribution of flood discharge measurements, Water Resources Research, 17(5), 1505-1509.

Rahman, A., Haddad, K., Kuczera, G., Weinmann, P. E. (2009). Regional flood methods for Australia: data preparation and exploratory analysis. Australian Rainfall and Runoff Revision Projects, Project 5 Regional Flood Methods, Stage 1 Report No. P5/S1/003, Nov 2009, Engineers Australia, Water Engineering, 181pp.

Rahman, A., Haddad, K., Zaman, M., Ishak, E., Kuczera, G., Weinmann, P. E. (2012). Australian Rainfall and Runoff Revision Projects, Project 5 Regional flood methods, Stage 2 Report No. P5/S2/015, Engineers Australia, Water Engineering, 319pp.

Reis Jr, D. S., Stedinger, J. R. (2005). Bayesian MCMC flood frequency analysis with historical information, Journal of Hydrology, 313(1), 97-116.

Stedinger, J. R., Tasker, G. D. (1985). Regional hydrologic analysis 1 Ordinary, weighted, and generalised least squares compared, Water Resources Research, 21, 9, 1421-1432.

Tasker, G. D., Stedinger J. R. (1989). An operational GLS model for hydrologic regression, Journal of Hydrology, 111 (1-4), 361-375.

World Meteorological Organization (WMO) (1980). Manual on stream gauging, Secretariat of the World Meteorological Organization, Geneva.

World Meteorological Organization (WMO) (2007). Proposal and project implementation plan for the assessment of the performance of flow measurement instruments and techniques, Commission for Hydrology, <a href="http://www.wmo.int/pages/prog/">http://www.wmo.int/pages/prog/</a> hwrp/ documents/ Proposal 20070606.pdf.

Zaman, M., Rahman, A., Haddad, K. (2012). Regional flood frequency analysis in arid regions: A case study for Australia, Journal of Hydrology, 475, 74-83.

Zrinji, Z., Burn, D. H. (1994). Flood Frequency analysis for ungauged sites using a region of influence approach, Journal of Hydrology, 153(1-4), 1-21.

# **Appendices**

Appendix A List of selected catchments (and catchment data summary) in ARR Project 5 Stage 3

Table A1 Selected catchments from New South Wales and ACT

| Station ID | Station Name                 | River Name    | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|------------------------------|---------------|-----------|------------|------------|-----------------------|------------------|
| 201001     | Eungella                     | Oxley         | -28.36    | 153.29     | 213        | 54                    | 1958-2011        |
| 201005     | Boat Harbour No.20.55 cm     | Rous          | -28.32    | 153.35     | 111        | 28                    | 1958-1985        |
| 202001     | Durrumbul (Sherrys Crossing) | Brunswick     | -28.53    | 153.46     | 34         | 40                    | 1972-2011        |
| 203002     | Repentance                   | Coopers Ck    | -28.64    | 153.41     | 62         | 35                    | 1977-2011        |
| 203005     | Wiangaree                    | Richmond      | -28.50    | 152.97     | 702        | 30                    | 1982-2011        |
| 203010     | Rock Valley                  | Leycester     | -28.73    | 153.16     | 179        | 26                    | 1986-2011        |
| 203012     | Binna Burra                  | Byron Ck      | -28.71    | 153.50     | 39         | 34                    | 1978-2011        |
| 203014     | Eltham                       | Wilsons       | -28.76    | 153.40     | 223        | 25                    | 1987-2011        |
| 204008     | Ebor                         | Guy Fawkes    | -30.41    | 152.35     | 31         | 29                    | 1983-2011        |
| 204017     | Dorrigo No.2 & No.3          | Bielsdown Ck  | -30.31    | 152.71     | 82         | 40                    | 1972-2011        |
| 204025     | Karangi                      | Orara         | -30.26    | 153.03     | 135        | 42                    | 1970-2011        |
| 204026     | Bobo Nursery                 | Bobo          | -30.25    | 152.85     | 80         | 29                    | 1956-1985        |
| 204030     | Aberfoyle                    | Aberfoyle     | -30.26    | 152.01     | 200        | 34                    | 1978-2011        |
| 204031     | Shannon Vale                 | Mann          | -29.72    | 151.85     | 348        | 20                    | 1992-2011        |
| 204033     | Billyrimba                   | Timbarra      | -29.20    | 152.25     | 985        | 33                    | 1979-2011        |
| 204034     | Newton Boyd                  | Henry         | -29.76    | 152.21     | 389        | 40                    | 1972-2011        |
| 204036     | Sandy Hill(below Snake Cre   | Cataract Ck   | -28.93    | 152.22     | 236        | 59                    | 1953-2011        |
| 204037     | Clouds Ck                    | Clouds Ck     | -30.09    | 152.63     | 62         | 40                    | 1972-2011        |
| 204043     | Bonalbo                      | Peacock Ck    | -28.74    | 152.67     | 47         | 51                    | 1961-2011        |
| 204056     | Gibraltar Range              | Dandahra Ck   | -29.49    | 152.45     | 104        | 36                    | 1976-2011        |
| 204067     | Fine Flower                  | Gordon Brook  | -29.40    | 152.65     | 315        | 29                    | 1983-2011        |
| 205002     | Thora                        | Bellinger     | -30.43    | 152.78     | 433        | 29                    | 1983-2011        |
| 205006     | Bowraville                   | Nambucca      | -30.64    | 152.86     | 539        | 35                    | 1972-2006        |
| 205007     | Woolgoolga                   | Woolgoolga Ck | -30.12    | 153.16     | 11         | 22                    | 1961-1982        |

| Station ID | Station Name          | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-----------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 205014     | Gleniffer Br          | Never Never      | -30.39    | 152.88     | 51         | 24                    | 1983-2006        |
| 206001     | Jeogla                | Styx             | -30.59    | 152.16     | 163        | 33                    | 1979-2011        |
| 206009     | Tia                   | Tia              | -31.19    | 151.83     | 261        | 57                    | 1955-2011        |
| 206014     | Coninside             | Wollomombi       | -30.48    | 152.03     | 376        | 57                    | 1955-2011        |
| 206017     | Causeway (Hatchery)   | Serpentine Ck    | -30.48    | 152.32     | 22         | 24                    | 1962-1985        |
| 206018     | Apsley Falls          | Apsley           | -31.05    | 151.77     | 894        | 51                    | 1961-2011        |
| 206025     | near Dangar Falls     | Salisbury Waters | -30.68    | 151.71     | 594        | 39                    | 1973-2011        |
| 206026     | Newholme              | Sandy Ck         | -30.42    | 151.66     | 8          | 37                    | 1975-2011        |
| 206034     | Abermala              | Mihi Ck          | -30.70    | 151.71     | 117        | 26                    | 1985-2010        |
| 207006     | Birdwood(Filly Flat)  | Forbes           | -31.39    | 152.33     | 363        | 36                    | 1976-2011        |
| 207013     | D/S Bunnoo R Junction | Ellenborough     | -31.48    | 152.45     | 515        | 36                    | 1976-2011        |
| 207014     | Avenel                | Wilson           | -31.33    | 152.74     | 505        | 27                    | 1985-2011        |
| 207015     | Mount Seaview         | Hastings         | -31.37    | 152.25     | 342        | 27                    | 1985-2011        |
| 208001     | Bobs Crossing         | Barrington       | -32.03    | 151.47     | 20         | 57                    | 1955-2011        |
| 208006     | Forbesdale (Causeway) | Barrington       | -32.04    | 151.87     | 630        | 39                    | 1973-2011        |
| 208007     | Nowendoc              | Nowendoc         | -31.52    | 151.72     | 218        | 38                    | 1974-2011        |
| 208009     | Barry                 | Barnard          | -31.58    | 151.31     | 150        | 26                    | 1986-2011        |
| 208015     | Landsdowne            | Landsdowne       | -31.79    | 152.51     | 96         | 26                    | 1986-2011        |
| 208024     | D/S Back R Jctn       | Barnard          | -31.56    | 151.34     | 285        | 29                    | 1983-2011        |
| 208026     | Jacky Barkers         | Myall            | -31.64    | 151.74     | 560        | 27                    | 1985-2011        |
| 208027     | Measuring Weir        | Barnard          | -31.66    | 151.50     | 693        | 24                    | 1988-2011        |
| 209001     | Monkerai              | Karuah           | -32.24    | 151.82     | 203        | 34                    | 1946-1979        |
| 209002     | Crossing              | Mammy Johnsons   | -32.25    | 151.98     | 156        | 36                    | 1976-2011        |
| 209003     | Booral                | Karuah           | -32.48    | 151.95     | 974        | 43                    | 1969-2011        |
| 209018     | Dam Site              | Karuah           | -32.28    | 151.90     | 300        | 32                    | 1980-2011        |

| Station ID | Station Name               | River Name    | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------------|---------------|-----------|------------|------------|-----------------------|------------------|
| 210011     | Tillegra                   | Williams      | -32.32    | 151.69     | 194        | 80                    | 1932-2011        |
| 210014     | Rouchel Brook (The Vale)   | Rouchel Brook | -32.15    | 151.05     | 395        | 52                    | 1960-2011        |
| 210017     | Moonan Brook               | Moonan Brook  | -31.94    | 151.28     | 103        | 71                    | 1941-2011        |
| 210018     | Moonam Dam Site            | Hunter        | -31.92    | 151.22     | 764        | 38                    | 1974-2011        |
| 210022     | Halton                     | Allyn         | -32.31    | 151.51     | 205        | 71                    | 1941-2011        |
| 210040     | Wybong                     | Wybong Ck     | -32.27    | 150.64     | 676        | 56                    | 1956-2011        |
| 210042     | Ravensworth                | Foy Brook     | -32.40    | 151.05     | 170        | 30                    | 1967-1996        |
| 210044     | Middle Falbrook(Fal Dam Si | Glennies Ck   | -32.45    | 151.15     | 466        | 55                    | 1957-2011        |
| 210068     | Pokolbin Site 3            | Pokolbin Ck   | -32.80    | 151.33     | 25         | 41                    | 1965-2005        |
| 210069     | Pokolbin Site 4            | Muggyrang Ck  | -32.81    | 151.27     | 5          | 28                    | 1965-1992        |
| 210076     | Liddell                    | Antiene Ck    | -32.34    | 150.98     | 13         | 37                    | 1969-2005        |
| 210079     | Gostwyck                   | Paterson      | -32.55    | 151.59     | 956        | 37                    | 1975-2011        |
| 210080     | U/S Glendon Brook          | West Brook    | -32.47    | 151.28     | 80         | 35                    | 1977-2011        |
| 210084     | The Rocks No.2             | Glennies Ck   | -32.37    | 151.24     | 227        | 38                    | 1973-2010        |
| 210095     | Vacy                       | Bucks Ck      | -32.52    | 151.56     | 2          | 22                    | 1976-1997        |
| 211008     | Avondale                   | Jigadee Ck    | -33.07    | 151.47     | 55         | 37                    | 1975-2011        |
| 211009     | Gracemere                  | Wyong         | -33.27    | 151.36     | 236        | 39                    | 1973-2011        |
| 211010     | U/S Wyong R (Durren La)    | Jilliby Ck    | -33.25    | 151.39     | 92         | 27                    | 1985-2011        |
| 211013     | U/S Weir                   | Ourimbah Ck   | -33.35    | 151.34     | 83         | 35                    | 1977-2011        |
| 211014     | Yarramalong                | Wyong         | -33.22    | 151.27     | 181        | 35                    | 1977-2011        |
| 212008     | Bathurst Rd                | Coxs          | -33.43    | 150.08     | 199        | 60                    | 1952-2011        |
| 212011     | Lithgow                    | Coxs          | -33.54    | 150.09     | 404        | 50                    | 1962-2011        |
| 212013     | Narrow Neck                | Megalong Ck   | -33.73    | 150.24     | 26         | 23                    | 1988-2010        |
| 212018     | Glen Davis                 | Capertee      | -33.12    | 150.28     | 1010       | 40                    | 1972-2011        |

| Station ID | Station Name                   | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|--------------------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 212040     | Pomeroy                        | Kialla Ck        | -34.61    | 149.54     | 96         | 32                    | 1980-2011        |
| 212042     | Mount Walker                   | Farmers Ck       | -33.50    | 150.10     | 67         | 27                    | 1985-2011        |
| 212045     | Island Hill                    | Coxs             | -33.76    | 150.20     | 970        | 29                    | 1983-2011        |
| 212320     | Mulgoa Rd                      | South Ck         | -33.88    | 150.77     | 88         | 40                    | 1972-2011        |
| 213004     | Parramatta Hospital            | Parramatta       | -33.81    | 151.00     | 106        | 20                    | 1984-2003        |
| 213200     | Wedderburn                     | O'Hares Ck       | -34.16    | 150.84     | 73         | 33                    | 1979-2011        |
| 214003     | Albion Park                    | Macquarie Rivule | -34.58    | 150.71     | 35         | 33                    | 1979-2011        |
| 215004     | Hockeys                        | Corang           | -35.15    | 150.03     | 166        | 82                    | 1930-2011        |
| 215008     | Kadoona                        | Shoalhaven       | -35.79    | 149.64     | 280        | 39                    | 1972-2010        |
| 215014     | Bungonia                       | Bungonia Ck      | -34.82    | 149.99     | 164        | 28                    | 1984-2011        |
| 216002     | Brooman                        | Clyde            | -35.47    | 150.24     | 952        | 51                    | 1961-2011        |
| 216004     | Falls Ck                       | Currambene Ck    | -34.97    | 150.60     | 95         | 40                    | 1971-2010        |
| 216008     | Kioloa                         | Butlers Ck       | -35.54    | 150.37     | 1          | 25                    | 1986-2010        |
| 216009     | Buckenbowra No.3               | Buckenbowra      | -35.72    | 150.03     | 168        | 26                    | 1986-2011        |
| 218003     | Yowrie                         | Yowrie           | -36.31    | 149.73     | 100        | 26                    | 1959-1984        |
| 218005     | D/S Wadbilliga R Junct         | Tuross           | -36.20    | 149.76     | 900        | 47                    | 1965-2011        |
| 218007     | Wadbilliga                     | Wadbilliga       | -36.26    | 149.69     | 122        | 37                    | 1975-2011        |
| 219001     | Brown Mountain                 | Rutherford Ck    | -36.60    | 149.44     | 15         | 62                    | 1949-2010        |
| 219003     | Morans Crossing                | Bemboka          | -36.67    | 149.65     | 316        | 68                    | 1944-2011        |
| 219004     | Tantawangalo School            | Tantawangalo Ck  | -36.76    | 149.62     | 160        | 30                    | 1944-1973        |
| 219006     | Tantawangalo Mountain<br>(Dam) | Tantawangalo Ck  | -36.78    | 149.54     | 87         | 59                    | 1952-2010        |
| 219010     | Brown Mountain (U/S Divers     | Bonar Ck         | -36.55    | 149.47     | 4          | 20                    | 1955-1974        |
| 219013     | North Brogo                    | Brogo            | -36.54    | 149.83     | 460        | 21                    | 1962-1982        |
| 219015     | Near Bermagui                  | Nutleys Ck       | -36.43    | 150.01     | 31         | 23                    | 1966-1988        |
| 219017     | Near Brogo                     | Double Ck        | -36.60    | 149.8100   | 152        | 45                    | 1967-2011        |

| Station ID | Station Name               | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 219022     | Candelo Dam Site           | Tantawangalo Ck  | -36.73    | 149.68     | 202        | 40                    | 1972-2011        |
| 219025     | Angledale                  | Brogo            | -36.62    | 149.88     | 717        | 35                    | 1977-2011        |
| 220001     | New Buildings Br           | Towamba          | -36.96    | 149.56     | 272        | 26                    | 1955-1980        |
| 220002     | Rocky Hall (Whitbys)       | Stockyard Ck     | -36.95    | 149.50     | 75         | 24                    | 1961-1984        |
| 220003     | Lochiel                    | Pambula          | -36.94    | 149.82     | 105        | 45                    | 1967-2011        |
| 220004     | Towamba                    | Towamba          | -37.07    | 149.66     | 745        | 41                    | 1971-2011        |
| 221002     | Princes HWY                | Wallagaraugh     | -37.37    | 149.71     | 479        | 40                    | 1972-2011        |
| 221010     | Imlay Rd Br                | Imlay Ck         | -37.23    | 149.70     | 70         | 24                    | 1982-2011        |
| 222004     | Wellesley (Rowes)          | Little Plains    | -37.00    | 149.09     | 604        | 70                    | 1942-2011        |
| 222009     | The Falls                  | Bombala          | -36.92    | 149.21     | 559        | 43                    | 1952-1994        |
| 222015     | Jacobs Ladder              | Jacobs           | -36.73    | 148.43     | 187        | 27                    | 1976-2002        |
| 222016     | The Barry Way              | Pinch            | -36.79    | 148.40     | 155        | 35                    | 1976-2010        |
| 222017     | The Hut                    | Maclaughlin      | -36.66    | 149.11     | 313        | 33                    | 1979-2011        |
| 401009     | Maragle                    | Maragle Ck       | -35.93    | 148.10     | 220        | 62                    | 1950-2011        |
| 401013     | Jingellic                  | Jingellic Ck     | -35.90    | 147.69     | 378        | 39                    | 1973-2011        |
| 401015     | Yambla                     | Bowna Ck         | -35.92    | 146.98     | 316        | 37                    | 1975-2011        |
| 401016     | The Square                 | Welumba Ck       | -36.04    | 148.12     | 52         | 28                    | 1984-2011        |
| 401017     | Yarramundi                 | Mannus Ck        | -35.77    | 147.93     | 197        | 28                    | 1984-2011        |
| 410038     | Darbalara                  | Adjungbilly Ck   | -35.0200  | 148.25     | 411        | 43                    | 1969-2011        |
| 410048     | Ladysmith                  | Kyeamba Ck       | -35.2000  | 147.51     | 530        | 48                    | 1939-1986        |
| 410057     | Lacmalac                   | Goobarragandra   | -35.3300  | 148.35     | 673        | 54                    | 1958-2011        |
| 410061     | Batlow Rd                  | Adelong Ck       | -35.3300  | 148.07     | 155        | 64                    | 1948-2011        |
| 410076     | Jerangle Rd                | Strike-A-Light C | -35.9200  | 149.24     | 212        | 37                    | 1975-2011        |
| 410088     | Brindabella (No.2&No.3-Cab | Goodradigbee     | -35.4200  | 148.73     | 427        | 44                    | 1968-2011        |
| 410107     | Mountain Ck                | Mountain Ck      | -35.0283  | 148.83     | 186        | 32                    | 1980-2011        |

| Station ID | Station Name         | River Name     | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------|----------------|-----------|------------|------------|-----------------------|------------------|
| 410112     | Jindalee             | Jindalee Ck    | -34.58    | 148.09     | 14         | 36                    | 1976-2011        |
| 410114     | Wyangle              | Killimcat Ck   | -35.24    | 148.31     | 23         | 35                    | 1977-2011        |
| 410141     | Michelago            | Micaligo Ck    | -35.71    | 149.15     | 190        | 29                    | 1983-2011        |
| 410149     | Nottingham Rd Br     | Nottingham Ck  | -35.22    | 148.67     | 30         | 29                    | 1983-2011        |
| 410152     | Edwardstown          | Stony Ck       | -35.14    | 148.11     | 9          | 25                    | 1985-2009        |
| 410156     | Book Book            | Kyeamba Ck     | -35.35    | 147.55     | 145        | 25                    | 1986-2011        |
| 410160     | White Hill           | Williams Ck    | -34.96    | 149.19     | 10         | 21                    | 1990-2010        |
| 411001     | Bungendore           | Mill Post Ck   | -35.28    | 149.39     | 16         | 25                    | 1960-1984        |
| 411003     | Butmaroo             | Butmaroo Ck    | -35.26    | 149.54     | 65         | 33                    | 1979-2011        |
| 412050     | Narrawa North        | Crookwell      | -34.31    | 149.17     | 740        | 34                    | 1970-2003        |
| 412063     | Gunning              | Lachlan        | -34.74    | 149.29     | 570        | 39                    | 1961-1999        |
| 412076     | Cudal                | Bourimbla Ck   | -33.33    | 148.71     | 124        | 20                    | 1980-1999        |
| 412081     | near Neville         | Rocky Br Ck    | -33.80    | 149.19     | 145        | 33                    | 1969-2001        |
| 412083     | Tuena                | Tuena Ck       | -34.02    | 149.33     | 321        | 33                    | 1969-2001        |
| 412090     | Cudal No.2           | Boree Ck       | -33.29    | 148.74     | 272        | 20                    | 1970-1989        |
| 412096     | Kennys Ck Rd         | Pudmans Ck     | -34.45    | 148.79     | 332        | 27                    | 1976-2002        |
| 412110     | U/S Giddigang Ck     | Bolong         | -34.30    | 149.63     | 171        | 21                    | 1981-2001        |
| 416003     | Clifton              | Tenterfield Ck | -29.03    | 151.72     | 570        | 33                    | 1979-2011        |
| 416008     | Haystack             | Beardy         | -29.22    | 151.38     | 866        | 40                    | 1972-2011        |
| 416016     | Inverell (Middle Ck) | Macintyre      | -29.79    | 151.13     | 726        | 40                    | 1972-2011        |
| 416020     | Coolatai             | Ottleys Ck     | -29.23    | 150.76     | 402        | 33                    | 1979-2011        |
| 416023     | Bolivia              | Deepwater      | -29.29    | 151.92     | 505        | 33                    | 1979-2011        |
| 418005     | Kimberley            | Copes Ck       | -29.92    | 151.11     | 259        | 40                    | 1972-2011        |
| 418014     | Yarrowyck            | Gwydir         | -30.47    | 151.36     | 855        | 37                    | 1971-2007        |
| 418017     | Molroy               | Myall Ck       | -29.80    | 150.58     | 842        | 33                    | 1979-2011        |

| Station ID | Station Name    | River Name         | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-----------------|--------------------|-----------|------------|------------|-----------------------|------------------|
| 418021     | Laura           | Laura Ck           | -30.23    | 151.19     | 311        | 34                    | 1978-2011        |
| 418025     | Bingara         | Halls Ck           | -29.94    | 150.57     | 156        | 32                    | 1980-2011        |
| 418027     | Horton Dam Site | Horton             | -30.21    | 150.43     | 220        | 40                    | 1972-2011        |
| 418034     | Black Mountain  | Boorolong Ck       | -30.30    | 151.64     | 14         | 29                    | 1976-2004        |
| 419010     | Woolbrook       | Macdonald          | -30.97    | 151.35     | 829        | 32                    | 1980-2011        |
| 419016     | Mulla Crossing  | Cockburn           | -31.06    | 151.13     | 907        | 34                    | 1978-2011        |
| 419029     | Ukolan          | Halls Ck           | -30.71    | 150.83     | 389        | 33                    | 1979-2011        |
| 419035     | Timbumburi      | Goonoo Goonoo Ck   | -31.27    | 150.92     | 503        | 30                    | 1982-2011        |
| 419044     | Damsite         | Maules Ck          | -30.53    | 150.30     | 171        | 24                    | 1969-1992        |
| 419047     | Woodsreef       | Ironbark Ck        | -30.41    | 150.73     | 581        | 23                    | 1989-2011        |
| 419051     | Avoca East      | Maules Ck          | -30.50    | 150.08     | 454        | 35                    | 1977-2011        |
| 419053     | Black Springs   | Manilla            | -30.42    | 150.65     | 791        | 37                    | 1975-2011        |
| 419054     | Limbri          | Swamp Oak Ck       | -31.04    | 151.17     | 391        | 37                    | 1975-2011        |
| 419076     | Old Warrah      | Warrah Ck          | -31.66    | 150.64     | 150        | 29                    | 1983-2011        |
| 420010     | Bearbung        | Wallumburrawang Ck | -31.67    | 148.87     | 452        | 22                    | 1980-2001        |
| 420012     | Neilrex         | Butheroo Ck        | -31.74    | 149.35     | 405        | 22                    | 1980-2001        |
| 421026     | Sofala          | Turon              | -33.08    | 149.69     | 883        | 38                    | 1974-2011        |
| 421034     | Dam Site        | Slippery Ck        | -33.67    | 149.91     | 15         | 21                    | 1980-2000        |
| 421036     | below Dam Site  | Duckmaloi          | -33.75    | 149.94     | 112        | 25                    | 1956-1980        |
| 421048     | Obley No.2      | Little             | -32.71    | 148.55     | 612        | 25                    | 1987-2011        |
| 421050     | Molong          | Bell               | -33.03    | 148.95     | 365        | 37                    | 1975-2011        |
| 421055     | Rawsonville     | Coolbaggie Ck      | -32.15    | 148.46     | 626        | 31                    | 1981-2011        |
| 421066     | Hill end        | Green Valley Ck    | -32.95    | 149.46     | 119        | 22                    | 1977-1998        |
| 421068     | Saxa Crossing   | Spicers Ck         | -32.20    | 149.02     | 377        | 25                    | 1978-2002        |

Project 5: Regional Flood Methods

| Station ID | Station Name        | River Name      | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|---------------------|-----------------|-----------|------------|------------|-----------------------|------------------|
| 421076     | Peak Hill No.2      | Bogan           | -32.72    | 148.13     | 1036       | 31                    | 1981-2011        |
| 421101     | U/S Ben Chifley Dam | Campbells       | -33.61    | 149.70     | 950        | 24                    | 1979-2002        |
| 421104     | Stromlo             | Brisbane Valley | -33.69    | 149.70     | 98         | 21                    | 1980-2000        |
| 421106     | Wiagdon             | Cheshire Ck     | -33.25    | 149.66     | 102        | 21                    | 1981-2001        |

**Table A2 Selected catchments from Victoria** 

| Station ID | Station Name               | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 221207     | Errinundra                 | Errinundra       | -37.45    | 148.91     | 158        | 40                    | 1971 - 2010      |
| 221201     | Weeragua                   | Cann(West Branch | -37.37    | 149.20     | 311        | 43                    | 1970-2012        |
| 221208     | Wingan Inlet National Park | Wingan           | -37.69    | 149.49     | 420        | 34                    | 1979-2012        |
| 221209     | Weeragua                   | Cann(East Branch | -37.37    | 149.20     | 154        | 39                    | 1973 - 2011      |
| 221210     | The Gorge                  | Genoa            | -37.43    | 149.53     | 837        | 40                    | 1972 - 2011      |
| 221211     | Combienbar                 | Combienbar       | -37.44    | 148.98     | 179        | 38                    | 1974 - 2011      |
| 221212     | Princes HWY                | Bemm             | -37.61    | 148.90     | 725        | 37                    | 1975 - 2011      |
| 222202     | Sardine Ck                 | Brodribb         | -37.51    | 148.55     | 650        | 47                    | 1965 - 2011      |
| 222206     | Buchan                     | Buchan           | -37.50    | 148.18     | 822        | 38                    | 1974 - 2011      |
| 222210     | Deddick (Caseys)           | Deddick          | -37.09    | 148.43     | 857        | 42                    | 1970 - 2011      |
| 222213     | Suggan Buggan              | Suggan Buggan    | -36.95    | 148.33     | 357        | 41                    | 1971 - 2011      |
| 222217     | Jacksons Crossing          | Rodger           | -37.41    | 148.36     | 447        | 36                    | 1976 - 2011      |
| 223202     | Swifts Ck                  | Tambo            | -37.26    | 147.72     | 943        | 38                    | 1974 - 2011      |
| 223204     | Deptford                   | Nicholson        | -37.60    | 147.70     | 287        | 38                    | 1974 - 2011      |
| 223212     | D/S of Wilkinson Ck        | Timbarra         | -37.45    | 148.06     | 438        | 31                    | 1982-2012        |
| 223213     | D/S of Duggan Ck           | Tambo            | -37.00    | 147.88     | 96         | 26                    | 1987-2012        |
| 223214     | U/S of Smith Ck            | Tambo            | -36.96    | 147.93     | 32         | 24                    | 1989-2012        |
| 223215     | Hells Gate                 | Haunted Stream   | -37.48    | 147.82     | 180        | 23                    | 1990-2012        |
| 224213     | Lower Dargo Rd             | Dargo            | -37.50    | 147.27     | 676        | 39                    | 1973 - 2011      |
| 224214     | Tabberabbera               | Wentworth        | -37.50    | 147.39     | 443        | 38                    | 1974 - 2011      |
| 225213     | Beardmore                  | Aberfeldy        | -37.85    | 146.43     | 311        | 33                    | 1973 - 2005      |
| 225218     | Briagalong                 | Freestone Ck     | -37.81    | 147.09     | 309        | 41                    | 1971 - 2011      |
| 225219     | Glencairn                  | Macalister       | -37.52    | 146.57     | 570        | 45                    | 1967 - 2011      |

| <b>T</b> 7 | TC |
|------------|----|
| v          | ı  |

| Station ID | Station Name               | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 225223     | Gillio Rd                  | Valencia Ck      | -37.73    | 146.98     | 195        | 41                    | 1971 - 2011      |
| 225224     | The Channel                | Avon             | -37.80    | 146.88     | 554        | 40                    | 1972 - 2011      |
| 226007     | Browns                     | Tyers            | -38.05    | 146.36     | 207        | 52                    | 1961-2012        |
| 226023     | Neerim East                | Latrobe          | -37.94    | 146.03     | 378        | 36                    | 1977-2012        |
| 226204     | Willow Grove               | Latrobe          | -38.09    | 146.16     | 580        | 41                    | 1971 - 2011      |
| 226209     | Darnum                     | Moe              | -38.21    | 146.00     | 214        | 40                    | 1972 - 2011      |
| 226222     | Near Noojee (U/S Ada R Jun | Latrobe          | -37.88    | 145.89     | 62         | 41                    | 1971 - 2011      |
| 226226     | Tanjil Junction            | Tanjil           | -38.01    | 146.20     | 289        | 52                    | 1960 - 2011      |
| 226402     | Trafalgar East             | Moe Drain        | -38.18    | 146.21     | 622        | 37                    | 1975 - 2011      |
| 227200     | Yarram                     | Tarra            | -38.46    | 146.69     | 25         | 47                    | 1965 - 2011      |
| 227205     | Calignee South             | Merriman Ck      | -38.36    | 146.65     | 36         | 37                    | 1975 - 2011      |
| 227210     | Carrajung Lower            | Bruthen Ck       | -38.40    | 146.74     | 18         | 39                    | 1973 - 2011      |
| 227211     | Toora                      | Agnes            | -38.64    | 146.37     | 67         | 38                    | 1974 - 2011      |
| 227213     | Jack                       | Jack             | -38.53    | 146.53     | 34         | 42                    | 1970 - 2011      |
| 227219     | Loch                       | Bass             | -38.38    | 145.56     | 52         | 39                    | 1973 - 2011      |
| 227225     | Fischers                   | Tarra            | -38.47    | 146.56     | 16         | 40                    | 1973 - 2012      |
| 227226     | Dumbalk North              | Tarwineast Branc | -38.50    | 146.16     | 127        | 42                    | 1970 - 2011      |
| 227227     | Leongatha                  | Wilkur Ck        | -38.39    | 145.96     | 106        | 40                    | 1973-2012        |
| 227231     | Glen Forbes South          | Bass             | -38.47    | 145.51     | 233        | 37                    | 1974 - 2010      |
| 227236     | D/S Foster Ck Jun          | Powlett          | -38.56    | 145.71     | 228        | 33                    | 1979 - 2011      |
| 227237     | Toora                      | Franklin         | -38.63    | 146.31     | 75         | 34                    | 1979-2012        |
| 227243     | D/S Reedy Ck               | Bruthen Ck       | -38.42    | 146.83     | 124        | 21                    | 1992-2012        |
| 228209     | Hamiltons Br               | Lang Lang        | -38.24    | 145.64     | 272        | 25                    | 1980-2004        |
| 228217     | Pakenham                   | Toomuc Ck        | -38.07    | 145.46     | 41         | 29                    | 1974 - 2002      |
| 228228     | Cardinia                   | Cardinia Ck      | -38.12    | 145.40     | 117        | 31                    | 1974-2004        |

VIC

| Station ID | Station Name                | River Name        | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-----------------------------|-------------------|-----------|------------|------------|-----------------------|------------------|
| 229215     | Woori Yallock               | Woori Yallock Ck  | -37.77    | 145.51     | 311        | 31                    | 1974-2004        |
| 229218     | Watsons Ck                  | Watsons Ck        | -37.67    | 145.26     | 36         | 26                    | 1974 - 1999      |
| 230204     | Riddells Ck                 | Riddells Ck       | -37.47    | 144.67     | 79         | 38                    | 1974 - 2011      |
| 230205     | Bulla (D/S of Emu Ck Jun)   | Deep Ck           | -37.63    | 144.80     | 865        | 38                    | 1974 - 2011      |
| 230208     | Darraweit Guim              | Deep Ck           | -37.41    | 144.89     | 350        | 20                    | 1975-1994        |
| 230209     | Barringo (U/S of Diversion  | Barringo Ck       | -37.42    | 144.63     | 6          | 30                    | 1983-2012        |
| 230211     | Clarkefield                 | Emu Ck            | -37.47    | 144.75     | 93         | 36                    | 1975 - 2010      |
| 230213     | Mount Macedon               | Turritable Ck     | -37.42    | 144.58     | 15         | 38                    | 1975-2012        |
| 230218     | Mount Eliza                 | Bolinda Ck        | -37.37    | 144.69     | 12         | 29                    | 1977-2005        |
| 230219     | Darraweit Guim              | Boyd Ck           | -37.40    | 144.90     | 135        | 21                    | 1978-1998        |
| 231212     | Notuk                       | Djerriwarrh Ck    | -37.60    | 144.53     | 19         | 21                    | 1963-1983        |
| 231213     | Sardine Ck- O'Brien Cro     | Lerderderg Ck     | -37.50    | 144.36     | 153        | 53                    | 1959 - 2011      |
| 231231     | Melton South                | Toolern Ck        | -37.91    | 144.58     | 95         | 32                    | 1979 - 2010      |
| 232213     | U/S of Bungal Dam           | Lal Lal Ck        | -37.66    | 144.03     | 157        | 33                    | 1977 - 2009      |
| 232214     | U/S of Bungal Dam           | Black Ck          | -37.63    | 144.06     | 13         | 29                    | 1977-2005        |
| 232215     | U/S of Bungal Dam           | Woollen Ck        | -37.64    | 144.08     | 6          | 29                    | 1977-2005        |
| 233214     | Forrest (above Tunnel)      | Barwoneast Branc  | -38.53    | 143.73     | 17         | 34                    | 1978 - 2011      |
| 233215     | Leigh R @ Mount Mercer      | Leigh             | -37.82    | 143.92     | 593        | 39                    | 1974-2012        |
| 233223     | Warrambine                  | Warrambine Ck     | -37.93    | 143.87     | 57         | 43                    | 1970-2012        |
| 234200     | Pitfield                    | Woady Yaloak      | -37.81    | 143.59     | 324        | 40                    | 1972 - 2011      |
| 234203     | Pirron Yallock (above H'Wy) | Pirron Yallock Ck | -38.36    | 143.42     | 166        | 40                    | 1973-2012        |
| 234209     | Lake Colac                  | Dean Ck           | -38.34    | 143.56     | 49         | 30                    | 1983-2012        |
| 235202     | Upper Gellibrand            | Gellibrand        | -37.56    | 143.64     | 53         | 37                    | 1975 - 2011      |
| 235203     | Curdie                      | Curdies           | -38.45    | 142.96     | 790        | 37                    | 1975 - 2011      |
| 235204     | Beech Forest                | Little Aire Ck    | -38.66    | 143.53     | 11         | 36                    | 1976 - 2011      |

| <b>T</b> 7 | T |
|------------|---|
| v          |   |
| •          | 1 |

| Station ID | Station Name         | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 235205     | Wyelangta            | Arkins Ck West B | -38.65    | 143.44     | 3          | 34                    | 1978 - 2011      |
| 235209     | Beech Forest         | Aire             | -38.67    | 143.58     | 21         | 22                    | 1991-2012        |
| 235210     | Gellibrand           | Lardner Ck       | -38.54    | 143.54     | 52         | 39                    | 1974-2012        |
| 235211     | Kennedys Ck          | Kennedys Ck      | -38.59    | 143.26     | 268        | 39                    | 1973-2011        |
| 235216     | Lorne                | Cumberland       | -38.57    | 143.95     | 38         | 42                    | 1971-2012        |
| 235219     | Wyelangta            | Aire             | -38.71    | 143.48     | 90         | 39                    | 1974-2012        |
| 235226     | Allenvale            | St George        | -38.55    | 143.96     | 31         | 20                    | 1970-1989        |
| 235227     | Bunkers Hill         | Gellibrand       | -38.53    | 143.48     | 311        | 38                    | 1974 - 2011      |
| 235232     | Painkalac Ck Dam     | Painkalac Ck     | -38.45    | 144.07     | 36         | 39                    | 1974-2012        |
| 235233     | Apollo Bay- Paradise | Barhameast Branc | -38.76    | 143.62     | 43         | 35                    | 1977 - 2011      |
| 235234     | Gellibrand           | Love Ck          | -38.49    | 143.57     | 75         | 33                    | 1979 - 2011      |
| 235237     | Curdie (Digneys Br)  | Scotts Ck        | -38.45    | 142.99     | 361        | 31                    | 1982-2012        |
| 236204     | Streatham            | Fiery Ck         | -37.73    | 143.07     | 956        | 41                    | 1972-2012        |
| 236205     | Woodford             | Merri            | -38.32    | 142.48     | 899        | 38                    | 1974 - 2011      |
| 236212     | Cudgee               | Brucknell Ck     | -38.35    | 142.65     | 570        | 37                    | 1975 - 2011      |
| 236213     | Mena Park            | Mount Emu Ck     | -37.53    | 143.46     | 452        | 39                    | 1974-2012        |
| 236219     | Ararat               | Hopkins          | -37.32    | 142.94     | 258        | 24                    | 1989-2012        |
| 237200     | Toolong              | Moyne            | -38.32    | 142.22     | 570        | 40                    | 1973-2012        |
| 237202     | Heywood              | Fitzroy          | -38.13    | 141.62     | 234        | 45                    | 1968-2012        |
| 237206     | Codrington           | Eumeralla        | -38.26    | 141.94     | 502        | 40                    | 1973-2012        |
| 237207     | Heathmere            | Surry            | -38.25    | 141.66     | 310        | 37                    | 1975 - 2011      |
| 238207     | Jimmy Ck             | Wannon           | -37.37    | 142.50     | 40         | 38                    | 1974 - 2011      |
| 238208     | Jimmy Ck             | Jimmy Ck         | -37.38    | 142.51     | 23         | 45                    | 1968-2012        |
| 238219     | Morgiana             | Grange Burn      | -37.71    | 141.83     | 997        | 39                    | 1973 - 2011      |
| 238220     | Cavendish            | Dundas           | -37.53    | 142.00     | 211        | 23                    | 1990-2012        |

Project 5: Regional Flood Methods

| <b>T</b> 7 | TC |
|------------|----|
| v          | IC |

| Station ID | Station Name       | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|--------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 238221     | Mirranatwa         | Dwyer Ck         | -37.50    | 142.32     | 269        | 25                    | 1974-1998        |
| 238223     | Wando Vale         | Wando            | -37.50    | 141.42     | 174        | 39                    | 1974-2012        |
| 238229     | Chetwynd           | Chetwynd         | -37.31    | 141.48     | 69         | 40                    | 1973-2012        |
| 238230     | Teakettle          | Stokes           | -37.87    | 141.41     | 181        | 39                    | 1974-2012        |
| 238231     | Big Cord           | Glenelg          | -37.32    | 142.37     | 57         | 34                    | 1979-2012        |
| 238235     | Lower Crawford     | Crawford         | -37.98    | 141.46     | 606        | 43                    | 1970-2012        |
| 401208     | Berringama         | Cudgewa Ck       | -36.21    | 147.68     | 350        | 47                    | 1965 - 2011      |
| 401209     | Omeo               | Livingstone Ck   | -37.11    | 147.57     | 243        | 27                    | 1968 - 1994      |
| 401210     | below Granite Flat | Snowy Ck         | -36.57    | 147.41     | 407        | 44                    | 1968 - 2011      |
| 401212     | Upper Nariel       | Nariel Ck        | -36.45    | 147.83     | 252        | 58                    | 1954 - 2011      |
| 401216     | Jokers Ck          | Big              | -36.95    | 141.47     | 356        | 60                    | 1952 - 2011      |
| 401217     | Gibbo Park         | Gibbo            | -36.75    | 147.71     | 389        | 41                    | 1971 - 2011      |
| 401220     | McCallums          | Tallangatta Ck   | -36.21    | 147.50     | 464        | 36                    | 1976 - 2011      |
| 401226     | Victoria Falls     | Victoria         | -37.09    | 147.46     | 180        | 22                    | 1989-2012        |
| 401229     | Cudgewa North      | Cudgewa Ck       | -36.07    | 147.88     | 487        | 20                    | 1993-2012        |
| 401230     | Towong             | Corryong Ck      | -36.11    | 147.97     | 363        | 20                    | 1993-2012        |
| 402203     | Mongans Br         | Kiewa            | -36.60    | 147.10     | 552        | 42                    | 1970 - 2011      |
| 402204     | Osbornes Flat      | Yackandandah Ck  | -36.31    | 146.90     | 255        | 45                    | 1967 - 2011      |
| 402206     | Running Ck         | Running Ck       | -36.54    | 147.05     | 126        | 37                    | 1975 - 2011      |
| 402213     | Osbornes Flat      | Kinchington Ck   | -36.32    | 146.89     | 122        | 43                    | 1970-2012        |
| 402217     | Myrtleford Rd Br   | Flaggy Ck        | -36.39    | 146.88     | 24         | 41                    | 1970 - 2010      |
| 402223     | U/S of Offtake     | Kiewawest Branch | -36.79    | 147.16     | 101        | 21                    | 1992-2012        |
| 403205     | Bright             | Ovens Rivers     | -36.73    | 146.95     | 495        | 41                    | 1971 - 2011      |
| 403209     | Wangaratta North   | Reedy Ck         | -36.33    | 146.34     | 368        | 39                    | 1973 - 2011      |
| 403213     | Greta South        | Fifteen Mile Ck  | -36.62    | 146.24     | 229        | 39                    | 1973 - 2011      |

Project 5: Regional Flood Methods

| 110 |  |
|-----|--|
| VIC |  |

| Station ID | Station Name               | River Name      | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------------|-----------------|-----------|------------|------------|-----------------------|------------------|
| 403214     | Rosewhite                  | Happy Valley Ck | -36.58    | 146.82     | 135        | 40                    | 1973-2012        |
| 403217     | Matong North               | Rose            | -36.83    | 146.58     | 154        | 32                    | 1974-2005        |
| 403221     | Woolshed                   | Reedy Ck        | -36.31    | 146.60     | 214        | 37                    | 1975 - 2011      |
| 403222     | Abbeyard                   | Buffalo         | -36.91    | 146.70     | 425        | 39                    | 1973 - 2011      |
| 403232     | Wandiligong                | Morses Ck       | -36.75    | 146.98     | 123        | 41                    | 1972-2012        |
| 403233     | Harris Lane                | Buckland        | -36.72    | 146.88     | 435        | 40                    | 1972 - 2011      |
| 404207     | Kelfeera                   | Holland Ck      | -36.61    | 146.06     | 451        | 37                    | 1975 - 2011      |
| 404208     | Lima                       | Moonee Ck       | -36.76    | 145.97     | 91         | 41                    | 1973-2012        |
| 405205     | Murrindindi above Colwells | Murrindindi     | -37.41    | 145.56     | 108        | 37                    | 1975 - 2011      |
| 405209     | Taggerty                   | Acheron         | -37.32    | 145.71     | 619        | 39                    | 1973 - 2011      |
| 405212     | Tallarook                  | Sunday Ck       | -37.10    | 145.05     | 337        | 37                    | 1975 - 2011      |
| 405214     | Tonga Br                   | Delatite        | -37.15    | 146.13     | 368        | 55                    | 1957 - 2011      |
| 405215     | Glen Esk                   | Howqua          | -37.23    | 146.21     | 368        | 38                    | 1974 - 2011      |
| 405217     | Devlins Br                 | Yea             | -37.38    | 145.48     | 360        | 37                    | 1975 - 2011      |
| 405218     | Gerrang Br                 | Jamieson        | -37.29    | 146.19     | 368        | 53                    | 1959 - 2011      |
| 405226     | Moorilim                   | Pranjip Ck      | -36.62    | 145.31     | 787        | 38                    | 1974 - 2011      |
| 405227     | Jamieson                   | Big Ck          | -37.37    | 146.06     | 619        | 42                    | 1970 - 2011      |
| 405228     | Tarcombe Rd                | Hughes Ck       | -36.95    | 145.28     | 471        | 38                    | 1975-2012        |
| 405229     | Wanalta                    | Wanalta Ck      | -36.64    | 144.87     | 108        | 43                    | 1969 - 2011      |
| 405230     | Colbinabbin                | Cornella Ck     | -36.61    | 144.80     | 259        | 39                    | 1973 - 2011      |
| 405231     | Flowerdale                 | King Parrot Ck  | -37.35    | 145.29     | 181        | 38                    | 1974 - 2011      |
| 405234     | D/S of Polly McQuinn Weir  | Seven Creeks    | -36.89    | 145.68     | 153        | 48                    | 1965-2012        |
| 405237     | Euroa Township             | Seven Creeks    | -36.76    | 145.58     | 332        | 39                    | 1973 - 2011      |
| 405238     | Pyalong                    | Mollison Ck     | -37.12    | 144.86     | 163        | 41                    | 1972-2012        |

VIC

| Station ID | Station Name             | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|--------------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 405240     | Ash Br                   | Sugarloaf Ck     | -37.06    | 145.05     | 609        | 39                    | 1973 - 2011      |
| 405241     | Rubicon                  | Rubicon          | -37.29    | 145.83     | 129        | 39                    | 1973 - 2011      |
| 405245     | Mansfield                | Ford Ck          | -37.04    | 146.05     | 115        | 42                    | 1970 - 2011      |
| 405248     | Graytown                 | Major Ck         | -36.86    | 144.91     | 282        | 41                    | 1971 - 2011      |
| 405251     | Ancona                   | Brankeet Ck      | -36.97    | 145.78     | 121        | 39                    | 1973 - 2011      |
| 405264     | D/S of Frenchman Ck Jun  | Big              | -37.52    | 146.08     | 333        | 37                    | 1975 - 2011      |
| 405274     | Yarck                    | Home Ck          | -37.11    | 145.60     | 187        | 35                    | 1977 - 2011      |
| 405290     | Broadford                | Pine Ck          | -37.29    | 145.05     | 3          | 23                    | 1988-2012        |
| 405291     | Whiteheads Ck            | Whiteheads Ck    | -37.03    | 145.21     | 51         | 23                    | 1988-2012        |
| 405294     | U/S of Violet Town       | Honeysuckle Ck   | -36.72    | 145.76     | 23         | 22                    | 1989-2012        |
| 406208     | Ashbourne                | Campaspe         | -37.39    | 144.45     | 33         | 42                    | 1971-2012        |
| 406213     | Redesdale                | Campaspe         | -37.02    | 144.54     | 629        | 37                    | 1975 - 2011      |
| 406214     | Longlea                  | Axe Ck           | -36.78    | 144.43     | 234        | 40                    | 1972 - 2011      |
| 406216     | Sedgewick                | Axe Ck           | -36.90    | 144.36     | 34         | 37                    | 1975 - 2011      |
| 406224     | Runnymede                | Mount Pleasant C | -36.55    | 144.64     | 248        | 37                    | 1975 - 2011      |
| 406226     | Derrinal                 | Mount Ida Ck     | -36.88    | 144.65     | 174        | 34                    | 1978 - 2011      |
| 406235     | U/S of Heathcote-Mia Mia | Wild Duck Ck     | -36.95    | 144.66     | 214        | 33                    | 1981-2012        |
| 406250     | Springhill-Tylden Rd     | Coliban          | -37.32    | 144.36     | 78         | 31                    | 1983-2012        |
| 406262     | Strathfieldsaye          | Axe Ck           | -36.81    | 144.39     | 83         | 24                    | 1989-2012        |
| 407214     | Clunes                   | Creswick Ck      | -37.30    | 143.79     | 308        | 37                    | 1975 - 2011      |
| 407217     | Vaughan atD/S Fryers Ck  | Loddon           | -37.16    | 144.21     | 299        | 44                    | 1968 - 2011      |
| 407220     | Norwood                  | Bet Bet Ck       | -37.00    | 143.64     | 347        | 38                    | 1973 - 2010      |
| 407221     | Yandoit                  | Jim Crow Ck      | -37.21    | 144.10     | 166        | 39                    | 1973 - 2011      |
| 407222     | Clunes                   | Tullaroop Ck     | -37.23    | 143.83     | 632        | 39                    | 1973 - 2011      |

Project 5: Regional Flood Methods

| Station ID | Station Name      | River Name     | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-------------------|----------------|-----------|------------|------------|-----------------------|------------------|
| 407227     | Smeaton           | Birch Ck       | -37.34    | 143.92     | 146        | 38                    | 1975-2012        |
| 407230     | Strathlea         | Joyces Ck      | -37.17    | 143.96     | 153        | 39                    | 1973 - 2011      |
| 407246     | Marong            | Bullock Ck     | -36.73    | 144.13     | 184        | 39                    | 1973 - 2011      |
| 407253     | Minto             | Piccaninny Ck  | -36.45    | 144.47     | 668        | 39                    | 1973 - 2011      |
| 407288     | Lillicur          | Bet Bet Ck     | -37.19    | 143.52     | 124        | 23                    | 1990-2012        |
| 408202     | Amphitheatre      | Avoca          | -37.18    | 143.40     | 78         | 40                    | 1973-2012        |
| 408206     | Archdale Junction | Avoca          | -36.88    | 143.50     | 681        | 26                    | 1987-2012        |
| 415207     | Eversley          | Wimmera        | -37.19    | 143.19     | 304        | 37                    | 1975 - 2011      |
| 415217     | Grampians Rd Br   | Fyans Ck       | -37.26    | 142.53     | 34         | 38                    | 1973 - 2010      |
| 415220     | Wimmera HWY       | Avon           | -36.64    | 142.98     | 596        | 37                    | 1974 - 2010      |
| 415226     | Carrs Plains      | Richardson     | -36.75    | 142.79     | 130        | 31                    | 1971 - 2001      |
| 415237     | Stawell           | Concongella Ck | -37.02    | 142.82     | 239        | 35                    | 1977 - 2011      |
| 415238     | Navarre           | Wattle Ck      | -36.90    | 143.10     | 141        | 36                    | 1976 - 2011      |
| 415244     | Warrak            | Shepherds Ck   | -37.25    | 143.19     | 6          | 30                    | 1983-2012        |
| 415245     | Crowlands         | Mount Cole Ck  | -37.1650  | 143.0917   | 144        | 28                    | 1985-2012        |

**Table A3 Selected catchments from South Australia** 

| Station ID | Station Name            | River Name                   | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-------------------------|------------------------------|-----------|------------|------------|-----------------------|------------------|
| A4260504   | 4km East of Yundi       | Finniss River                | -35.32    | 138.67     | 191        | 41                    | 1971-2011        |
| A4260529   | Cambrai                 | Marne River upstream         | -34.68    | 139.23     | 239        | 33                    | 1974-2006        |
| A4260533   | Hartley                 | Bremer River                 | -35.21    | 139.01     | 473        | 37                    | 1975-2011        |
| A4260536   | Worlds End              | Burra Creek                  | -33.84    | 139.09     | 704        | 34                    | 1875-2008        |
| A4260557   | Mount Barker            | Mount Barker Creek dowstream | -35.09    | 138.92     | 88         | 31                    | 1981-2011        |
| A4260558   | Dawesley                | Dawesley Creek               | -35.04    | 138.95     | 43         | 32                    | 1980-2011        |
| A5020502   | Dam And Road Bridge     | Myponga River upstream       | -35.38    | 138.48     | 76.5       | 32                    | 1980-2011        |
| A5030502   | Scott Bottom            | Scott Creek                  | -35.1     | 138.68     | 26.8       | 41                    | 1971-2011        |
| A5030503   | 4.5km WNW Kangarilla    | Baker Gully                  | -35.14    | 138.61     | 48.7       | 41                    | 1971-2011        |
| A5030504   | Houlgrave               | Onkaparinga River            | -35.08    | 138.73     | 321        | 37                    | 1975-2011        |
| A5030506   | Mount Bold Reservoir    | Echunga Creek<br>upstream    | -35.13    | 138.73     | 34.2       | 37                    | 1975-2011        |
| A5030507   | Lenswood                | Lenswood Creek               | -34.94    | 138.82     | 16.5       | 38                    | 1974-2011        |
| A5030508   | Craigbank               | Inverbrackie Creek           | -34.95    | 138.93     | 8.4        | 38                    | 1974-2011        |
| A5030509   | Aldgate Railway Station | Aldgate Ck                   | -35.02    | 138.73     | 7.8        | 38                    | 1974-2011        |
| A5030526   | Uraidla                 | Cox Creek                    | -34.97    | 138.74     | 4.3        | 34                    | 1978-2011        |
| A5030529   | Mount Bold Reservoir    | Burnt Out Creek<br>upstream  | -35.13    | 138.71     | 0.6        | 20                    | 1980-2011        |
| A5040500   | Gumeracha Weir          | River Torrens                | -34.82    | 138.85     | 194        | 63                    | 1942-2011        |
| A5040512   | Mount Pleasant          | Torrens River                | -34.79    | 139.03     | 26         | 37                    | 1975-2011        |
| A5040517   | Waterfall Gully         | First Creek                  | -34.97    | 138.68     | 5          | 28                    | 1978-2005        |
| A5040518   | Minno Creek Junction    | Sturt River upstream M       | -35.04    | 138.63     | 19         | 30                    | 1979-2008        |

Project 5: Regional Flood Methods

SA

| Station ID | Station Name        | River Name            | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|---------------------|-----------------------|-----------|------------|------------|-----------------------|------------------|
| A5040523   | Castambul           | Sixth Creek           | -34.87    | 138.76     | 44         | 33                    | 1979-2011        |
| A5040525   | Millbrook Reservoir | Kersbrook Ck upstream | -34.81    | 138.84     | 23         | 21                    | 1991-2011        |
| A5050502   | Yaldara             | North Para River      | -34.57    | 138.88     | 384        | 63                    | 1948-2011        |
| A5050504   | Turretfield         | North Para River      | -34.56    | 138.77     | 708        | 35                    | 1974-2008        |
| A5050517   | Penrice             | North Para River      | -34.46    | 139.06     | 118        | 33                    | 1979-2011        |
| A5070500   | Andrews             | Hill River            | -33.61    | 138.63     | 235        | 41                    | 1971-2011        |
| A5070501   | Spalding            | Hutt River            | -33.54    | 138.6      | 280        | 41                    | 1971-2011        |
| A5130501   | Gorge Falls         | Rocky River upstream  | -35.96    | 136.7      | 190        | 37                    | 1975-2011        |

**Table A4 Selected catchments from Tasmania** 

| Station ID | Station Name                  | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-------------------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 76         | at Ballroom Offtake           | North Esk        | -41.5     | 147.39     | 335        | 74                    | 1923-1996        |
| 159        | D/S Rapid                     | Arthur           | -41.12    | 145.08     | 1600       | 42                    | 1955-1996        |
| 473        | D/S Crossing Rv               | Davey            | -43.14    | 145.95     | 680        | 34                    | 1964-1997        |
| 499        | at Newbury                    | Tyenna           | -42.71    | 146.71     | 198        | 33                    | 1965-1997        |
| 852        | at Strathbridge               | Meander          | -41.49    | 146.91     | 1025       | 27                    | 1985-2011        |
| 1012       | 3.5 Km U/S Esperance          | Peak Rivulet     | -43.32    | 146.9      | 35         | 23                    | 1975-1997        |
| 1200       | at Whitemark Water Supply     | South Pats       | -40.09    | 148.02     | 21         | 22                    | 1969-1990        |
| 2200       | at The Grange                 | Swan             | -42.05    | 148.07     | 440        | 33                    | 1964-1996        |
| 2204       | U/S Coles Bay Rd Bdg          | Apsley           | -41.94    | 148.24     | 157        | 24                    | 1969-1992        |
| 2206       | U/S Scamander Water<br>Supply | Scamander        | -41.45    | 148.18     | 265        | 28                    | 1969-1996        |
| 2207       | 3 Km U/S Tasman Hwy           | Little Swanport  | -42.34    | 147.9      | 600        | 19                    | 1971-1989        |
| 2208       | at Swansea                    | Meredith         | -42.12    | 148.04     | 88         | 27                    | 1970-1996        |
| 2209       | Tidal Limit                   | Carlton          | -42.87    | 147.7      | 136        | 28                    | 1969-1996        |
| 2211       | U/S Brinktop Rd               | Orielton Rivulet | -42.76    | 147.54     | 46         | 24                    | 1973-1996        |
| 2213       | D/S McNeils Rd                | Goatrock Ck      | -42.14    | 147.92     | 1.3        | 22                    | 1975-1996        |
| 3203       | at Baden                      | Coal             | -42.43    | 147.45     | 55         | 26                    | 1971-1996        |
| 5200       | at Summerleas Rd Br           | Browns           | -42.96    | 147.27     | 15         | 30                    | 1963-1992        |
| 6200       | D/S Grundys Ck                | Mountain         | -42.94    | 147.13     | 42         | 29                    | 1968-1996        |
| 7200       | Dover Ws Intake               | Esperance        | -43.34    | 146.96     | 174        | 29                    | 1965-1993        |
| 14207      | at Bannons Br                 | Leven            | -41.25    | 146.09     | 495        | 35                    | 1963-1997        |
| 14210      | U/S Flowerdale R Juncti       | Inglis           | -41       | 145.63     | 170        | 21                    | 1968-1988        |
| 14215      | at Moorleah                   | Flowerdale       | -40.97    | 145.61     | 150        | 31                    | 1966-1996        |
| 14217      | at Sprent                     | Claytons Rivulet | -41.26    | 146.17     | 13.5       | 26                    | 1970-1995        |

## **TAS**

| Station ID | Station Name            | River Name            | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-------------------------|-----------------------|-----------|------------|------------|-----------------------|------------------|
| 14220      | U/S Bass HWY            | Seabrook Ck           | -41.01    | 145.77     | 40         | 20                    | 1977-1996        |
| 16200      | U/S Old Bass Hwy        | Don                   | -41.19    | 146.31     | 130        | 24                    | 1967-1990        |
| 17200      | at Tidal Limit          | Rubicon               | -41.26    | 146.57     | 255        | 31                    | 1967-1997        |
| 17201      | 1.5KM U/S Tidal Limit   | Franklin Rivulet      | -41.26    | 146.61     | 131        | 20                    | 1975-1994        |
| 18201      | 0.5 Km U/S Tamar        | Supply                | -41.26    | 146.94     | 135        | 19                    | 1965-1983        |
| 18221      | D/S Jackeys Marsh       | Jackeys Ck            | -41.68    | 146.66     | 29         | 30                    | 1982-2011        |
| 18312      | D/S Elizabeth R Junctio | Macquarie             | -41.91    | 147.39     | 1900       | 19                    | 1989-2007        |
| 19200      | 2.6KM U/S Tidal Limit   | Brid                  | -41.02    | 147.37     | 134        | 32                    | 1965-1996        |
| 19201      | 2KM U/S Forester Rd Bdg | Great Forester        | -41.11    | 147.61     | 195        | 27                    | 1970-1996        |
| 19204      | D/S Yarrow Ck           | Pipers                | -41.07    | 147.11     | 292        | 25                    | 1972-1996        |
| 304040     | U/S Derwent Junction    | Florentine River      | -42.44    | 146.52     | 435.8      | 61                    | 1951-2011        |
| 304125     | Below Lagoon            | Travellers Rest River | -42.07    | 146.25     | 43.6       | 25                    | 1949-1973        |
| 304597     | At Lake Highway         | Pine Tree Rivulet Ck  | -41.8     | 146.68     | 19.4       | 43                    | 1969-2011        |
| 308145     | At Mount Ficham Track   | Franklin River        | -42.24    | 145.77     | 757        | 59                    | 1953-2011        |
| 308183     | Below Jane River        | Franklin River        | -42.47    | 145.76     | 1590.3     | 22                    | 1957-1978        |
| 308225     | Below Darwin Dam        | Andrew River          | -42.22    | 145.62     | 5.3        | 21                    | 1988-2008        |
| 308446     | Below Huntley           | Gordon River          | -42.66    | 146.37     | 458        | 27                    | 1953-1979        |
| 308799     | B/L Alma                | Collingwood Ck        | -42.16    | 145.93     | 292.5      | 31                    | 1981-2011        |
| 308819     | Above Kelly Basin Rd    | Andrew River          | -42.22    | 145.62     | 4.6        | 26                    | 1983-2008        |
| 310061     | At Murchison Highway    | Que River             | -41.58    | 145.68     | 18.4       | 24                    | 1987-2010        |
| 310148     | Above Sterling          | Murchison River       | -41.76    | 145.62     | 756.3      | 28                    | 1955-1982        |
| 310149     | Below Sophia River      | Mackintosh River      | -41.72    | 145.63     | 523.2      | 27                    | 1954-1980        |
| 310472     | Below Bulgobac Creek    | Que River             | -41.62    | 145.58     | 119.1      | 32                    | 1964-1995        |
| 315074     | At Moina                | Wilmot River          | -41.47    | 146.07     | 158.1      | 46                    | 1923-1968        |
| 315450     | U/S Lemonthyme          | Forth River           | -41.61    | 146.13     | 311        | 49                    | 1963-2011        |

TAS

| Station ID | Station Name      | River Name    | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-------------------|---------------|-----------|------------|------------|-----------------------|------------------|
| 316624     | Above Mersey      | Arm River     | -41.69    | 146.21     | 86         | 40                    | 1972-2011        |
| 318065     | Below Deloraine   | Meander River | -41.53    | 146.66     | 474        | 28                    | 1969-1996        |
| 318350     | Above Rocky Creek | Whyte River   | -41.63    | 145.19     | 310.8      | 33                    | 1960-1992        |

**Table A5 Selected catchments from Queensland** 

| Station ID | Station Name        | River Name      | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|---------------------|-----------------|-----------|------------|------------|-----------------------|------------------|
| 102101     | Fall Ck             | Pascoe          | -12.88    | 142.98     | 651        | 44                    | 1968-2011        |
| 104001     | Telegraph Rd        | Stewart         | -14.17    | 143.39     | 470        | 42                    | 1970-2011        |
| 105105     | Developmental Rd    | East Normanby   | -15.77    | 145.01     | 297        | 42                    | 1970-2011        |
| 105106     | Mount Sellheim      | West Normanby   | -15.76    | 144.98     | 850        | 35                    | 1971-2005        |
| 107001     | Flaggy              | Endeavour       | -15.42    | 145.07     | 337        | 53                    | 1959-2011        |
| 107002     | Mount Simon         | Annan           | -15.65    | 145.19     | 375        | 20                    | 1970-1989        |
| 108002     | Bairds              | Daintree        | -16.18    | 145.28     | 911        | 43                    | 1969-2011        |
| 108003     | China Camp          | Bloomfield      | -15.99    | 145.29     | 264        | 41                    | 1971-2011        |
| 108008     | U/S Little Falls Ck | Whyanbeel Ck    | -16.39    | 145.34     | 16         | 22                    | 1991-2012        |
| 110003     | Picnic Crossing     | Barron          | -17.26    | 145.54     | 228        | 86                    | 1926-2011        |
| 110004     | Malones             | Emerald Ck      | -16.99    | 145.49     | 63         | 21                    | 1942-1962        |
| 110018     | Railway Br          | Mazlin Ck       | -17.23    | 145.55     | 43         | 21                    | 1992-2012        |
| 110101     | Freshwater          | Freshwater Ck   | -16.94    | 145.70     | 70         | 37                    | 1922-1958        |
| 111001     | Gordonvale          | Mulgrave        | -17.10    | 145.79     | 552        | 43                    | 1917-1972        |
| 111003     | Aloomba             | Behana Ck       | -17.13    | 145.84     | 86         | 28                    | 1943-1970        |
| 111005     | The Fisheries       | Mulgrave        | -17.19    | 145.72     | 357        | 45                    | 1967-2011        |
| 111007     | Peets Br            | Mulgrave        | -17.14    | 145.76     | 520        | 39                    | 1973-2011        |
| 111104     | Powerline           | Russell         | -17.42    | 145.92     | 231        | 21                    | 1967-1987        |
| 111105     | The Boulders        | Babinda Ck      | -17.35    | 145.87     | 39         | 45                    | 1967-2011        |
| 112001     | Goondi              | North Johnstone | -17.53    | 145.97     | 936        | 39                    | 1929-1967        |
| 112002     | Nerada              | Fisher Ck       | -17.57    | 145.91     | 16         | 83                    | 1929-2011        |
| 112003     | Glen Allyn          | North Johnstone | -17.38    | 145.65     | 165        | 53                    | 1959-2011        |

| Station ID | Station Name           | River Name      | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|------------------------|-----------------|-----------|------------|------------|-----------------------|------------------|
| 112004     | Tung Oil               | North Johnstone | -17.55    | 145.93     | 925        | 45                    | 1967-2011        |
| 112101     | U/S Central Mill       | South Johnstone | -17.61    | 145.98     | 400        | 95                    | 1917-2011        |
| 112102     | Upper Japoonvale       | Liverpool Ck    | -17.72    | 145.90     | 78         | 42                    | 1971-2012        |
| 113004     | Powerline              | Cochable Ck     | -17.75    | 145.63     | 95         | 45                    | 1967-2011        |
| 113007     | Ebony Rd               | Koolmoon Ck     | -17.74    | 145.56     | 30         | 27                    | 1986-2012        |
| 114001     | Upper Murray           | Murray          | -18.11    | 145.80     | 156        | 41                    | 1971-2011        |
| 116005     | Peacocks Siding        | Stone           | -18.69    | 145.98     | 368        | 36                    | 1936-1971        |
| 116008     | Abergowrie             | Gowrie Ck       | -18.45    | 145.85     | 124        | 51                    | 1954-2004        |
| 116010     | Blencoe Falls          | Blencoe Ck      | -18.20    | 145.54     | 226        | 51                    | 1961-2011        |
| 116011     | Ravenshoe              | Millstream      | -17.60    | 145.48     | 89         | 49                    | 1963-2011        |
| 116012     | 8.7KM                  | Cameron Ck      | -18.07    | 145.34     | 360        | 50                    | 1962-2011        |
| 116013     | Archer Ck              | Millstream      | -17.65    | 145.34     | 308        | 50                    | 1962-2011        |
| 116014     | Silver Valley          | Wild            | -17.63    | 145.30     | 591        | 50                    | 1962-2011        |
| 116015     | Wooroora               | Blunder Ck      | -17.74    | 145.44     | 127        | 45                    | 1967-2011        |
| 116017     | Running Ck             | Stone           | -18.77    | 145.95     | 157        | 41                    | 1971-2011        |
| 117002     | Bruce HWY              | Black           | -19.24    | 146.63     | 256        | 38                    | 1974-2011        |
| 117003     | Bluewater              | Bluewater Ck    | -19.18    | 146.55     | 86         | 38                    | 1974-2011        |
| 118003     | Hervey Range Rd        | Bohle           | -19.32    | 146.70     | 143        | 27                    | 1986-2012        |
| 118004     | Middle Bohle R Junctio | Little Bohle    | -19.33    | 146.68     | 54         | 20                    | 1986-2005        |
| 118101     | Gleesons Weir          | Ross            | -19.32    | 146.74     | 797        | 45                    | 1916-1960        |
| 118106     | Allendale              | Alligator Ck    | -19.39    | 146.96     | 69         | 37                    | 1975-2011        |
| 119004     | Bomb Range             | Bullock Ck      | -19.71    | 146.92     | 59         | 20                    | 1972-1991        |
| 119006     | Damsite                | Major Ck        | -19.67    | 147.02     | 468        | 33                    | 1979-2011        |
| 120014     | Oak Meadows            | Broughton       | -20.18    | 146.32     | 182        | 28                    | 1971-1998        |
| 120102     | Keelbottom             | Keelbottom Ck   | -19.37    | 146.36     | 193        | 44                    | 1968-2011        |

| Station ID | Station Name      | River Name      | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-------------------|-----------------|-----------|------------|------------|-----------------------|------------------|
| 120120     | Mt. Bradley       | Running         | -19.13    | 145.91     | 490        | 36                    | 1976-2011        |
| 120204     | Crediton Recorder | Broken          | -21.17    | 148.51     | 41         | 31                    | 1957-1987        |
| 120206     | Mt Jimmy          | Pelican Ck      | -20.60    | 147.69     | 545        | 27                    | 1961-1987        |
| 120216     | Old Racecourse    | Broken          | -21.19    | 148.45     | 100        | 42                    | 1970-2011        |
| 120307     | Pentland          | Cape            | -20.48    | 145.47     | 775        | 42                    | 1970-2011        |
| 121001     | lda Ck            | Don             | -20.29    | 148.12     | 604        | 54                    | 1958-2011        |
| 121002     | Guthalungra       | Elliot          | -19.94    | 147.84     | 273        | 38                    | 1974-2011        |
| 122004     | Lower Gregory     | Gregory         | -20.30    | 148.55     | 47         | 39                    | 1973-2011        |
| 124001     | Caping Siding     | O'Connell       | -20.63    | 148.57     | 363        | 42                    | 1970-2011        |
| 124002     | Calen             | StHelens Ck     | -20.91    | 148.76     | 118        | 38                    | 1974-2011        |
| 124003     | Jochheims         | Andromache      | -20.58    | 148.47     | 230        | 35                    | 1977-2011        |
| 125002     | Sarich's          | Pioneer         | -21.27    | 148.82     | 757        | 51                    | 1961-2011        |
| 125004     | Gargett           | Cattle Ck       | -21.18    | 148.74     | 326        | 44                    | 1968-2011        |
| 125005     | Whitefords        | Blacks Ck       | -21.33    | 148.83     | 506        | 38                    | 1974-2011        |
| 125006     | Dam Site          | Finch Hatton Ck | -21.11    | 148.63     | 35         | 35                    | 1977-2011        |
| 126003     | Carmila           | Carmila Ck      | -21.92    | 149.40     | 84         | 38                    | 1974-2011        |
| 129001     | Byfield           | Waterpark Ck    | -22.84    | 150.67     | 212        | 59                    | 1953-2011        |
| 130004     | Old Stn           | Raglan Ck       | -23.82    | 150.82     | 389        | 48                    | 1964-2011        |
| 130108     | Curragh           | Blackwater Ck   | -23.50    | 148.88     | 776        | 33                    | 1973-2005        |
| 130207     | Clermont          | Sandy Ck        | -22.80    | 147.58     | 409        | 46                    | 1966-2011        |
| 130208     | Ellendale         | Theresa Ck      | -22.98    | 147.58     | 758        | 39                    | 1965-2003        |
| 130215     | Lilyvale Lagoon   | Crinum Ck       | -23.21    | 148.34     | 252        | 35                    | 1977-2011        |
| 130319     | Craiglands        | Bell Ck         | -24.15    | 150.52     | 300        | 51                    | 1961-2011        |
| 130321     | Mt. Kroombit      | Kroombit Ck     | -24.41    | 150.72     | 373        | 41                    | 1964-2004        |
| 130335     | Wura              | Dee             | -23.77    | 150.36     | 472        | 40                    | 1972-2011        |
| 130336     | Folding Hills     | Grevillea Ck    | -24.58    | 150.62     | 233        | 39                    | 1973-2011        |

| Station ID | Station Name     | River Name     | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|------------------|----------------|-----------|------------|------------|-----------------------|------------------|
| 130348     | Red Hill         | Prospect Ck    | -24.45    | 150.42     | 369        | 36                    | 1976-2011        |
| 130349     | Kingsborough     | Don            | -23.97    | 150.39     | 593        | 35                    | 1977-2011        |
| 130413     | Braeside         | Denison Ck     | -21.77    | 148.79     | 757        | 40                    | 1972-2011        |
| 130503     | Wyseby Stn       | Carnarvon Ck   | -24.97    | 148.53     | 561        | 21                    | 1967-1987        |
| 130507     | Planet Downs     | Planet Ck      | -24.54    | 148.91     | 776        | 20                    | 1973-1992        |
| 133003     | Marlua           | Diglum Ck      | -24.19    | 151.16     | 203        | 36                    | 1969-2004        |
| 135002     | Springfield      | Kolan          | -24.75    | 151.59     | 551        | 46                    | 1966-2011        |
| 135004     | Dam Site         | Gin Gin Ck     | -24.97    | 151.89     | 531        | 46                    | 1966-2011        |
| 136006     | Dam Site         | Reid Ck        | -25.27    | 151.52     | 219        | 46                    | 1966-2011        |
| 136102     | Meldale          | Three Moon Ck  | -24.69    | 150.96     | 310        | 32                    | 1949-1980        |
| 136108     | Upper Monal      | Monal Ck       | -24.61    | 151.11     | 92         | 49                    | 1963-2011        |
| 136110     | The Gorge        | Baywulla Ck    | -25.09    | 151.38     | 163        | 22                    | 1965-1986        |
| 136111     | Dakiel           | Splinter Ck    | -24.75    | 151.26     | 139        | 46                    | 1966-2011        |
| 136112     | Yarrol           | Burnett        | -24.99    | 151.35     | 370        | 46                    | 1966-2011        |
| 136202     | Litzows          | Barambah Ck    | -26.30    | 152.04     | 681        | 91                    | 1921-2011        |
| 136203     | Brooklands       | Barker Ck      | -26.74    | 151.82     | 249        | 71                    | 1941-2011        |
| 136301     | Weens Br         | Stuart         | -26.50    | 151.77     | 512        | 76                    | 1936-2011        |
| 137001     | Elliott          | Elliott        | -24.99    | 152.37     | 220        | 63                    | 1949-2011        |
| 137003     | Dr Mays Crossing | Elliott        | -24.97    | 152.42     | 251        | 37                    | 1975-2011        |
| 137101     | Burrum HWY       | Gregory        | -25.09    | 152.24     | 454        | 45                    | 1967-2011        |
| 137102     | Eureka           | Sandy Ck       | -25.34    | 152.14     | 158        | 21                    | 1967-1987        |
| 137201     | Bruce HWY        | Isis           | -25.27    | 152.37     | 446        | 45                    | 1967-2011        |
| 137202     | Childers         | Oaky Ck        | -25.29    | 152.29     | 161        | 21                    | 1967-1987        |
| 138002     | Brooyar          | Wide Bay Ck    | -26.01    | 152.41     | 655        | 102                   | 1910-2011        |
| 138003     | Glastonbury      | Glastonbury Ck | -26.22    | 152.52     | 113        | 33                    | 1979-2011        |

| Station ID | Station Name     | River Name     | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|------------------|----------------|-----------|------------|------------|-----------------------|------------------|
| 138009     | Tagigan Rd       | Tinana Ck      | -26.08    | 152.78     | 100        | 37                    | 1975-2011        |
| 138010     | Kilkivan         | Wide Bay Ck    | -26.08    | 152.22     | 322        | 102                   | 1910-2011        |
| 138101     | Kenilworth       | Mary           | -26.60    | 152.73     | 720        | 53                    | 1921-1973        |
| 138102     | Zachariah        | Amamoor Ck     | -26.37    | 152.62     | 133        | 91                    | 1921-2011        |
| 138103     | Knockdomny       | Kandanga Ck    | -26.40    | 152.64     | 142        | 34                    | 1921-1954        |
| 138104     | Kidaman          | Obi Obi Ck     | -26.63    | 152.77     | 174        | 43                    | 1921-1963        |
| 138106     | Baroon Pocket    | Obi Obi Ck     | -26.71    | 152.86     | 67         | 46                    | 1941-1986        |
| 138107     | Cooran           | Six Mile Ck    | -26.33    | 152.81     | 186        | 64                    | 1948-2011        |
| 138110     | Bellbird Ck      | Mary           | -26.63    | 152.70     | 486        | 52                    | 1960-2011        |
| 138111     | Moy Pocket       | Mary           | -26.53    | 152.74     | 820        | 48                    | 1964-2011        |
| 138113     | Hygait           | Kandanga Ck    | -26.39    | 152.64     | 143        | 40                    | 1972-2011        |
| 138120     | Gardners Falls   | Obi Obi Ck     | -26.76    | 152.87     | 26         | 26                    | 1987-2012        |
| 138903     | Bauple East      | Tinana Ck      | -25.82    | 152.72     | 783        | 31                    | 1982-2012        |
| 141001     | Kiamba           | South Maroochy | -26.59    | 152.90     | 33         | 74                    | 1938-2011        |
| 141003     | Warana Br        | Petrie Ck      | -26.62    | 152.96     | 38         | 53                    | 1959-2011        |
| 141004     | Yandina          | South Maroochy | -26.56    | 152.94     | 75         | 34                    | 1959-2011        |
| 141006     | Mooloolah        | Mooloolah      | -26.76    | 152.98     | 39         | 40                    | 1972-2011        |
| 141008     | Kiels Mountain   | Eudlo Ck       | -26.66    | 153.02     | 62         | 30                    | 1983-2012        |
| 141009     | Eumundi          | North Maroochy | -26.50    | 152.96     | 38         | 30                    | 1983-2012        |
| 142001     | Upper Caboolture | Caboolture     | -27.10    | 152.89     | 94         | 46                    | 1966-2011        |
| 142201     | Cashs Crossing   | South Pine     | -27.34    | 152.96     | 178        | 46                    | 1918-1963        |
| 142202     | Drapers Crossing | South Pine     | -27.35    | 152.92     | 156        | 46                    | 1966-2011        |
| 143010     | Boat Mountain    | Emu Ck         | -26.98    | 152.29     | 915        | 45                    | 1967-2011        |
| 143011     | Raeburn          | Emu Ck         | -27.07    | 152.01     | 439        | 20                    | 1966-1985        |
| 143015     | Damsite          | Cooyar Ck      | -26.74    | 152.14     | 963        | 43                    | 1969-2011        |

| Station ID | Station Name       | River Name      | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|--------------------|-----------------|-----------|------------|------------|-----------------------|------------------|
| 143033     | New Beith          | Oxley Ck        | -27.73    | 152.95     | 60         | 24                    | 1989-2012        |
| 143101     | Mutdapily          | Warrill Ck      | -27.75    | 152.69     | 771        | 39                    | 1915-1953        |
| 143102     | Kalbar No.2        | Warrill Ck      | -27.92    | 152.60     | 468        | 55                    | 1913-1970        |
| 143103     | Moogerah           | Reynolds Ck     | -28.04    | 152.55     | 190        | 36                    | 1918-1953        |
| 143107     | Walloon            | Bremer          | -27.60    | 152.69     | 622        | 50                    | 1962-2011        |
| 143108     | Amberley           | Warrill Ck      | -27.67    | 152.70     | 914        | 50                    | 1962-2011        |
| 143110     | Adams Br           | Bremer          | -27.83    | 152.51     | 125        | 40                    | 1972-2011        |
| 143113     | Loamside           | Purga Ck        | -27.68    | 152.73     | 215        | 38                    | 1974-2011        |
| 143203     | Helidon Number 3   | Lockyer Ck      | -27.54    | 152.11     | 357        | 85                    | 1927-2011        |
| 143208     | Dam Site           | Fifteen Mile Ck | -27.46    | 152.10     | 87         | 26                    | 1957-1985        |
| 143209     | Mulgowie2          | Laidley Ck      | -27.73    | 152.36     | 167        | 49                    | 1958-2011        |
| 143212     | Tenthill           | Tenthill Ck     | -27.56    | 152.39     | 447        | 29                    | 1984-2012        |
| 143219     | Spring Bluff       | Murphys Ck      | -27.47    | 151.99     | 18         | 27                    | 1986-2012        |
| 143229     | Warrego HWY        | Laidley Ck      | -27.56    | 152.39     | 462        | 22                    | 1991-2012        |
| 143303     | Peachester         | Stanley         | -26.84    | 152.84     | 104        | 84                    | 1928-2011        |
| 143306     | U/S Byron Ck Junct | Reedy Ck        | -27.14    | 152.64     | 56         | 30                    | 1976-2005        |
| 143307     | Causeway           | Byron Ck        | -27.13    | 152.65     | 79         | 34                    | 1976-2009        |
| 143921     | Rosentretters Br   | Cressbrook Ck   | -27.14    | 152.33     | 447        | 26                    | 1987-2012        |
| 145002     | Lamington No.1     | Christmas Ck    | -28.24    | 152.99     | 95         | 45                    | 1910-1954        |
| 145003     | Forest Home        | Logan           | -28.20    | 152.77     | 175        | 90                    | 1918-2011        |
| 145005     | Avonmore           | Running Ck      | -28.30    | 152.91     | 89         | 31                    | 1922-1952        |
| 145007     | Hillview           | Christmas Ck    | -28.22    | 153.00     | 132        | 20                    | 1955-1974        |
| 145010     | 5.8KM Deickmans Br | Running Ckreek  | -28.25    | 152.89     | 128        | 46                    | 1966-2011        |
| 145011     | Croftby            | Teviot Brook    | -28.15    | 152.57     | 83         | 45                    | 1967-2011        |

| Station ID | Station Name         | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 145012     | The Overflow         | Teviot Brook     | -27.93    | 152.86     | 503        | 43                    | 1967-2009        |
| 145013     | Rudd's Lane          | Christmas Ck     | -28.17    | 152.98     | 157        | 20                    | 1968-1987        |
| 145018     | Up Stream Maroon Dam | Burnett Ck       | -28.22    | 152.61     | 82         | 41                    | 1971-2011        |
| 145020     | Rathdowney           | Logan            | -28.22    | 152.87     | 533        | 38                    | 1974-2011        |
| 145101     | Lumeah Number 2      | Albert           | -28.06    | 153.04     | 169        | 101                   | 1911-2011        |
| 145102     | Bromfleet            | Albert           | -27.91    | 153.11     | 544        | 93                    | 1919-2011        |
| 145103     | Good Dam Site        | Cainbable Ck     | -28.09    | 153.08     | 42         | 49                    | 1963-2011        |
| 145104     | 32.2KM               | Canungra Ck      | -28.06    | 153.12     | 76         | 22                    | 1966-1987        |
| 145107     | Main Rd Br           | Canungra Ck      | -28.00    | 153.16     | 101        | 38                    | 1974-2011        |
| 146002     | Glenhurst            | Nerang           | -28.00    | 153.31     | 241        | 92                    | 1920-2011        |
| 146003     | Camberra Number 2    | Currumbin Ck     | -28.20    | 153.41     | 24         | 55                    | 1928-1982        |
| 146004     | Neranwood            | Little Nerang Ck | -28.13    | 153.29     | 40         | 35                    | 1927-1961        |
| 146005     | Chippendale          | Tallebudgera Ck  | -28.16    | 153.40     | 55         | 27                    | 1927-1953        |
| 146007     | Pump House           | Tallebudgera Ck  | -28.15    | 153.40     | 57         | 27                    | 1936-1962        |
| 146010     | Army Camp            | Coomera          | -28.03    | 153.19     | 88         | 49                    | 1963-2011        |
| 146011     |                      | Nerangwhipbird   | -28.09    | 153.26     | 122        | 20                    | 1966-1985        |
| 146012     | Nicolls Br           | Currumbin Ck     | -28.18    | 153.42     | 30         | 41                    | 1971-2011        |
| 146014     | Beechmont            | Back Ck          | -28.12    | 153.19     | 7          | 40                    | 1972-2011        |
| 146020     | Springbrook Rd       | Mudgeeraba Ck    | -28.09    | 153.35     | 36         | 23                    | 1990-2012        |
| 146095     | Tallebudgera Ck Rd   | Tallebudgera Ck  | -28.15    | 153.40     | 56         | 41                    | 1971-2011        |
| 416303     | Clearview            | Pike Ck          | -28.81    | 151.52     | 950        | 48                    | 1935-1987        |
| 416305     | Beebo                | Brush Ck         | -28.69    | 150.98     | 335        | 43                    | 1969-2011        |
| 416312     | Texas                | Oaky Ck          | -28.81    | 151.15     | 422        | 42                    | 1970-2011        |
| 416410     | Barongarook          | Macintyre Brook  | -28.44    | 151.46     | 465        | 34                    | 1968-2011        |

| Station ID | Station Name   | River Name      | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------|-----------------|-----------|------------|------------|-----------------------|------------------|
| 422210     | Tabers         | Bungil Ck       | -26.41    | 148.78     | 710        | 45                    | 1967-2011        |
| 422302     | Killarney      | Spring Ck       | -28.35    | 152.34     | 21         | 46                    | 1910-1955        |
| 422303     | Killarney      | Spring Ck South | -28.36    | 152.34     | 10         | 46                    | 1910-1955        |
| 422304     | Elbow Valley   | Condamine       | -28.37    | 152.16     | 275        | 57                    | 1916-1972        |
| 422305     | Gillespies     | Emu Ck          | -28.22    | 152.28     | 98         | 22                    | 1924-1945        |
| 422306     | Swanfels       | Swan Ck         | -28.16    | 152.28     | 83         | 92                    | 1920-2011        |
| 422307     | Kings Ck       | Kings Ck        | -27.90    | 151.91     | 334        | 43                    | 1921-1966        |
| 422313     | Emu Vale       | Emu Ck          | -28.23    | 152.23     | 148        | 64                    | 1948-2011        |
| 422317     | Rocky Pond     | Glengallan Ck   | -28.13    | 151.92     | 520        | 38                    | 1954-1991        |
| 422319     | Allora         | Dalrymple Ck    | -28.04    | 152.01     | 246        | 43                    | 1969-2011        |
| 422321     | Killarney      | Spring Ck       | -28.35    | 152.33     | 35         | 52                    | 1960-2011        |
| 422326     | Cranley        | Gowrie Ck       | -27.52    | 151.94     | 47         | 42                    | 1970-2011        |
| 422334     | Aides Br       | Kings Ck        | -27.93    | 151.86     | 516        | 42                    | 1970-2011        |
| 422338     | Leyburn        | Canal Ck        | -28.03    | 151.59     | 395        | 37                    | 1975-2011        |
| 422341     | Brosnans Barn  | Condamine       | -28.33    | 152.31     | 92         | 35                    | 1977-2011        |
| 422394     | Elbow Valley   | Condamine       | -28.37    | 152.14     | 325        | 39                    | 1973-2011        |
| 915011     | Mt Emu Plains  | Porcupine Ck    | -20.18    | 144.52     | 540        | 40                    | 1972-2011        |
| 917104     | Roseglen       | Etheridge       | -18.31    | 143.58     | 867        | 45                    | 1967-2011        |
| 917107     | Mount Surprise | Elizabeth Ck    | -18.13    | 144.31     | 651        | 43                    | 1969-2011        |
| 919005     | Fonthill       | Rifle Ck        | -16.68    | 145.23     | 366        | 43                    | 1969-2011        |
| 919013     | Mulligan HWY   | McLeod          | -16.50    | 145.00     | 532        | 39                    | 1973-2011        |
| 919201     | Goldfields     | Palmer          | -16.11    | 144.78     | 533        | 44                    | 1968-2011        |
| 919305     | Nullinga       | Walsh           | -17.18    | 145.30     | 326        | 36                    | 1957-1992        |
| 922101     | Racecourse     | Coen            | -13.96    | 143.17     | 172        | 44                    | 1968-2011        |

| Station ID | Station Name | River Name | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|--------------|------------|-----------|------------|------------|-----------------------|------------------|
| 926002     | Dougs Pad    | Dulhunty   | -11.83    | 142.42     | 332        | 41                    | 1971-2011        |

**Table A6 Selected catchments from Western Australia** 

| Station ID | Station Name           | River Name          | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|------------------------|---------------------|-----------|------------|------------|-----------------------|------------------|
| 602005     | Anderson Farm          | Chelgiup Ck         | -34.89    | 118.01     | 48         | 34                    | 1977 - 2010      |
| 602199     | Black Cat              | Goodga              | -34.95    | 118.08     | 49.2       | 46                    | 1964 - 2009      |
| 603003     | Kompup                 | Denmark             | -34.7     | 117.21     | 241.9      | 36                    | 1974 - 2009      |
| 603005     | Beigpiegup             | Mitchell            | -34.83    | 117.39     | 51.4       | 26                    | 1986 - 2010      |
| 603008     | Pardelup Prison Farm   | Upper Hay Trib      | -34.63    | 117.38     | 1.3        | 22                    | 1989 - 2010      |
| 603013     | Eden Rd                | Cuppup              | -35       | 117.49     | 61.1       | 23                    | 1989 - 2011      |
| 603190     | Woonanup               | Yate Flat Ck        | -34.7     | 117.29     | 56.3       | 49                    | 1963 - 2011      |
| 606001     | Teds Pool              | Deep                | -34.77    | 116.62     | 467.8      | 37                    | 1975 - 2011      |
| 606002     | Wattle Block           | Weld                | -34.69    | 116.52     | 24.2       | 28                    | 1982 - 2009      |
| 606185     | Dog Pool               | Shannon             | -34.77    | 116.38     | 407.6      | 35                    | 1964 - 1998      |
| 606218     | Baldania Ck Conflu     | Gardner             | -34.75    | 116.19     | 392.4      | 33                    | 1966 - 1998      |
| 607004     | Quabicup Hill          | Perup               | -34.33    | 116.46     | 666.7      | 38                    | 1974 - 2011      |
| 607005     | North Catch. B         | Yerraminnup Ck      | -34.14    | 116.32     | 2.4        | 23                    | 1975 - 1997      |
| 607006     | South Catch.B          | Yerraminnup Ck      | -34.15    | 116.34     | 2          | 23                    | 1975 - 1997      |
| 607007     | Bullilup               | Tone                | -34.25    | 116.68     | 983.1      | 34                    | 1978 - 2011      |
| 607009     | Pemberton Weir         | Lefroy Brook        | -34.44    | 116.02     | 253.6      | 30                    | 1952 - 1981      |
| 607010     | March Rd Catch.E       | Six Mile Brook Trib | -34.48    | 116.33     | 2.9        | 24                    | 1976 - 1999      |
| 607011     | April Rd North Catch.F | Quininup Brook Trib | -34.5     | 116.35     | 2.5        | 23                    | 1976 - 1998      |
| 607012     | April Rd South Catch.G | Quininup Brook Trib | -34.51    | 116.35     | 1.6        | 24                    | 1976 - 1999      |
| 607013     | Rainbow Trail          | Lefroy Brook        | -34.43    | 116.02     | 249.4      | 33                    | 1979 - 2011      |
| 607014     | Netic Rd               | Four Mile Brook     | -34.3     | 116        | 13.1       | 20                    | 1979 - 1998      |
| 607144     | Quintarrup             | Wilgarup            | -34.35    | 116.35     | 460.5      | 51                    | 1961 - 2011      |
| 607155     | Malimup Track          | Dombakup Brook      | -34.58    | 115.97     | 118.5      | 39                    | 1961 - 1999      |

| Station ID | Station Name          | River Name          | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-----------------------|---------------------|-----------|------------|------------|-----------------------|------------------|
| 607600     | Manjimup Research Stn | Smith Brook Trib    | -34.37    | 116.21     | 0.5        | 42                    | 1970 - 2011      |
| 608001     | Upper Iffley          | Barlee Brook        | -34.21    | 115.77     | 159.1      | 28                    | 1972 - 1999      |
| 608002     | Staircase Rd          | Carey Brook         | -34.39    | 115.84     | 30.3       | 37                    | 1975 - 2011      |
| 608004     | Lewin North Catch C   | Easter Brook Trib   | -34.21    | 115.86     | 1.2        | 22                    | 1976 - 1997      |
| 608006     | Lease Rd              | Carey Brook         | -34.33    | 115.91     | 2.4        | 24                    | 1976 - 1999      |
| 608151     | Strickland            | Donnelly            | -34.33    | 115.78     | 782.1      | 60                    | 1952 - 2011      |
| 608171     | Boat Landing Rd       | Fly Brook           | -34.45    | 115.8      | 62.9       | 50                    | 1962 - 2011      |
| 609002     | Brennans Ford         | Scott               | -34.28    | 115.3      | 627.7      | 43                    | 1969 - 2011      |
| 609003     | Cambray               | St Paul Brook       | -33.9     | 115.66     | 161.6      | 26                    | 1974 - 1999      |
| 609004     | Dido Rd               | St Paul Brook       | -33.83    | 115.58     | 26         | 26                    | 1974 - 1999      |
| 609005     | Mandelup Pool         | Balgarup            | -33.91    | 117.14     | 82.4       | 37                    | 1975 - 2011      |
| 609006     | Balgarup              | Weenup Ck           | -33.95    | 117.21     | 13.3       | 25                    | 1975 - 1999      |
| 609008     | Millbrook             | Apostle Brook       | -33.8     | 115.63     | 27.6       | 24                    | 1976 - 1999      |
| 609011     | Padbury Rd            | Balingup Brook Trib | -33.81    | 116        | 1.7        | 21                    | 1978 - 1998      |
| 609016     | Hester Hill           | Hester Brook        | -33.92    | 116.1      | 176.6      | 23                    | 1983 - 2005      |
| 609017     | Brooklands            | Balingup Brook      | -33.8     | 115.95     | 548.9      | 29                    | 1983 - 2011      |
| 609018     | Barrabup Pool         | St John Brook       | -33.94    | 115.69     | 552.3      | 29                    | 1983 - 2011      |
| 610001     | Willmots Farm         | Margaret            | -33.94    | 115.05     | 443        | 42                    | 1970 - 2011      |
| 610005     | Happy Valley          | Ludlow              | -33.68    | 115.62     | 109.2      | 26                    | 1973 - 1998      |
| 610006     | Woodlands             | Wilyabrup Brook     | -33.8     | 115.02     | 82.3       | 39                    | 1973 - 2011      |
| 610007     | Claymore              | Ludlow              | -33.74    | 115.7      | 9.5        | 22                    | 1977 - 1998      |
| 610008     | Whicher Range         | Margaret R North    | -33.81    | 115.44     | 15.5       | 23                    | 1977 - 1999      |
| 611004     | Boyanup Bridge        | Preston             | -33.48    | 115.73     | 808.4      | 32                    | 1980 - 2011      |
| 611111     | Woodperry Homestead   | Thomson Brook       | -33.63    | 115.95     | 102.1      | 54                    | 1958 - 2011      |
| 611221     | Pesconeris Farm       | Coolingutup Brook   | -33.53    | 115.87     | 3.9        | 43                    | 1966 - 2008      |

| Station ID | Station Name       | River Name           | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|--------------------|----------------------|-----------|------------|------------|-----------------------|------------------|
| 612004     | Worsley            | Hamilton             | -33.31    | 116.05     | 32.3       | 40                    | 1972 - 2011      |
| 612005     | Mast View          | Stones Brook         | -33.37    | 115.94     | 12.9       | 27                    | 1972 - 1998      |
| 612007     | Dons Catchment     | Bingham R Trib       | -33.28    | 116.47     | 3.5        | 38                    | 1974 - 2011      |
| 612009     | Lemon Catchment    | Pollard Brook Trib   | -33.3     | 116.41     | 3.5        | 33                    | 1974 - 2006      |
| 612010     | Wights Catchment   | Salmon Brook Trib    | -33.42    | 115.98     | 0.9        | 34                    | 1974 - 2007      |
| 612011     | Salmon Catchment   | Salmon Brook         | -33.42    | 115.98     | 0.8        | 25                    | 1974 - 1998      |
| 612012     | Falcon Rd          | Falcon Brook         | -33.41    | 115.97     | 5.4        | 23                    | 1974 - 1996      |
| 612014     | Palmer             | Bingham              | -33.28    | 116.28     | 366.1      | 37                    | 1975 - 2011      |
| 612016     | Maxon Farm         | Batalling Ck         | -33.32    | 116.57     | 16.8       | 33                    | 1976 - 2008      |
| 612019     | Duces Farm         | Bussell Brook        | -33.46    | 116.02     | 37.5       | 22                    | 1977 - 1998      |
| 612021     | Stenwood           | Bingham              | -33.19    | 116.47     | 48.4       | 21                    | 1978 - 1998      |
| 612022     | Sandalwood         | Brunswick            | -33.22    | 115.92     | 116.2      | 32                    | 1980 - 2011      |
| 612025     | James Well         | Camballan Ck         | -33.46    | 116.43     | 170        | 30                    | 1982 - 2011      |
| 612034     | South Branch       | Collie               | -33.39    | 116.16     | 661.6      | 60                    | 1952 - 2011      |
| 613002     | Dingo Rd           | Harvey               | -33.09    | 116.04     | 147.2      | 42                    | 1970 - 2011      |
| 613007     | Waterous           | Bancell Brook        | -32.95    | 115.95     | 13.6       | 37                    | 1975 - 2011      |
| 613018     | Urquharts          | McKnoes Brook        | -32.89    | 115.97     | 24.4       | 22                    | 1980 - 2001      |
| 613020     | Mt William         | Samson Brook         | -32.93    | 116.03     | 4          | 21                    | 1981 - 2001      |
| 613146     | Hillview Farm      | Clarke Brook         | -33       | 115.92     | 17.1       | 50                    | 1962 - 2011      |
| 614003     | Brookdale Siding   | Marrinup Brook       | -32.7     | 115.97     | 45.6       | 40                    | 1972 - 2011      |
| 614005     | Kentish Farm       | Dirk Brook           | -32.42    | 116        | 35.1       | 30                    | 1971 - 2000      |
| 614007     | Del Park           | South Dandalup Trib  | -32.67    | 116.04     | 1.3        | 37                    | 1975 - 2011      |
| 614017     | Warren Catchment   | Little Dandalup Trib | -32.59    | 116.03     | 0.9        | 35                    | 1977 - 2011      |
| 614018     | Bennetts Catchment | Little Dandalup Trib | -32.6     | 116.03     | 0.9        | 35                    | 1977 - 2011      |
| 614019     | Hansens Catchment  | Little Dandalup Trib | -32.59    | 116.05     | 0.7        | 22                    | 1977 - 1998      |

| Station ID | Station Name         | River Name                | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|----------------------|---------------------------|-----------|------------|------------|-----------------------|------------------|
| 614020     | Higgens Catchment    | Little Dandalup Trib      | -32.58    | 116.09     | 0.6        | 21                    | 1978 - 1998      |
| 614021     | Lewis Catchment      | North Dandalup Trib       | -32.57    | 116.06     | 2          | 35                    | 1977 - 2011      |
| 614024     | Jones Catchment      | North Dandalup Trib       | -32.55    | 116.09     | 0.7        | 21                    | 1978 - 1998      |
| 614025     | Umbucks Catchment    | Marrinup Brook Trib       | -32.7     | 116        | 3.3        | 20                    | 1979 - 1998      |
| 614028     | Hopelands Rd         | Dirk Brook                | -32.43    | 115.91     | 63.8       | 22                    | 1979 - 2000      |
| 614037     | O'Neil Rd            | Big Brook                 | -32.51    | 116.19     | 149.4      | 29                    | 1983 - 2011      |
| 614047     | Murray Valley Pintn  | Davis Brook               | -32.76    | 116.1      | 65.7       | 46                    | 1956 - 2001      |
| 614060     | Gordon Catchment     | South Dandalup R Trib     | -32.63    | 116.26     | 2.1        | 24                    | 1988 - 2011      |
| 614062     | Bates Catchment      | Little Dandalup Trib      | -32.58    | 116.03     | 2.2        | 23                    | 1989 – 2011      |
| 614073     | Mundlimup            | Gooralong Brook           | -32.35    | 116.04     | 51.5       | 47                    | 1952 - 1998      |
| 616007     | Byfield Rd           | Rushy Ck (Manns<br>Gully) | -31.96    | 116.21     | 39.2       | 30                    | 1969 - 1998      |
| 616009     | Slavery Lane         | Pickering Brook           | -31.98    | 116.19     | 29.4       | 27                    | 1972 - 1998      |
| 616010     | Hairpin Bend Rd      | Little Darkin             | -32.03    | 116.24     | 37.8       | 27                    | 1972 - 1998      |
| 616012     | Trewd Rd             | Helena Brook              | -31.92    | 116.28     | 26.7       | 27                    | 1972 - 1998      |
| 616014     | Furfaros Orchard     | Piesse Brook              | -31.95    | 116.08     | 55.2       | 24                    | 1975- 1998       |
| 616022     | Ceriani Farm         | More Seldom Seen Ck       | -32.25    | 116.08     | 3.4        | 42                    | 1970 - 2011      |
| 616041     | Vardi Rd             | Wungong Brook             | -32.25    | 116.11     | 80.8       | 30                    | 1982 - 2011      |
| 616189     | Railway Parade       | Ellen Brook               | -31.75    | 116.02     | 581.4      | 47                    | 1965 - 2011      |
| 602015     | Warren Rd            | Mill Brook                | -34.93    | 117.88     | 177.8      | 21                    | 1992-2012        |
| 606195     | Ordnance Rd Crossing | Weld                      | -34.81    | 116.58     | 250.2      | 49                    | 1964-2012        |
| 607024     | Stretch's Tree Farm  | Chowerup Brook            | -34.13    | 116.74     | 82.7       | 25                    | 1988-2012        |
| 609001     | Crouch Rd            | Rosa Brook                | -34       | 115.47     | 89.2       | 44                    | 1969-2012        |
| 610009     | Ludlow               | Ludlow                    | -33.6     | 115.49     | 207.8      | 22                    | 1991-2012        |
| 611007     | South Western Hwy    | Ferguson                  | -33.35    | 115.7      | 144.9      | 22                    | 1991-2012        |
| 612032     | Cross Farm           | Brunswick                 | -33.25    | 115.75     | 509.4      | 23                    | 1990-2012        |

| Station ID | Station Name    | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|-----------------|------------------|-----------|------------|------------|-----------------------|------------------|
| 614064     | Cameron West    | Big Brook Trib   | -32.59    | 116.24     | 2.1        | 22                    | 1991-2012        |
| 614066     | Cameron Central | Big Brook Trib   | -32.59    | 116.25     | 4.9        | 21                    | 1992-2012        |
| 616001     | Karls Ranch     | Wooroloo Brook   | -31.73    | 116.12     | 514.7      | 48                    | 1965-2012        |
| 616021     | Travellers Arms | Seldom Seen Ck   | -32.25    | 116.09     | 7.2        | 47                    | 1966-2012        |
| 616178     | National Park   | Jane Brook       | -31.88    | 116.09     | 73.4       | 50                    | 1963-2012        |
| 802002     | Mt Pierre Gorge | Mount Pierre Ck  | -18.62    | 126.09     | 318.4      | 28                    | 1971 - 1998      |
| 803001     | Mt Joseph       | Lennard          | -17.37    | 125.11     | 1049.8     | 32                    | 1967 - 2011      |
| 803002     | Mt Herbert      | Lennard          | -17.17    | 125.23     | 441.4      | 31                    | 1968 - 1998      |
| 803003     | Dromedary       | Fletcher         | -17.12    | 124.99     | 67         | 31                    | 1968 - 1998      |
| 806003     | Crystal Head    | Crystal Ck       | -14.49    | 125.8      | 68.2       | 30                    | 1969-1998        |
| 809310     | Bedford Downs   | Ord              | -17.43    | 127.6      | 552.2      | 29                    | 1970 - 1998      |
| 809312     | Frog Hollow     | Fletcher Ck Trib | -17.28    | 128.06     | 30.6       | 44                    | 1968-2011        |
| 809314     | Cockburn North  | King R           | -15.7     | 128.12     | 850.3      | 26                    | 1986 - 2011      |

**Table A7 Selected catchments for the Northern Territory** 

| Station ID | Station Name           | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|------------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| G8100189   | Victoria HWY           | Moriarty Ck      | -16.065   | 129.1933   | 88         | 19                    | 1967 - 1985      |
| G8110004   | Victoria HWY           | East Baines      | -15.7667  | 130        | 2342       | 46                    | 1963 - 2008      |
| G8110014   | U/S Fig Tree Yard      | Sullivan's Ck    | -15.565   | 131.285    | 143        | 23                    | 1970 - 1992      |
| G8110110   | V.R.D. Rd Crossing     | Surprise Ck      | -16.0783  | 130.8967   | 361        | 44                    | 1960 - 2003      |
| G8110263   | 1.5 Miles D/S Bore     | Bullock Ck       | -17.1317  | 131.4517   | 474        | 22                    | 1971 - 1992      |
| G8140008   | Old Railway Br         | Fergusson        | -14.07    | 131.9767   | 1490       | 54                    | 1958 - 2011      |
| G8140061   | Blue Hole              | Copperfield Ck   | -13.9933  | 131.9033   | 306        | 20                    | 1958 - 1977      |
| G8140063   | D/S Old Douglas H/S    | Douglas          | -13.7967  | 131.3383   | 842        | 54                    | 1958 - 2011      |
| G8140086   | D/S Stuart HWY         | King             | -14.6283  | 132.5883   | 484        | 23                    | 1964 - 1986      |
| G8140152   | Dam Site               | Edith            | -14.1683  | 132.075    | 590        | 50                    | 1962 - 2008      |
| G8140158   | Dam Site               | McAdden Ck       | -14.3483  | 132.3383   | 133        | 48                    | 1964 - 2011      |
| G8140159   | Waterfall View         | Seventeen Mile C | -14.2833  | 132.4      | 619        | 46                    | 1963 - 2008      |
| G8140161   | Tipperary              | Green Ant Ck     | -13.7383  | 131.1033   | 435        | 46                    | 1966 - 2011      |
| G8140166   | Gorge                  | Fish             | -14.2367  | 130.9      | 992        | 23                    | 1963 - 1985      |
| G8150010   | Batchelor Damsite      | Finniss          | -13.025   | 130.9533   | 360        | 37                    | 1975 - 2011      |
| G8150018   | Stuart HWY             | Elizabeth        | -12.605   | 131.0733   | 101        | 57                    | 1955 - 2011      |
| G8150096   | Cox Peninsula          | Carawarra Ck     | -12.5317  | 130.6683   | 38.5       | 45                    | 1966 - 2011      |
| G8150097   | Rum Jungle +Ansto Eb4  | East Finniss     | -12.965   | 130.9683   | 71         | 44                    | 1966 - 2009      |
| G8150098   | Tumbling Waters        | Blackmore        | -12.77    | 130.9483   | 174        | 51                    | 1960 - 2010      |
| G8150127   | D/S McMillans Rd       | Rapid Ck         | -12.3933  | 130.8717   | 18.3       | 47                    | 1964 - 2011      |
| G8150151   | U/S Darwin R Dam       | Celia Ck         | -12.91    | 131.0533   | 52         | 39                    | 1972 - 2010      |
| G8150180   | Gitchams               | Finniss          | -12.97    | 130.7617   | 1048       | 47                    | 1961 - 2007      |
| G8150200   | Rum Jungle Rd Crossing | East Finniss     | -12.99    | 131        | 52         | 26                    | 1982 - 2007      |

# $\mathbf{NT}$

| Station ID | Station Name              | River Name       | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|---------------------------|------------------|-----------|------------|------------|-----------------------|------------------|
| G8150233   | McArthur Park             | Palmerston Catch | -12.4883  | 130.975    | 1.4        | 20                    | 1984 - 2003      |
| G8160235   | Damsite                   | Takamprimili     | -11.7817  | 130.775    | 166        | 20                    | 1967 - 1986      |
| G8170002   | Railway Br                | Adelaide         | -13.2417  | 131.1083   | 632        | 53                    | 1954 - 2007      |
| G8170020   | Dirty Lagoon              | Adelaide         | -12.91    | 131.235    | 4325       | 49                    | 1963 - 2011      |
| G8170062   | Eighty-Seven Mile Jump Up | Burrell Ck       | -13.415   | 131.1517   | 36.8       | 28                    | 1958 - 1985      |
| G8170066   | Stuart HWY                | Coomalie Ck      | -13.0133  | 131.1233   | 82         | 52                    | 1958 - 2010      |
| G8170075   | U/S Manton Dam            | Manton           | -12.8783  | 131.13     | 28         | 46                    | 1965 - 2010      |
| G8170084   | Tortilla Flats            | Adelaide         | -13.09    | 131.235    | 1246       | 52                    | 1960 - 2011      |
| G8170085   | Stuart HWY                | Acacia Ck        | -12.7833  | 131.12     | 11         | 48                    | 1964 - 2011      |
| G8180026   | El Sherana Rd Crossing    | Mary             | -13.6017  | 132.22     | 466        | 50                    | 1962 - 2011      |
| G8180069   | near Burrundie            | McKinlay         | -13.5317  | 131.7183   | 352        | 51                    | 1959 - 2009      |
| G8180252   | D/S El Sherana Rd         | Harriet Ck       | -13.6767  | 131.9867   | 122        | 46                    | 1965 - 2010      |
| G8190001   | U/S Arnhem HWY            | West Alligator   | -12.7917  | 132.175    | 316        | 34                    | 1977 - 2010      |
| G8200045   | El Sherana (C)            | South Alligator  | -13.5233  | 132.52     | 1300       | 52                    | 1958 - 2009      |
| G8200046   | Coljon (C Part)           | Deaf Adder Ck    | -13.0983  | 133.0183   | 513        | 20                    | 1972 - 1991      |
| G8200049   | near Nourlangie Rock      | Koongarra Ck     | -12.8767  | 132.83     | 15.4       | 28                    | 1978 - 2005      |
| G8200112   | Kakadu HWY                | Nourlangie Ck    | -12.8183  | 132.7417   | 2220       | 45                    | 1962 - 2006      |
| G8210001   | Nimbuwah (C)              | Cooper Ck        | -12.1867  | 133.3483   | 645        | 22                    | 1971 - 1992      |
| G8210009   | D/S Jabiru                | Magela Ck        | -12.6417  | 132.9      | 605        | 40                    | 1972 - 2011      |
| G8210012   | George Town Crossing      | Gulungul Ck (Bog | -12.69    | 132.8933   | 47         | 21                    | 1972 - 1992      |
| G8210016   | Mt. Borradaile            | Cooper Ck        | -12.08    | 132.9733   | 1650       | 27                    | 1980 - 2006      |
| G8210017   | Jabiluka Billabong        | Magela Ck Plains | -12.4617  | 132.875    | 1134       | 33                    | 1974 - 2006      |
| G8210019   | Outflow Main Channel      | Magela Plains    | -12.2967  | 132.8217   | 1435       | 29                    | 1976 - 2004      |
| G8210024   | D/S Nabarlek              | Cooper Ck        | -12.2933  | 133.34     | 225        | 28                    | 1979 - 2006      |
| G8260053   | above Tidal Reach         | Lower Latram     | -12.3083  | 136.7783   | 85         | 21                    | 1964 - 1984      |
| G9030089   | Rd Br                     | Waterhouse       | -14.5617  | 133.1067   | 3110       | 39                    | 1973 - 2011      |

| Station ID | Station Name | River Name  | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record |
|------------|--------------|-------------|-----------|------------|------------|-----------------------|------------------|
| G9030090   | Wattle Hill  | Chambers Ck | -14.5     | 133.3633   | 89         | 19                    | 1974 - 1992      |
| G8170020   | Dirty Lagoon | Adelaide    | -12.91    | 131.235    | 4325       | 49                    | 1963 - 2011      |

Table A8 Selected catchments for the semi-arid and arid areas

| Station ID | Station Name                  | River Name    | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of<br>Record | Average Annual<br>Rainfall (mm) |
|------------|-------------------------------|---------------|-----------|------------|------------|-----------------------|---------------------|---------------------------------|
| 001204A    | Camooweal                     | Georgina      | -19.93    | 138.11     | 2875       | 19                    | 1971 - 1988         | 393.47                          |
| G0010005   | Soudan Homestead              | Ranken        | -20.05    | 137.02     | 4360       | 45                    | 1965 - 2009         | 381.07                          |
| A0040502   | Terrapinna Springs            | Hamilton Ck   | -29.92    | 139.67     | 326        | 10                    | 1984 - 1990         | 209.43                          |
| G0060003   | Soil Erosion Project          | Gillen Ck     | -23.70    | 133.82     | 3.8        | 27                    | 1967 - 1993         | 295.00                          |
| G0060008   | South Rd Crossing             | Roe Ck        | -23.82    | 133.84     | 560        | 41                    | 1967 - 2008         | 290.56                          |
| G0060009   | Anzac Oval                    | Todd          | -23.70    | 133.89     | 443        | 35                    | 1973 - 2007         | 320.58                          |
| G0060012   | Bond Springs (CSIRO<br>Site 6 | Stn Ck        | -23.53    | 133.92     | 34         | 10                    | 1974 - 1982         | 306.49                          |
| G0060015   | Bond Springs                  | Stn Ck        | -23.53    | 133.92     | 34         | 18                    | 1979 - 1995         | 326.33                          |
| G0060017   | U/S                           | Emily Ck      | -23.69    | 133.98     | 60         | 28                    | 1981 - 2008         | 318.05                          |
| G0060046   | Wigley Gorge                  | Todd          | -23.64    | 133.88     | 360        | 46                    | 1963 - 2001         | 318.60                          |
| G0060047   | Big Dipper                    | Charles       | -23.65    | 133.86     | 52         | 14                    | 1973 - 1986         | 304.96                          |
| G0060126   | Heavitree Gap                 | Todd          | -23.73    | 133.87     | 502        | 37                    | 1973 - 2007         | 329.88                          |
| G0290240   | Old Telegraph Stn             | Tennant Ck    | -19.56    | 134.23     | 72.3       | 37                    | 1973 - 2007         | 391.42                          |
| G0290242   | Stuart HWY                    | Attack Ck     | -19.01    | 134.15     | 259        | 22                    | 1967 - 1986         | 414.48                          |
| 407236B    | Mitiamo                       | Mount Hope Ck | -36.17    | 144.29     | 1629       | 41                    | 1968 - 1996         | 425.60                          |
| 409056     | Aratula Rd                    | Tuppal Ck     | -35.63    | 145.06     | 300        | 18                    | 1986 - 2000         | 412.38                          |
| 415257A    | Donald                        | Richardson    | -36.43    | 142.98     | 1831       | 40                    | 1989 - 1999         | 433.74                          |
| 422211A    | Woolerbilla-Hebel Rd          | Briarie Ck    | -28.91    | 147.68     | 410        | 32                    | 1968 - 2004         | 436.01                          |
| 424202A    | Yarronvale                    | Paroo         | -26.79    | 145.34     | 1890       | 20                    | 1968 - 1987         | 397.53                          |
| 425016     | Cobar                         | Box Ck        | -31.46    | 145.81     | 15         | 35                    | 1974 - 2008         | 407.93                          |
| 425028     | Quondong                      | Wireyards Ck  | -32.13    | 141.85     | 50         | 16                    | 1983 - 1999         | 243.02                          |
| 601005     | Cascades                      | Young         | -33.54    | 120.97     | 88.9       | 25                    | 1974 - 1998         | 442.92                          |

#### Arid

| Station ID | Station Name      | River Name         | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record | Average Annual<br>Rainfall (mm) |
|------------|-------------------|--------------------|-----------|------------|------------|-----------------------|------------------|---------------------------------|
| 602600     | Hinkleys Farm     | Jackitup Ck        | -33.9     | 118.12     | 0.5        | 27                    | 1972 - 1998      | 367.33                          |
| 615011     | Mooranoppin Rock  | Mooranoppin Ck     | -31.6     | 117.73     | 83.1       | 37                    | 1975 - 2011      | 313.95                          |
| 615222     | Brookton Highway  | Dale R South       | -32.4     | 116.83     | 286        | 32                    | 1967 - 1998      | 481.43                          |
| 615600     | North             | Kunjin             | -32.32    | 117.73     | 0.2        | 30                    | 1969 - 1998      | 364.77                          |
| 615604     | Homestead         | North Nungarin     | -31.16    | 118.15     | 0.2        | 26                    | 1972 - 1997      | 317.98                          |
| 615605     | Jollys Farm       | South Nungarin     | -31.18    | 118.15     | 0.2        | 27                    | 1972 - 1998      | 305.64                          |
| 912115A    | Morestone         | O Shannassy        | -19.60    | 138.38     | 425        | 18                    | 1971 - 1988      | 431.19                          |
| 913005A    | Damsite           | Paroo Ck           | -20.34    | 139.52     | 305        | 19                    | 1969 - 1987      | 450.59                          |
| 913009A    | Flinders HWY      | Gorge Ck           | -20.69    | 139.65     | 248        | 17                    | 1971 - 1987      | 444.20                          |
| 915006A    | Revenue Downs     | Mountain Ck        | -20.64    | 143.22     | 203        | 17                    | 1972 - 1988      | 454.65                          |
| 915203A    | Cloncurry         | Cloncurry          | -20.67    | 140.49     | 5975       | 33                    | 1969 - 1997      | 439.12                          |
| 915203B    | Cloncurry         | Cloncurry          | -20.70    | 140.50     | 5859       | 37                    | 1969 - 2006      | 440.80                          |
| 915204A    | Damsite           | Cloncurry          | -21.08    | 140.42     | 4240       | 33                    | 1969 - 1994      | 398.48                          |
| 915205A    | Black Gorge       | Malbon             | -21.06    | 140.08     | 425        | 17                    | 1971 - 1987      | 423.63                          |
| 915209A    | Main Rd           | Corella            | -20.45    | 140.32     | 1587       | 17                    | 1972 - 1987      | 442.72                          |
| 915210A    | Agate Downs       | Cloncurry          | -21.36    | 140.41     | 1089       | 17                    | 1971 - 1987      | 411.71                          |
| 915211A    | Landsborough HWY  | Williams           | -20.87    | 140.83     | 415        | 36                    | 1971 - 2006      | 417.56                          |
| A5090503   | Old Kanyaka Ruins | Kanyaka Creek      | -32.09    | 138.29     | 186.7      | 36                    | 1977 - 2008      | 289.54                          |
| A5100502   | Sugarloaf Hill    | Mernmerna<br>Creek | -31.75    | 138.45     | 346        | 18                    | 1973 - 1989      | 302.34                          |
| A5100507   | Maynards Well     | Windy Ck           | -30.64    | 138.65     | 170        | 15                    | 1974 - 1988      | 288.09                          |
| A5100510   | Leigh Creek       | Windy Ck           | -30.61    | 138.39     | 448        | 18                    | 1986 - 2006      | 226.58                          |
| A5100511   | Leigh Creek       | Emu Ck             | -30.62    | 138.39     | 224        | 18                    | 1986 - 2006      | 226.58                          |
| 701003     | Nokanena Brook    | -28.37             | 114.52    | 235.2      | 235.2      | 30                    | 1972 - 2001      | 32.60                           |
| 701005     | Robb Crossing     | Arrowsmith         | -29.62    | 115.29     | 809.8      | 29                    | 1972 - 2000      | 78.90                           |
| 701006     | Buller            | Buller             | -28.64    | 114.62     | 33.9       | 26                    | 1975 - 2000      | 10.80                           |

## Arid

| Station ID | Station Name                | River Name              | Lat ( °S) | Long ( °E) | Area (km²) | Record Length (years) | Period of Record | Average Annual<br>Rainfall (mm) |
|------------|-----------------------------|-------------------------|-----------|------------|------------|-----------------------|------------------|---------------------------------|
| 701601     | Wearbe                      | Nokanena Brook<br>Catch | -28.33    | 114.62     | 0.1        | 28                    | 1971 - 1998      | 0.05                            |
| 706207     | Mt Samson                   | Hardey                  | -22.67    | 117.61     | 250.3      | 34                    | 1967 - 2000      | 37.80                           |
| 707001     | Palra Springs               | Robe                    | -22.06    | 117.06     | 174.3      | 31                    | 1969 - 1999      | 30.60                           |
| 708009     | Fish Pool                   | Kanjenjie Ck<br>Trib.   | -21.66    | 117.33     | 41.1       | 28                    | 1975 - 2002      | 11.50                           |
| 708227     | Recorder Pool               | Portland                | -21.45    | 116.88     | 553.4      | 34                    | 1967 - 2000      | 48.60                           |
| 709006     | Blue Dog Pool               | Tanberry Ck             | -21.59    | 117.55     | 128.1      | 22                    | 1975 - 1996      | 19.60                           |
| 709007     | Marmurrina Pool U-<br>South | Harding                 | -21.3     | 117.07     | 49.4       | 24                    | 1975 - 1998      | 14.60                           |
| 709010     | Pincunah                    | Turner                  | -21.23    | 118.83     | 885        | 24                    | 1985 - 2008      | 56.50                           |

Table A9 Summary statistics of the climatic and catchment characteristics for Region 1 (N = 558)

| Variables                           | Min    | Max     | Average | Median | 10 <sup>th</sup> percentile | 25 <sup>th</sup> percentile | 75 <sup>th</sup> percentile | 90 <sup>th</sup> percentile |
|-------------------------------------|--------|---------|---------|--------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| area (km²)                          | 0.90   | 1036.00 | 294.95  | 213.50 | 34.00                       | 90.25                       | 447.00                      | 684.60                      |
| l <sub>6,50</sub> (mm/h)            | 3.95   | 22.40   | 8.69    | 7.47   | 5.05                        | 5.85                        | 10.40                       | 14.55                       |
| I <sub>6,2</sub> (mm/h)             | 8.45   | 55.30   | 19.95   | 16.62  | 11.18                       | 12.33                       | 24.74                       | 35.54                       |
| MAR (mm)                            | 484.39 | 4546.00 | 1136.15 | 971.00 | 644.74                      | 768.75                      | 1330.50                     | 1772.40                     |
| I <sub>12,50</sub> (mm/h)           | 2.61   | 15.92   | 5.74    | 4.93   | 3.27                        | 3.83                        | 6.74                        | 9.99                        |
| shape factor                        | 0.14   | 1.63    | 0.78    | 0.77   | 0.52                        | 0.64                        | 0.92                        | 1.03                        |
| I <sub>6,2</sub> /I <sub>6,50</sub> | 1.85   | 2.81    | 2.26    | 2.26   | 2.00                        | 2.10                        | 2.41                        | 2.54                        |

Table A10 Summary statistics of the climatic and catchment characteristics for Region 2 (N = 51)

| Variables                   | Min    | Max     | Average | Median  | 10 <sup>th</sup> percentile | 25 <sup>th</sup> percentile | 75 <sup>th</sup> percentile | 90 <sup>th</sup> percentile |
|-----------------------------|--------|---------|---------|---------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| area (km²)                  | 1.30   | 1900.00 | 320.51  | 158.10  | 18.40                       | 44.80                       | 437.90                      | 756.30                      |
| I <sub>6,50</sub> (mm/h)    | 4.08   | 8.42    | 5.96    | 6.00    | 5.08                        | 5.43                        | 6.38                        | 6.95                        |
| I <sub>6,2</sub> (mm/h)     | 7.83   | 17.63   | 11.46   | 11.10   | 9.55                        | 10.34                       | 12.67                       | 13.28                       |
| MAR (mm)                    | 520.20 | 3014.61 | 1364.04 | 1087.31 | 691.19                      | 802.32                      | 1881.90                     | 2479.31                     |
| I <sub>12,50</sub> (mm/h)   | 2.65   | 6.02    | 4.14    | 4.14    | 3.45                        | 3.66                        | 4.52                        | 4.78                        |
| shape factor                | 0.38   | 1.50    | 0.80    | 0.77    | 0.56                        | 0.67                        | 0.91                        | 1.06                        |
| <b>I</b> 6,2/ <b>I</b> 6,50 | 1.67   | 2.26    | 1.93    | 1.93    | 1.77                        | 1.80                        | 2.01                        | 2.12                        |

Table A11 Summary statistics of the climatic and catchment characteristics for Region 3 (N = 28)

| Variables                           | Min    | Max    | Average | Median | 10 <sup>th</sup> percentile | 25 <sup>th</sup> percentile | 75 <sup>th</sup> percentile | 90 <sup>th</sup> percentile |
|-------------------------------------|--------|--------|---------|--------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| area (km²)                          | 0.60   | 708.00 | 161.03  | 62.60  | 6.96                        | 22.00                       | 236.00                      | 410.70                      |
| I <sub>6,50</sub> (mm/h)            | 4.05   | 5.78   | 4.97    | 5.03   | 4.32                        | 4.52                        | 5.28                        | 5.60                        |
| l <sub>6,2</sub> (mm/h)             | 9.93   | 11.85  | 11.20   | 11.33  | 10.56                       | 11.11                       | 11.48                       | 11.60                       |
| MAR (mm)                            | 308.97 | 937.13 | 688.14  | 761.13 | 392.18                      | 535.79                      | 840.38                      | 897.61                      |
| I <sub>12,50</sub> (mm/h)           | 2.53   | 3.94   | 3.26    | 3.31   | 2.74                        | 2.93                        | 3.50                        | 3.72                        |
| shape factor                        | 0.46   | 1.34   | 0.82    | 0.79   | 0.61                        | 0.68                        | 0.94                        | 1.14                        |
| I <sub>6,2</sub> /I <sub>6,50</sub> | 2.04   | 2.53   | 2.27    | 2.23   | 2.07                        | 2.17                        | 2.42                        | 2.50                        |

Table A12 Summary statistics of the climatic and catchment characteristics for Region 4 (N =58)

| Variables                           | Min    | Max     | Average | Median  | 10 <sup>th</sup> percentile | 25 <sup>th</sup> percentile | 75 <sup>th</sup> percentile | 90 <sup>th</sup> percentile |
|-------------------------------------|--------|---------|---------|---------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| area (km²)                          | 1.40   | 4325.00 | 611.19  | 356.00  | 34.94                       | 82.75                       | 792.75                      | 1451.50                     |
| I <sub>6,50</sub> (mm/h)            | 9.37   | 15.43   | 12.82   | 12.77   | 11.62                       | 12.28                       | 13.50                       | 14.20                       |
| l <sub>6,2</sub> (mm/h)             | 19.72  | 33.13   | 25.80   | 25.70   | 23.11                       | 24.02                       | 27.03                       | 29.02                       |
| MAR (mm)                            | 504.52 | 1694.11 | 1260.04 | 1408.09 | 789.82                      | 1029.77                     | 1462.20                     | 1541.77                     |
| I <sub>12,50</sub> (mm/h)           | 5.36   | 9.15    | 7.37    | 7.32    | 6.60                        | 7.00                        | 7.69                        | 8.48                        |
| shape factor                        | 0.38   | 1.15    | 0.72    | 0.73    | 0.50                        | 0.60                        | 0.82                        | 0.98                        |
| I <sub>6,2</sub> /I <sub>6,50</sub> | 0.38   | 1.15    | 0.72    | 0.73    | 0.50                        | 0.60                        | 0.82                        | 0.98                        |

Table A13 Summary statistics of the climatic and catchment characteristics for Region 5 (N = 103)

| Variables                           | Min    | Max     | Average | Median  | 10 <sup>th</sup> percentile | 25 <sup>th</sup> percentile | 75 <sup>th</sup> percentile | 90 <sup>th</sup> percentile |
|-------------------------------------|--------|---------|---------|---------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| area (km²)                          | 0.50   | 983.10  | 139.94  | 45.60   | 1.36                        | 3.70                        | 160.35                      | 501.08                      |
| I <sub>6,50</sub> (mm/h)            | 4.30   | 7.28    | 5.80    | 5.87    | 4.74                        | 4.95                        | 6.40                        | 7.13                        |
| l <sub>6,2</sub> (mm/h)             | 9.68   | 13.82   | 11.91   | 12.18   | 9.97                        | 10.83                       | 13.01                       | 13.31                       |
| MAR (mm)                            | 515.66 | 1274.56 | 989.16  | 1010.64 | 769.84                      | 871.14                      | 1119.15                     | 1188.07                     |
| I <sub>12,50</sub> (mm/h)           | 2.64   | 4.65    | 3.73    | 3.82    | 2.98                        | 3.16                        | 4.19                        | 4.55                        |
| shape factor                        | 0.32   | 1.60    | 0.75    | 0.70    | 0.46                        | 0.57                        | 0.85                        | 1.10                        |
| I <sub>6,2</sub> /I <sub>6,50</sub> | 1.82   | 2.56    | 2.07    | 2.04    | 1.89                        | 1.96                        | 2.14                        | 2.36                        |

Table A14 Summary statistics of the climatic and catchment characteristics for Region 6 (N =11)

| Variables                           | Min    | Max    | Average | Median | 10 <sup>th</sup> percentile | 25 <sup>th</sup> percentile | 75 <sup>th</sup> percentile | 90 <sup>th</sup> percentile |
|-------------------------------------|--------|--------|---------|--------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| area (km²)                          | 0.10   | 885.00 | 287.33  | 174.30 | 33.90                       | 45.25                       | 401.85                      | 809.80                      |
| I <sub>6,50</sub> (mm/h)            | 4.72   | 9.30   | 7.16    | 7.42   | 4.82                        | 5.31                        | 8.96                        | 9.27                        |
| l <sub>6,2</sub> (mm/h)             | 11.28  | 27.40  | 18.92   | 19.08  | 11.65                       | 12.88                       | 24.58                       | 24.97                       |
| MAR (mm)                            | 330.08 | 532.46 | 413.04  | 408.50 | 338.78                      | 387.04                      | 428.29                      | 493.67                      |
| I <sub>12,50</sub> (mm/h)           | 2.90   | 5.64   | 4.38    | 4.45   | 2.97                        | 3.27                        | 5.50                        | 5.62                        |
| shape factor                        | 0.13   | 1.71   | 0.70    | 0.85   | 0.14                        | 0.31                        | 0.95                        | 1.02                        |
| I <sub>6,2</sub> /I <sub>6,50</sub> | 2.34   | 2.96   | 2.60    | 2.63   | 2.35                        | 2.49                        | 2.68                        | 2.81                        |

Table A15 Summary statistics of the climatic and catchment characteristics for Region 7 (N =44)

| Variables                   | Min    | Max     | Average | Median | 10 <sup>th</sup> percentile | 25 <sup>th</sup> percentile | 75 <sup>th</sup> percentile | 90 <sup>th</sup> percentile |
|-----------------------------|--------|---------|---------|--------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|
| area (km²)                  | 0.20   | 5975.00 | 878.88  | 302.50 | 7.16                        | 69.23                       | 516.50                      | 2579.50                     |
| I <sub>6,50</sub> (mm/h)    | 3.98   | 9.62    | 6.21    | 5.38   | 4.17                        | 4.63                        | 8.08                        | 9.02                        |
| I <sub>6,2</sub> (mm/h)     | 10.22  | 22.72   | 16.35   | 17.01  | 10.76                       | 12.37                       | 19.56                       | 21.90                       |
| MAR (mm)                    | 209.43 | 481.43  | 364.51  | 386.25 | 288.53                      | 306.28                      | 427.00                      | 442.86                      |
| I <sub>12,50</sub> (mm/h)   | 2.43   | 5.77    | 3.75    | 3.36   | 2.58                        | 2.91                        | 4.82                        | 5.31                        |
| shape factor                | 0.32   | 2.16    | 0.88    | 0.78   | 0.58                        | 0.68                        | 0.98                        | 1.19                        |
| <b>I</b> 6,2/ <b>I</b> 6,50 | 2.27   | 3.18    | 2.68    | 2.51   | 2.38                        | 2.42                        | 3.00                        | 3.16                        |

# Appendix B Additional results from the data-rich regions

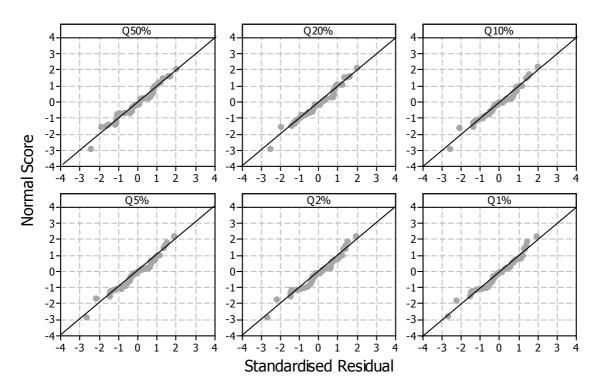



Figure B.1 Standardised residuals vs. Z score for AEPs of 50% to 1% for Region 2 (Tasmania)

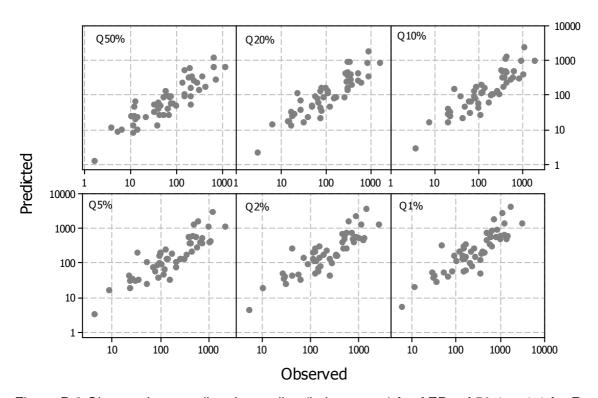



Figure B.2 Observed vs. predicted quantiles (in log space) for AEPs of 50% to 1% for Region 2 (Tasmania) (flood discharges are in m³/s)

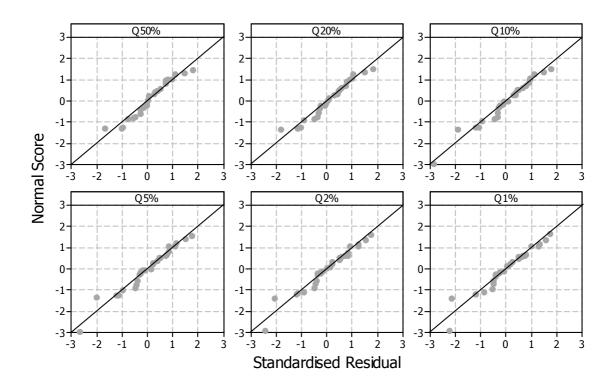



Figure B.3 Standardised residuals vs. Z score for AEPs of 50% to 1% for Region 3 (South Australia)

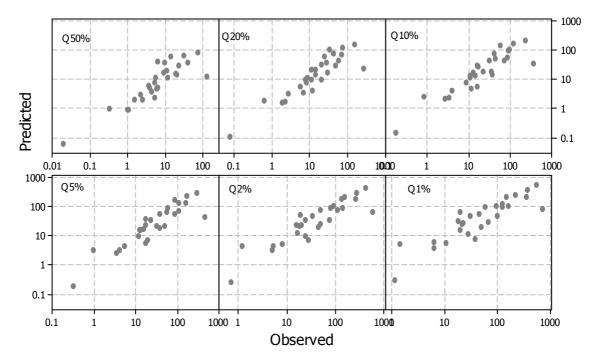



Figure B.4 Observed vs. predicted quantiles (in log space) for AEPs of 50% to 1% for Region 3 (South Australia) (flood discharges are in m³/s)

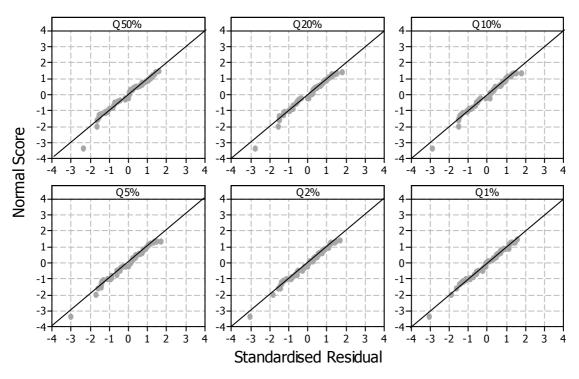



Figure B.5 Standardised residuals vs. Z score for AEPs of 50% to 1% for Region 4 (NT + Kimberley WA)

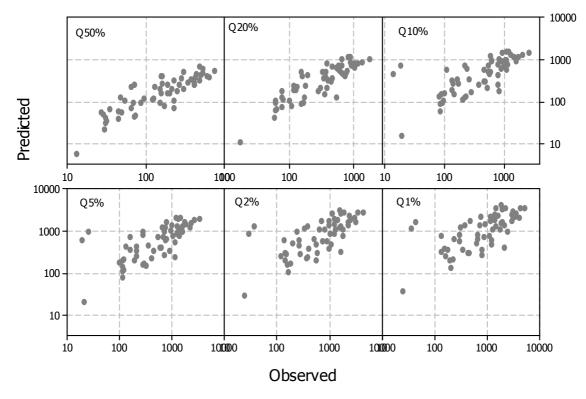



Figure B.6 Observed vs. predicted quantiles (in log space) for AEPs of 50% to 1% for Region 4 (NT + Kimberley WA) (flood discharges are in m³/s)

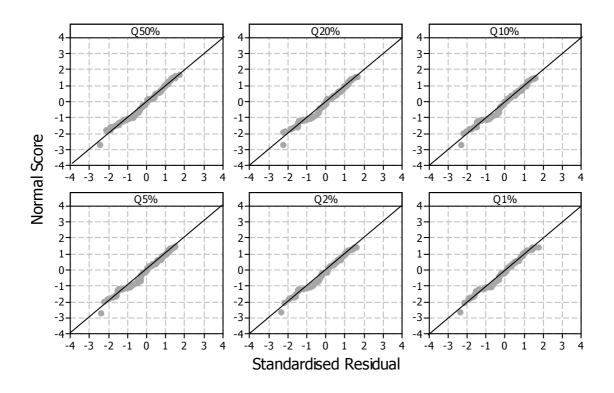



Figure B.7 Standardised residuals vs. Z score for AEPs of 50% to 1% for Region 5 (SW Western Australia)

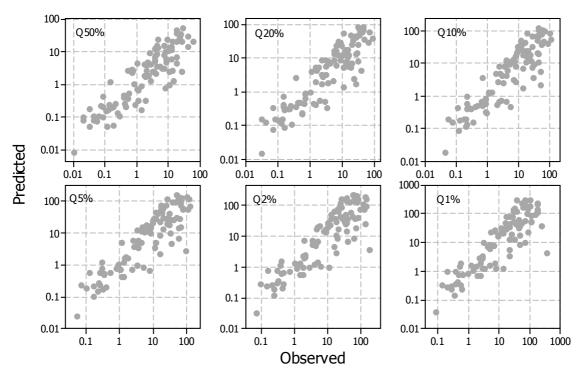



Figure B.8 Observed vs. predicted quantiles (in log space) for AEPs of 50% to 1% for Region 5 (SW Western Australia) (flood discharges are in m³/s)

| Project 5 | <ul> <li>Regional</li> </ul> | l Flood | Methods |
|-----------|------------------------------|---------|---------|

**Appendix C Additional results from the arid regions** 

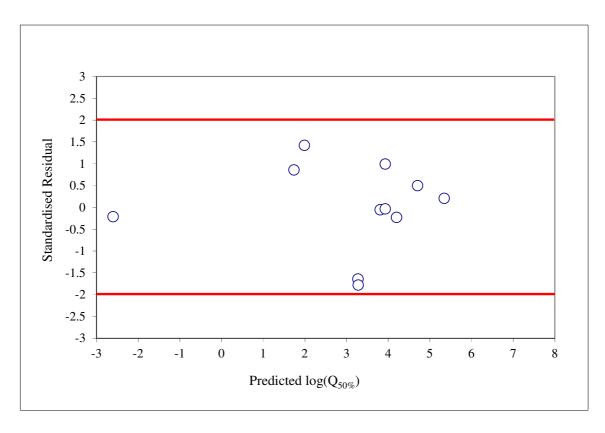



Figure C.1 Standardised residuals vs. predicted quantiles for 50% AEP (Region 6)

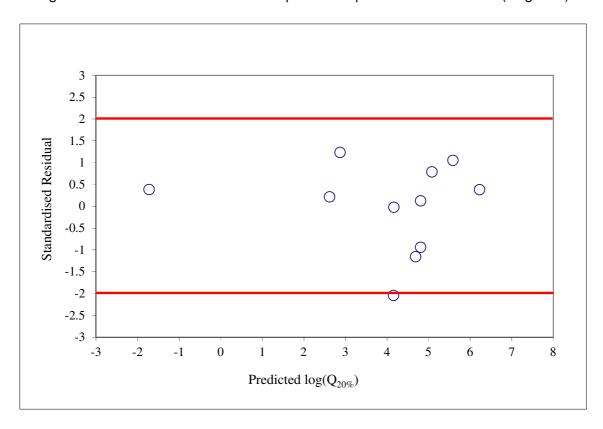



Figure C.2 Standardised residuals vs. predicted quantiles for 20% AEP (Region 6)

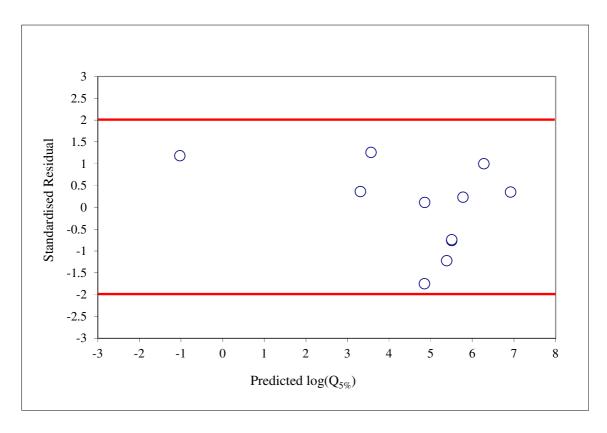



Figure C.3 Standardised residuals vs. predicted quantiles for 5% AEP (Region 6)

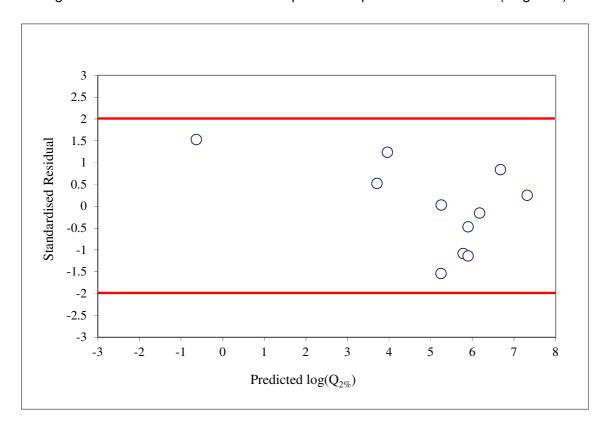



Figure C.4 Standardised residuals vs. predicted quantiles for 2% AEP (Region 6)

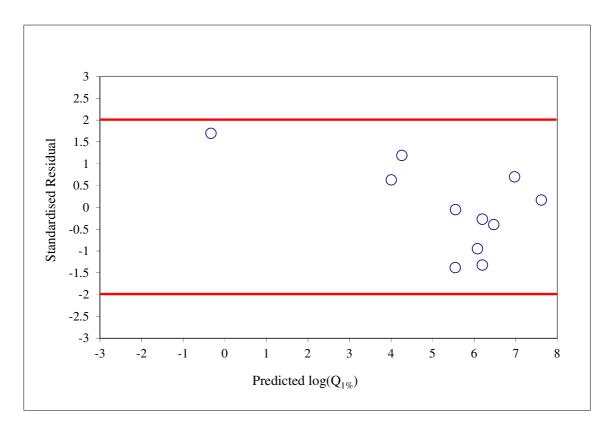



Figure C.5 Standardised residuals vs. predicted quantiles for 1% AEP (Region 6)

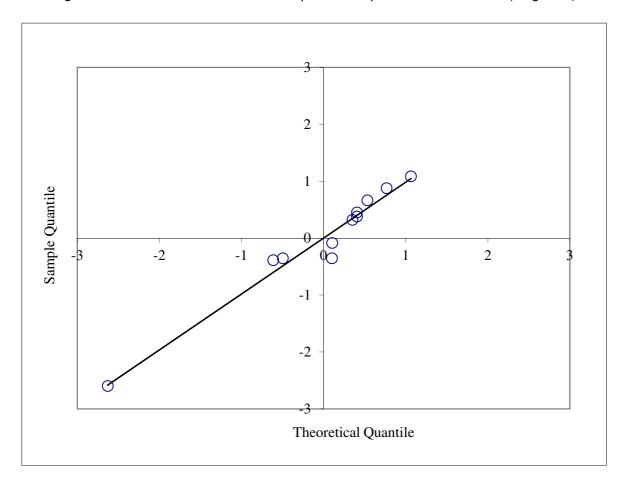



Figure C.6 QQ-plot of the standardised residuals for 50% AEP (Region 6)

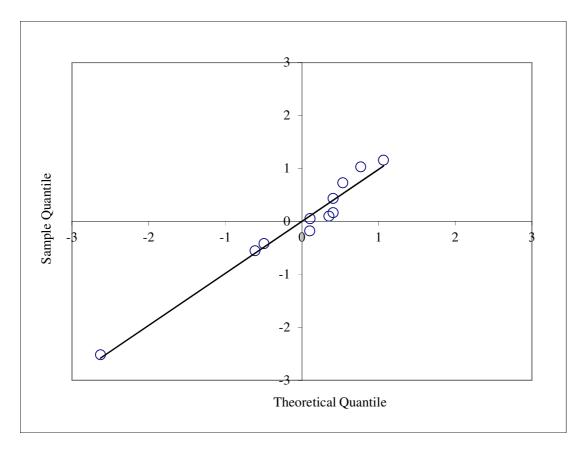



Figure C.7 QQ-plot of the standardised residuals for 20% AEP (Region 6)

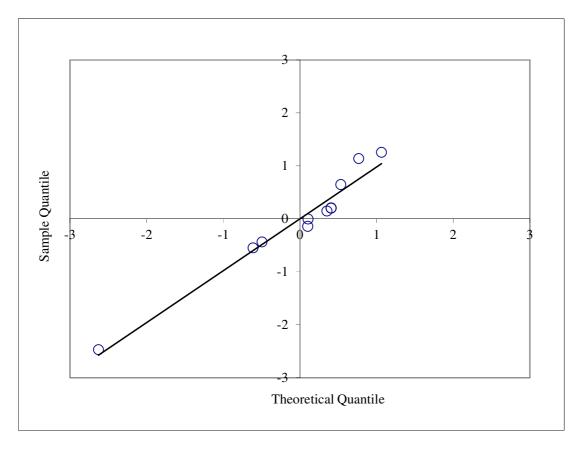



Figure C.8 QQ-plot of the standardised residuals for 5% AEP (Region 6)

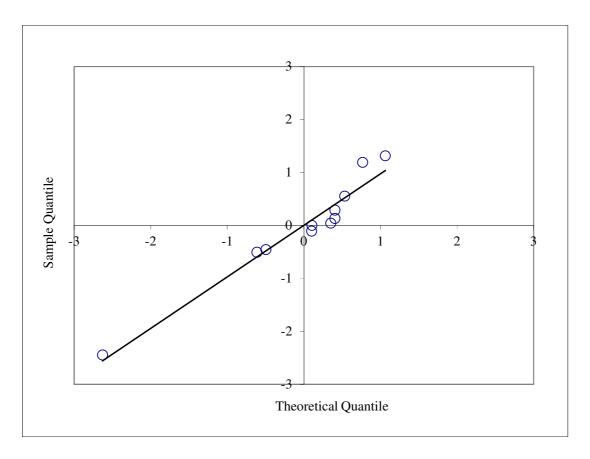



Figure C.9 QQ-plot of the standardised residuals for 2% AEP (Region 6)

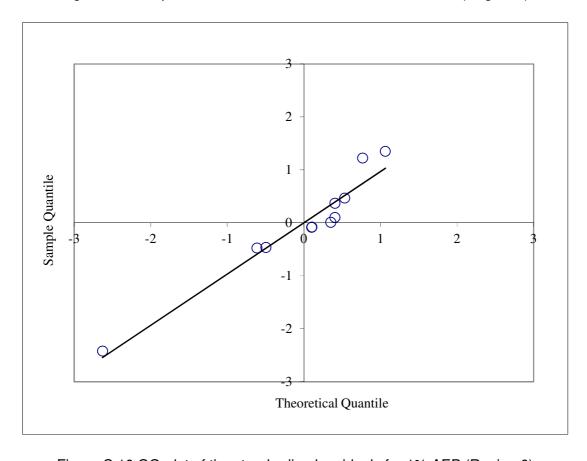



Figure C.10 QQ-plot of the standardised residuals for 1% AEP (Region 6)

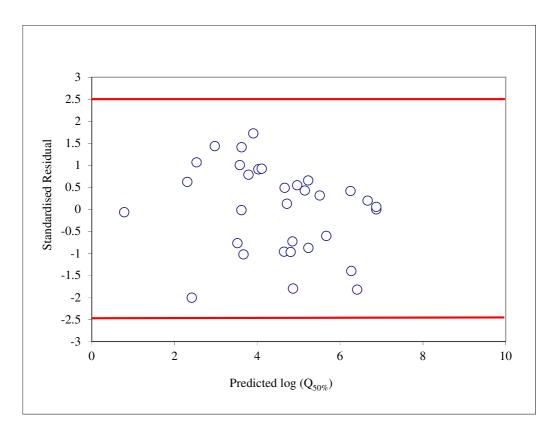



Figure C.11 Standardised residuals vs. predicted quantiles for 50% AEP (Region 7)

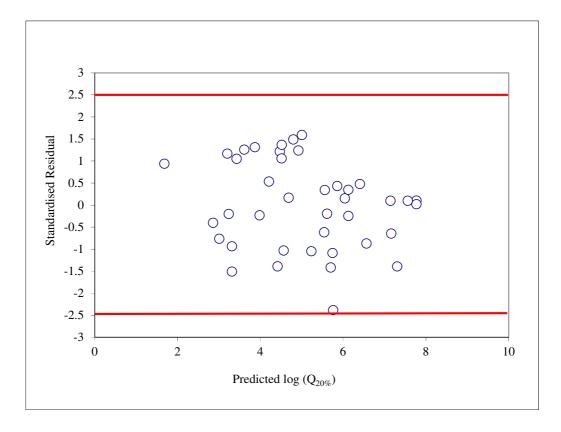



Figure C.12 Standardised residuals vs. predicted quantiles for 20% AEP (Region 7)

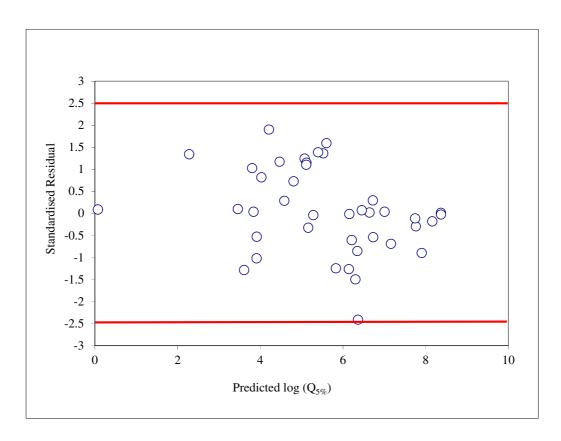



Figure C.13 Standardised residuals vs. predicted quantiles for 5% AEP (Region 7)

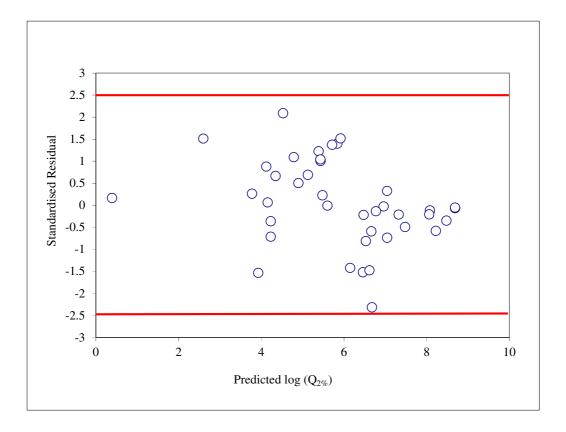



Figure C.14 Standardised residuals vs. predicted quantiles for 2% AEP (Region 7)

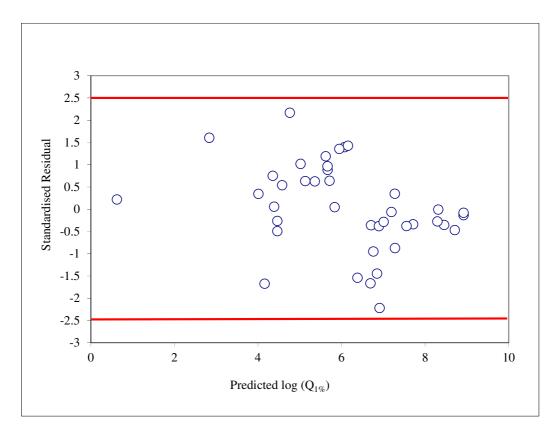



Figure C.15 Standardised residuals vs. predicted quantiles for 1% AEP (Region 7)

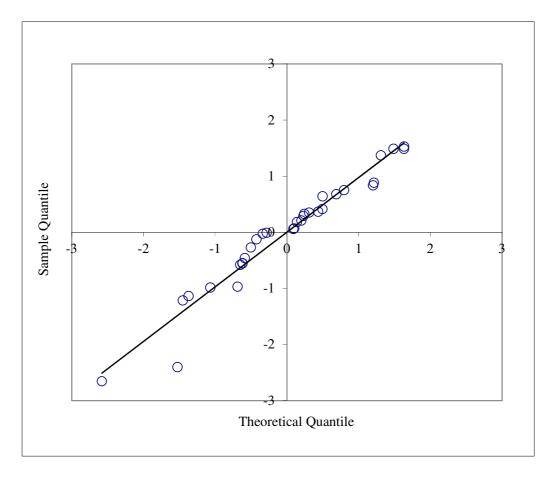



Figure C.16 QQ-plot of the standardised residuals for 50% AEP (Region 7)

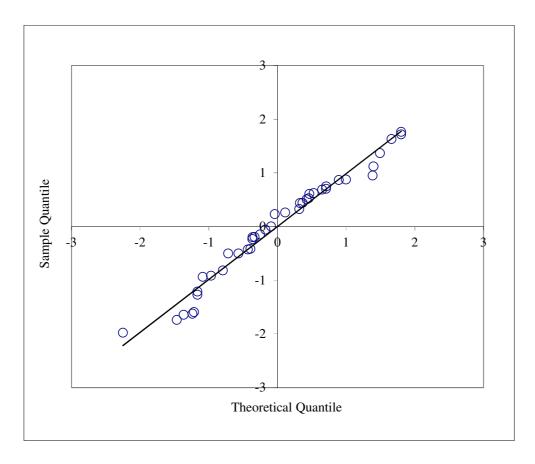



Figure C.17 QQ-plot of the standardised residuals for 20% AEP (Region 7)

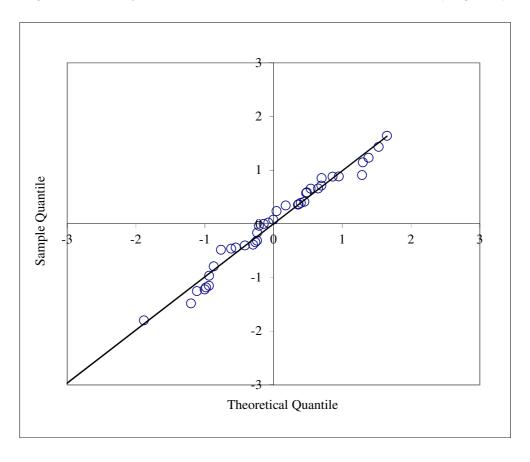



Figure C.18 QQ-plot of the standardised residuals for 5% AEP (Region 7)

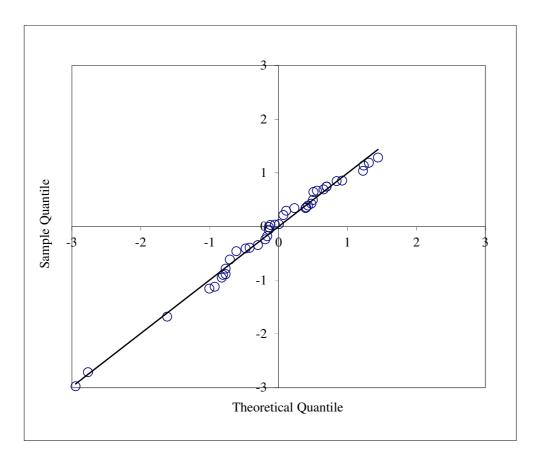



Figure C.19 QQ-plot of the standardised residuals for 2% AEP (Region 7)

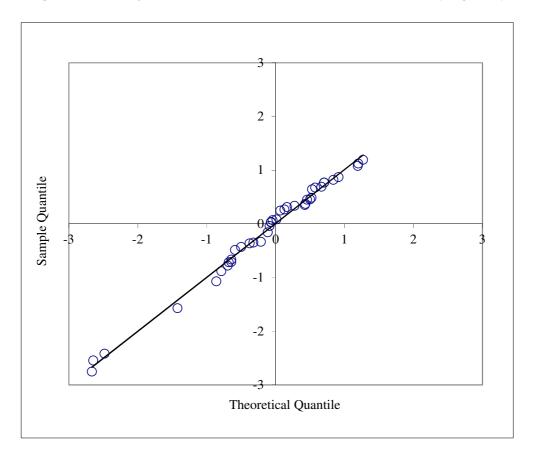



Figure C.20 QQ-plot of the standardised residuals for 1% AEP (Region 7)

## Appendix D List of publications originated from Project 5

## Journal papers and book chapter published from Project 5 (till Dec 2014)

- 1. Aziz. K., Rahman, A., Fang, G., Shreshtha, S. (2014). Application of artificial neural networks in regional flood frequency analysis: A case Study for Australia, Stochastic Environment Research & Risk Assessment, 28, 3, 541-554.
- 2. Haddad, K., Rahman, A., Ling, F. (2014). Regional flood frequency analysis method for Tasmania, Australia: A case study on the comparison of fixed region and region-of-influence approaches, Hydrological Sciences Journal, DOI:10.1080/02626667.2014.950583.
- 3. Haddad, K., Rahman, A., Zaman, M., Shrestha, S. (2013). Applicability of Monte Carlo cross validation technique for model development and validation using generalised least squares regression, Journal of Hydrology, 482, 119-128.
- Haddad, K. and Rahman, A. (2012). Regional flood frequency analysis in eastern Australia: Bayesian GLS regression-based methods within fixed region and ROI framework – Quantile Regression vs. Parameter Regression Technique, Journal of Hydrology, 430-431 (2012), 142-161.
- 5. Haddad, K., Rahman, A., and Stedinger, J.R. (2012). Regional Flood Frequency Analysis using Bayesian Generalized Least Squares: A Comparison between Quantile and Parameter Regression Techniques, Hydrological Processes, 26, 1008-1021.
- 6. Haddad, K., Rahman, A., and Kuczera, G. (2011). Comparison of ordinary and generalised least squares regression models in regional flood frequency analysis: A case study for New South Wales, Australian Journal of Water Resources, 15, 2, 59-70.
- 7. Haddad, K. and Rahman, A. (2011). Regional flood estimation in New South Wales Australia using generalised least squares quantile regression. Journal of Hydrologic Engineering, ASCE, 16, 11, 920-925.
- 8. Haddad, K., Rahman, A. and Weinmann, P.E. (2011). Estimation of major floods: applicability of a simple probabilistic model, Australian Journal of Water Resources, 14, 2, 117-126.
- 9. Haddad, K. and Rahman, A. (2011). Selection of the best fit flood frequency distribution and parameter estimation procedure A case study for Tasmania in Australia, Stochastic Environmental Research & Risk Assessment, 25, 415-428.
- 10. Haddad, K., Rahman, A., Weinmann, P.E., Kuczera, G. and Ball, J.E. (2010). Streamflow data preparation for regional flood frequency analysis: Lessons from south-east Australia. Australian Journal of Water Resources, 14, 1, 17-32.
- 11. Haddad, K., Zaman, M. and Rahman, A. (2010). Regionalisation of skew for flood frequency analysis: a case study for eastern NSW. Australian Journal of Water Resources, 14, 1, 33-41.
- 12. Ishak, E., Rahman, A. (2014). Detection of changes in flood data in Victoria, Australia over 1975-2011, Hydrology Research, doi:10.2166/nh.2014.064.
- 13. Ishak, E., Rahman, A., Westra, S., Sharma, A. and Kuczera, G. (2013). Evaluating the non-stationarity of Australian annual maximum floods. Journal of Hydrology, 494, 134-145.
- 14. Ishak, E., Haddad, K., Zaman and Rahman (2011). Scaling property of regional floods in New South Wales Australia, Natural Hazards, 58: 1155-1167.
- 15. Micevski, T., Hackelbusch, A., Haddad, K., Kuczera, G., Rahman, A. (2014).

- Regionalisation of the parameters of the log-Pearson 3 distribution: a case study for New South Wales, Australia, Hydrological Processes, DOI: 10.1002/hyp.10147.
- 16. Palmen, L.B., Weeks, W.D. (2011), Regional flood frequency for Queensland using the quantile regression technique, Australian Journal of Water Resources, 15, 1, 47-57.
- 17. Rahman, A., Haddad, K., Kuczera, G., Weinmann, P.E. (2014). Regional flood frequency estimation, Australian Rainfall and Runoff, Book 3, Engineers Australia (Under review).
- 18. Rahman, A., Zaman, M.A., Haddad, K., Adlouni, S. E., Zhang, C. (2014). Applicability of Wakeby distribution in flood frequency analysis: a case study for eastern Australia, Hydrological Processes, DOI: 10.1002/hyp.10182.
- Rahman, A., Haddad, K., Kuczera, G., and Weinmann, P.E. (2013). Accumulation of knowledge: Revision of Australian Rainfall & Runoff for Improved Flood Predictions, In: Runoff Prediction in Ungauged Basins: Synthesis across Processes, Places and Scales, Editor: G Blöschl, M Sivapalan, T Wagener, Cambridge University Press, ISBN 9781107028180.
- 20. Rahman, S.A., Rahman, A., Zaman, M., Haddad, K., Ashan, A. and Imteaz, M. A. (2013). A study on selection of probability distributions for at-site flood frequency analysis in Australia, Natural Hazards, 69, 1803-1813.
- 21. Rahman, A., Haddad, K., Zaman, M., Kuczera, G. and Weinmann, P.E. (2011). Design flood estimation in ungauged catchments: A comparison between the Probabilistic Rational Method and Quantile Regression Technique for NSW. Australian Journal of Water Resources, 14, 2, 127-137.
- 22. Zaman, M., Rahman, A., and Haddad, K. (2013). Application of empirical scale correction factors with regional flood prediction equations: A case study for eastern Australia, Australian Journal of Water Resources, 16, 2, 141-150.
- 23. Zaman, M., Rahman, A., Haddad, K. (2012). Regional flood frequency analysis in arid regions: A case study for Australia. Journal of Hydrology, 475, 74-83.

## Conference papers published from Project 5

- 1. Aziz, K., Sohail, R., Rahman, A. (2014). Application of Artificial Neural Networks and Genetic Algorithm for Regional Flood Estimation in Eastern Australia, 35<sup>th</sup> Hydrology and Water Resources Symposium, Perth, Engineers Australia, 24-27 Feb, 2014.
- 2. Aziz, K., Rahman, A., Shamseldin, A., Shoaib, M. (2013). Regional flood estimation in Australia: Application of gene expression programming and artificial neural network techniques, 20<sup>th</sup> International Congress on Modelling and Simulation, 1 to 6 December, 2013, Adelaide, Australia, 2283-2289.
- 3. Aziz, K., Rahman, A., Fang, G. Shrestha, S. (2012). Comparison of Artificial Neural Networks and Adaptive Neuro-fuzzy Inference System for Regional Flood Estimation in Australia, Hydrology and Water Resources Symposium, Engineers Australia, 19-22 Nov 2012, Sydney, Australia.
- 4. Aziz, K., Rahman, A., Fang, G. and Shrestha, S. (2011). Application of Artificial Neural Networks in Regional Flood Estimation in Australia: Formation of Regions Based on Catchment Attributes, The Thirteenth International Conference on Civil, Structural and Environmental Engineering Computing, Crete, Greece, 6-9 September, 2011, 13 pp.
- 5. Aziz, K., Rahman, A., Shrestha, S., Fang, G. (2011). Derivation of optimum regions for ANN based RFFA in Australia, 34<sup>th</sup> IAHR World Congress, 26 June 1 July 2011, Brisbane, 17-24.

- Aziz, K., Rahman, A., Fang, G., Haddad, K. and Shrestha, S. (2010). Design flood estimation for ungauged catchments: Application of artificial neural networks for eastern Australia, World Environmental and Water Resources Congress 2010, American Society of Civil Engineers (ASCE), 16-20 May 2010, Providence, Rhode Island, USA, pp. 2841-2850.
- Hackelbusch, A., Micevski, T. Kuczera, G., Rahman, A. and Haddad, K. (2009). Regional Flood Frequency Analysis for Eastern New South Wales: A Region of Influence Approach using Generalized Least Squares log-Pearson 3 parameter regression. In Proc. 32<sup>nd</sup> Hydrology and Water Resources Symp., 30 Nov to 3 Dec, Newcastle, Australia, pp 603-615.
- 8. Haddad, K., Rahman, A., Weinmann, P.E., Kuczera, G. (2014). Development and Application of a Large Flood Regionalisation Model for Australia, 35<sup>th</sup> Hydrology and Water Resources Symposium, Perth, Engineers Australia, 24-27 Feb, 2014.
- 9. Haddad, K., Rahman, A., Kuczera, G, Weinmann, P. E. (2012). A New Regionalisation Model for Large Flood Estimation in Australia: Consideration of Inter-site Dependence in Modelling, Hydrology and Water Resources Symposium, Engineers Australia, 19-22 Nov 2012, Sydney, Australia.
- 10. Haddad, K., Rahman, A., Weeks, W., Kuczera, G. and Weinmann, P.E. (2011). Towards a new regional flood frequency analysis method for Western Australia, The 19<sup>th</sup> International Congress on Modelling and Simulation, 12-16 Dec 2011, Perth, Australia, 3788-3795.
- 11. Haddad, K., Uddin, J., Rahman, A., Kuczera, G., and Weinmann, P.E. (2011). A new flood regionalisation model for large flood estimation in Australia, 11<sup>th</sup> International Multidisciplinary Scientific Geo-Conference and Expo SGEM 2011, Bulgaria, 19-25 June, 2, 761-768.
- 12. Haddad, K., Rahman, A., Ling, F. and Weinmann, P.E. (2011). Towards a new regional flood frequency analysis method for Tasmania, 34<sup>th</sup> IAHR World Congress, 26 June 1 July 2011, Brisbane, 170-177.
- 13. Haddad, K., Rahman, A., Kuczera, G. and Micevski, T. (2011). Regional Flood Frequency Analysis in New South Wales Using Bayesian GLS Regression: Comparison of Fixed Region and Region-of-influence Approaches, 34<sup>th</sup> IAHR World Congress, 26 June 1 July 2011, Brisbane, 162-169.
- 14. Haddad, K., Zaman, M. Rahman, A. and Shrestha, S. (2010). Regional Flood Modelling: Use of Monte Carlo cross-validation for the Best Model Selection. World Environmental and Water Resources Congress 2010, American Society of Civil Engineers (ASCE), 16-20 May 2010, Providence, Rhode Island, USA, pp. 2831-2840.
- 15. Haddad, K., Pirozzi, J., McPherson, G., Rahman, A. and Kuczera, G. (2009). Regional Flood Estimation Technique for NSW: Application of Generalised Least Squares Quantile Regression Technique. In Proc. 32<sup>nd</sup> Hydrology and Water Resources Symp., 30 Nov to 3 Dec, Newcastle, Australia, pp. 829-840.
- 16. Haddad, K., Aziz, K., Rahman, A., and Ishak, E.H. and Weinmann, P.E. (2009). A Probabilistic Model for Estimation of Large Floods in Ungauged Catchments: Application to South-east Australia. In Proc. 32<sup>nd</sup> Hydrology and Water Resources Symp., 30 Nov to 3 Dec, Newcastle, Australia, pp. 817-828.
- 17. Haddad, K., Rahman, A. and Weinmann, P. E. (2008). Development of a Generalised Least Squares Based Quantile Regression Technique for design flood estimation in Victoria, 31<sup>st</sup> Hydrology and Water Resources Symp., Adelaide, 15-17 April 2008, 2546-2557.
- 18. Haddad, K., Rahman, A. and Weinmann, P.E. (2008). Streamflow Data Preparation for

- Regional Flood Frequency Analysis: Important Lessons from a Case Study. 31<sup>st</sup> Hydrology and Water Resources Symp., Adelaide, 15-17 April 2008, 2558-2569.
- 19. Hossain, M.S., Haque, M., Rahman, A. (2014). Trend Analysis of Annual Maximum Flood Series in South East Australia Using Most Up-To-Date Flood Data, 35<sup>th</sup> Hydrology and Water Resources Symposium, Engineers Australia, 24-27 Feb, 2014.
- 20. Hossain, M.S., Rahman, A., Haddad, K., Ishak, E.H. (2013). Trend analysis of flood data in Australia: A case study for Victoria, 20<sup>th</sup> International Congress on Modelling and Simulation, 1 to 6 December, 2013, Adelaide, Australia, 2318-2324.
- 21. Hossain, A., Rahman, A. and Haddad, K. (2009). Design streamflow estimation for ungauged catchments in Victoria: Uncertainty analysis using boot strapping. 2<sup>nd</sup> International Conference on Water & Flood Management (ICWFM-2009), 15-17 March, 2009, Dhaka, 2, 669-676. ISBN 984-300-003354-5.
- 22. Ishak, E., Rahman, A., Westra, S., Sharma, A., Kuczera, G. (2014). Trend Analysis of Australian Annual Maximum Flood Data: Exploring Relationship with Climate and Catchment Characteristics, 35<sup>th</sup> Hydrology and Water Resources Symposium, Perth, Engineers Australia, 24-27 Feb, 2014.
- 23. Ishak, I., Rahman, A., Westra, S., Sharma, A. and Kuczera, G. (2011). Trends in Peak Streamflow Data in Australia: Impacts of Serial and Cross-correlation, 34<sup>th</sup> IAHR World Congress, 26 June 1 July 2011, Brisbane, 766-773.
- 24. Ishak, E.H., Rahman, A., Westra, S., Sharma, A. and Kuczera, G. (2010). Preliminary analysis of trends in Australian flood data. World Environmental and Water Resources Congress 2010, American Society of Civil Engineers (ASCE), 16-20 May 2010, Providence, Rhode Island, USA, pp. 120-124.
- 25. Ishak, E.H., Aziz, K., Rahman, A. and Haddad, K. (2009). Scaling Behaviour of Regional Floods in New South Wales Australia. In Proc. 32<sup>nd</sup> Hydrology and Water Resources Symp., 30 Nov to 3 Dec, Newcastle, Australia, 400-408.
- 26. Palmen, L.B., Weeks, W.D. (2009). Regional flood frequency for Queensland using the Quantile Regression Technique, Proc. 32nd Hydrology and Water Resources Symp., Newcastle.
- 27. Pirozzi, J. and Rahman, A. (2010). Design Streamflow Estimation for Ungauged Catchments in Eastern NSW: Identification of Important Predictor Variables, Australian Water Association National Conference, Ozwater 2010, 8-10 March, Brisbane.
- 28. Pirozzi, J., Ashraf, M., Rahman, A., and Haddad, K. (2009). Design Flood Estimation for Ungauged Catchments in Eastern NSW: Evaluation of the Probabilistic Rational Method. In Proc. 32<sup>nd</sup> Hydrology and Water Resources Symp.,30 Nov to 3 Dec, Newcastle, Australia, pp. 805-816.
- 29. Rahman, A. S., Haddad, K., Rahman, A. (2014). Identification of Outliers in Flood Frequency Analysis: Comparison of Original and Multiple Grubbs-Beck Test, International Conference on Environmental Systems Science and Engineering, 15 -16 Dec 2014, Sydney, Australia.
- 30. Rahman, A., Haddad, K., Kuczera, G., Weinmann, P.E., Weeks, W., Stensmyr, P., Babister, M. (2014). An Overview of the Development of the New Regional Flood Frequency Estimation (RFFE) Model for Australia, 35<sup>th</sup> Hydrology and Water Resources Symposium, Perth, Engineers Australia, 24-27 Feb, 2014.
- 31. Rahman, A., Haddad, K., Rahman, A.S., Haque, M.M. Kuczera, Weinmann, P.E. (2014). An Overview of Preparation of Streamflow Database for ARR Project 5 Regional Flood Method, 35<sup>th</sup> Hydrology and Water Resources Symposium, Perth, Engineers Australia, 24-27 Feb, 2014.

- 32. Rahman, A., Haque, M.M., Haddad, K., Rahman, A.S., Kuczera, G., Weinmann, P.E. (2014). Assessment of the Impacts of Rating Curve Uncertainty on At-Site Flood Frequency Analysis: A Case Study for New South Wales, Australia, 35<sup>th</sup> Hydrology and Water Resources Symposium, Perth, Engineers Australia, 24-27 Feb, 2014.
- 33. Rahman, A.S., Haddad, K., Rahman, A. (2013). Regional Flood Modelling in the New Australian Rainfall and Runoff, 20<sup>th</sup> International Congress on Modelling and Simulation, 1 to 6 December, 2013, Adelaide, Australia, 2339-2345.
- 34. Rahman, A., Haddad, K., Zaman, M., Kuczera, G., Weinmann, P. E., Stensmyr, P., Babister, M. (2013). New regional flood frequency estimation method for the whole of Australia: Overview of progress, Floodplain Management Association National Conference, 28-31 May 2013, Tweed Heads, NSW, Australia, 1-16.
- 35. Rahman, A., Haddad, K., Zaman, M., Kuczera, G, Weinmann, P. E., Weeks, W. (2012). Regional Flood Estimation in Australia: An Overview of the Study for the Upgrade of 'Australian Rainfall and Runoff', Hydrology and Water Resources Symposium, Engineers Australia, 19-22 Nov 2012, Sydney, Australia.
- 36. Rahman, A., Zaman, M., Haddad, K., Kuczera, G, Weinmann, P. E., Weeks, W., Rajaratnam, L. and Kemp, D. (2012). Development of a New Regional Flood Frequency Analysis Method for Semi-arid and Arid Regions of Australia, Hydrology and Water Resources Symposium, Engineers Australia, 19-22 Nov 2012, Sydney, Australia.
- 37. Rahman, A., Zaman, M., Fotos, M., Haddad, K. Rajaratnam, L. And Weeks, B. (2011). Towards a New Regional Flood Estimation Method for the Northern Territory, 34<sup>th</sup> IAHR World Congress, 26 June 1 July 2011, Brisbane, 364-371.
- 38. Rahman, A., Haddad, K., Ishak, E., Weinmann, P.E., Kuczera, G. (2010). Regional Flood Estimation in Australia: An Overview of the Study in Relation to the Upgrade of Australian Rainfall and Runoff. 50<sup>th</sup> Annual Floodplain Management Authorities Conference Gosford 2010 FMA, 23-29 Feb, Gosford, NSW, 2010.
- 39. Rahman, A., Haddad, K., Caballero, W and Weinmann, P.E. (2008). Progress on the enhancement of the Probabilistic Rational Method for Victoria in Australia. 31<sup>st</sup> Hydrology and Water Resources Symp., Adelaide, 15-17 April 2008, 940-951.
- 40. Rahman, A., Rima, K. and Weeks, W. (2008). Development of Regional Flood Estimation Methods Using Quantile Regression Technique: A Case Study for North-eastern Part of Queensland, 31<sup>st</sup> Hydrology and Water Resources Symp., Adelaide, 15-17 April 2008, 329-340.
- 41. Taylor, M., Haddad, K., Zaman, M. and Rahman, A. (2011). Regional flood modelling in Western Australia: Application of regression based methods using ordinary least squares, The 19<sup>th</sup> International Congress on Modelling and Simulation, 12-16 Dec 2011, Perth, Australia, 3803-3810.
- 42. Zaman, M., Rahman, A., Haddad, K. and Hagare, D. (2012). Identification of Best-fit Probability Distribution for at-site Flood Frequency Analysis: A Case Study for Australia, Hydrology and Water Resources Symposium, Engineers Australia, 19-22 Nov 2012, Sydney, Australia.
- 43. Zaman, M., Rahman, A., Haddad, K. (2012). Detection of change point in annual maximum flood series over eastern Australia using Bayesian approach, Hydrology and Water Resources Symposium, Engineers Australia, 19-22 Nov 2012, Sydney, Australia.
- 44. Zaman, M., Rahman, A. and Haddad, K. (2011). Regional flood modelling in arid and semi-arid regions in Australia, The 19<sup>th</sup> International Congress on Modelling and Simulation, 12-16 Dec 2011, Perth, Australia, 3811-3817.
- 45. Zaman, M., Rahman, I., Haddad, K., and Rahman, A. (2010). Scaling issues in design flood estimation for ungauged catchments: A case study for eastern Australia. World

Environmental and Water Resources Congress 2010, American Society of Civil Engineers (ASCE), 16-20 May 2010, Providence, Rhode Island, USA, pp. 2860-2869.

## Research reports published from Project 5

- 1. Rahman, A., Haddad, K., Haque, M., Kuczera, G., Weinmann, P.E. (2014). Australian Rainfall and Runoff Revision Projects, Project 5 Regional flood methods, Stage 3 Report, Engineers Australia, Water Engineering, 145pp.
- 2. Rahman, A., Haddad, K., Rahman, A.S., Haque, M.M. (2014). Australian Rainfall and Runoff Revision Projects, Project 5 Regional flood methods, Database used to develop ARR REEF Model 2015, Engineers Australia, Water Engineering, 68pp.
- 3. Rahman, A., Haddad, K., Zaman, M., Ishak, E., Kuczera, G. And Weinmann, P.E. (2012). Australian Rainfall and Runoff Revision Projects, Project 5 Regional flood methods, Stage 2 Report No. P5/S2/015, Engineers Australia, Water Engineering, 319pp.
- 4. Rahman, A., Haddad, K., Kuczera, G. and Weinmann, P.E. (2009). Regional flood methods for Australia: data preparation and exploratory analysis. Australian Rainfall and Runoff Revision Projects, Project 5 Regional Flood Methods, Stage 1 Report No. P5/S1/003, Nov 2009, Engineers Australia, Water Engineering, 181pp.