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FOREWORD 

 
AR&R Revision Process 
 
Since its first publication in 1958, Australian Rainfall and Runoff (AR&R) has remained one of 
the most influential and widely used guidelines published by Engineers Australia (EA). The 
current edition, published in 1987, retained the same level of national and international acclaim 
as its predecessors.  
 
With nationwide applicability, balancing the varied climates of Australia, the information and the 
approaches presented in Australian Rainfall and Runoff are essential for policy decisions and 
projects involving: 

• infrastructure such as roads, rail, airports, bridges, dams, stormwater and sewer 
systems; 

• town planning; 
• mining; 
• developing flood management plans for urban and rural communities; 
• flood warnings and flood emergency management; 
• operation of regulated river systems; and 
• estimation of extreme flood levels. 

 
However, many of the practices recommended in the 1987 edition of AR&R are now becoming 
outdated, no longer representing the accepted views of professionals, both in terms of technique 
and approach to water management. This fact, coupled with greater understanding of climate 
and climatic influences makes the securing of current and complete rainfall and streamflow data 
and expansion of focus from flood events to the full spectrum of flows and rainfall events, crucial 
to maintaining an adequate knowledge of the processes that govern Australian rainfall and 
streamflow in the broadest sense, allowing better management, policy and planning decisions to 
be made. 
 
One of the major responsibilities of the National Committee on Water Engineering of Engineers 
Australia is the periodic revision of AR&R.  A recent and significant development has been that 
the revision of AR&R has been identified as a priority in the Council of Australian Governments 
endorsed National Adaptation Framework for Climate Change.   
 
The Federal Department of Climate Change announced in June 2008 $2 million of funding to 
assist in updating Australian Rainfall and Runoff (AR&R). The update will be completed in three 
stages over four years with current funding for the first stage. Further funding is still required for 
Stages 2 and 3. Twenty one revision projects will be undertaken with the aim of filling knowledge 
gaps. The 21 projects are to be undertaken over four years with ten projects commencing in 
Stage 1. The outcomes of the projects will assist the AR&R editorial team compiling and writing 
of the chapters of AR&R. Steering and Technical Committees have been established to assist 
the AR&R editorial team in guiding the projects to achieve desired outcomes.  
 
 
 



Australian Rainfall and Runoff Revision Project 4: Continuous Rainfall Sequences at a Point 

 
P4/S1/002 :Feb 2010 iii 

 
Project 4: Continuous Rainfall Sequences at a Point  
 
Although the concept of continuous simulation and the various techniques for development of 
alternative rainfall sequences have been discussed in the literature, validation of the total 
system has not been attempted and is the focus of this project. Furthermore, the intent is that a 
comparison of techniques will cover the complete range of storm and burst durations that are of 
interest for flood flow prediction.  Previous studies have considered only a subset of these 
durations. 

 
The aim of Project 4 is to validate the use of continuous rainfall sequences for estimation of 
flood flows with a desired frequency.  To achieve this primary aim, it will be necessary to: 
 

•  Compare predictions arising from alternative approaches to estimation of continuous 
rainfall sequences (these alternatives will include historical, transition probability matrix 
methods, nonparametric methods, and Disaggregated Rectangular Intensity Pulse 
models); and 

•  Compare flow predictions from simulations using the alternative predictions with recorded 
flow predictions. 

 

                                                    
 

Mark Babister   Dr James Ball 
Chair National Committee on Water Engineering  AR&R Editor 
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AR&R REVISION PROJECTS 

The 21 AR&R revision projects are listed below : 
 

ARR Project No. Project Title Starting Stage 
1 Development of intensity-frequency-duration information across Australia 1 
2 Spatial patterns of rainfall 2 
3 Temporal pattern of rainfall 2 
4 Continuous rainfall sequences at a point 1 
5 Regional flood methods 1 
6 Loss models for catchment simulation 2 
7 Baseflow for catchment simulation 1 
8 Use of continuous simulation for design flow determination 2 
9 Urban drainage system hydraulics 1 

10 Appropriate safety criteria for people 1 
11 Blockage of hydraulic structures 1 
12 Selection of an approach 2 
13 Rational Method developments 1 
14 Large to extreme floods in urban areas 3 
15 Two-dimensional (2D) modelling in urban areas. 1 
16 Storm patterns for use in design events 2 
17 Channel loss models 2 
18 Interaction of coastal processes and severe weather events 1 
19 Selection of climate change boundary conditions 3 
20 Risk assessment and design life 2 
21 IT Delivery and Communication Strategies 2 

 
 
AR&R Technical Committee:  
 
 Chair  Associate Professor James Ball, MIEAust CPEng, Editor AR&R, UTS 
Members  Mark Babister, MIEAust CPEng, Chair NCWE, WMAwater 

 Professor George Kuczera, MIEAust CPEng, University of Newcastle 
  Professor Martin Lambert, FIEAust CPEng, University of Adelaide 
  Dr Rory Nathan, FIEAust CPEng, SKM 
  Dr Bill Weeks, FIEAust CPEng, DMR 
  Associate Professor Ashish Sharma, UNSW  
  Dr Michael Boyd, MIEAust CPEng, Technical Project Manager * 
 
 
Related Appointments: 
Technical Committee Support: Monique Retallick, GradIEAust, WMAwater 
Assisting TC on Technical Matters: Michael Leonard, University of Adelaide 
 
 
* EA appointed member of Committee 
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•  Alex Pui, UNSW 

 
 
This report was independently reviewed by: 

•  Dr Geoff Pegram, University of KwaZulu-Natal, South Africa   
•  Dr Balaji Rajagoplan, University of Colorado 
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BACKGROUND 

The traditional approach to design flood estimation entails the specification of a design storm 
with a subsequent conversion to a design hydrograph and flood using a rainfall-runoff model. 
Such an approach assumes that (a) catchment initial conditions are not related to the magnitude 
of the design storm or flood being modelled, and (b) the exceedance probability associated with 
the design storm can be assumed to also be consistent with the resulting design flood. These 
assumptions are both questionable, with a design flood approach based on the use of 
continuous rainfall sequences having the potential to address each of these limitations.  
 
The objectives of this project are to develop, test and validate the procedures for generating 
continuous rainfall sequences at point locations in Australia, as well as suggesting modifications 
in existing methods to account for the impact of climate change. This project is to be 
implemented over three stages, with this report describing the outcomes of the first stage.  
 
The focus of this report is on the identification of alternative models to be compared in 
subsequent stages, the establishment of validation guidelines against which the models are to 
be tested, and the provision of a detailed scoping of subsequent stages including a description 
of the work needed to incorporate the effect of climate change on the generated stochastic 
sequences. In developing these comparisons, it is noted that at present only the Disaggregated 
Rectangular Intensity Pulse (DRIP) model of Heneker et al (2001) is available to Australian 
practitioners for the generation of continuous rainfall sequences. An alternative known as the 
nonparametric method of fragments (MOF) approach developed by Sharma and Srikanthan 
(2006) recently has been shown to perform well compared to a range of alternatives (e.g. Pui et 
al, 2009), however it is presently limited to locations at which extended, high-quality continuous 
rainfall data is available. An important contribution of the work presented in this report is 
therefore the extension of the MOF approach to any location where extended daily data is 
available, significantly broadening its applicability and providing a basis for comparison with 
other methods in the subsequent stages of this project.  
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EXECUTIVE SUMMARY 

  
Continuous simulation of rainfall sequences is becoming an increasingly important tool in design 
flood estimation, as it represents arguably the most rigorous technique available to represent the 
joint behaviour of flood-producing extreme rainfall events and the preceding antecedent 
conditions. To inform the forthcoming revision of Australian Rainfall and Runoff (ARR), the aims 
of this project are to develop, test and validate the procedures for continuous simulation, as well 
as suggesting modifications in existing methods to account for the impact of climate change. 
 
This report describes the outcomes from the first of three project stages leading up to the ARR 
revision. The emphasis of this stage is on providing a detailed overview of the continuous rainfall 
dataset, a review of the structure and properties of a range of alternative continuous simulation 
models, as well as the scoping of future stages. The outcomes of each of these aspects are 
summarised below. 
 
The Australian continuous rainfall dataset  
A detailed review of the Australian continuous rainfall dataset was provided, focusing on 
continuous gauges with less than 15% of data missing during the period from 1970 to 2005, 
totalling about 167 gauges distributed throughout all the major climatic regions of Australia. Due 
to the large number of long daily rainfall records in Australia compared to sub-daily records, the 
emphasis of the analysis was on examining the conditional relationship between daily rainfall 
and a range of sub-daily attributes. Consistency in the conditional daily/sub-daily relationship 
would mean that the characteristics of sub-daily rainfall can be effectively regionalised, 
significantly extending the applicability of continuous simulation as the basis for flood estimation 
Australia-wide. 
 
The sub-daily attributes that were considered were the 6-minute, 1-hour and 6-hour maximum 
rainfall intensity for each wet day, as well as the wet fraction for each wet day. A histogram-
based statistic was developed in which the similarity in the empirical joint distribution between 
each attribute and daily rainfall amount at any two locations could be evaluated. This statistic 
was then computed for each pair of locations, and the deviation in empirical histograms were 
correlated against a range of metrics including the distance, the differences in latitude and 
longitude, the difference in distance from the coast and the difference in elevation between each 
pair of locations.  
 
The outcome of the analysis was that the latitude was the only significant determinant of 
similarity between daily rainfall amount and each of the sub-daily attributes, with lower latitudes 
having a higher proportion of the daily rainfall occurring in short-duration rainfall bursts. In 
contrast, the absence of any significant influence of the distance to coast or the elevation was 
surprising, and suggests that although these features clearly influence daily occurrence and/or 
amounts statistics, sub-daily statistics conditional to a daily rainfall amount are relatively 
homogenous. 
 
In addition to the scaling behaviour between daily and sub-daily rainfall, timing of daily rainfall 
minima and maxima, as represented by the diurnal cycle, constitutes an inherent property of 
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sub-daily rainfall which cannot be resolved at daily and longer timescales, yet provides 
significant information on the nature of rainfall occurring at that location, including the relative 
contribution of stratiform and convective rainfall events to the daily total rainfall amount. To our 
knowledge this study provides the first detailed review of the Australian rainfall diurnal cycle 
using the continuous rainfall dataset.  
 
The results confirm the presence of a diurnal cycle in Australian rainfall which is strikingly 
consistent across all locations. For example, in more than 80% of the stations analysed, the 
daily minimum in rainfall occurrence was found between 0900 and 1100, regardless of the 
season. The daily maximum in rainfall occurrence was found between 1800 and 0600, with the 
result again being consistent across seasons. Interestingly, significant differences could be 
found between coastal (<50km from the coast) and inland (>50 km from the coast) rainfall, with 
inland rainfall showing an occurrence maxima from 1800 to 2000, whereas the coastal rainfall 
showed a more diffuse night time maximum. Finally the average amplitude of daily maxima, 
defined as the daily frequency maxima divided by the daily frequency mean, was greatest for 
summer at 31% and lowest for winter at 17%.  
 
The diurnal cycle of rainfall intensity was slightly different than the diurnal cycle of rainfall 
occurrences. The intensity minima occurred in the period from 2300 to 0900 and was lowest 
mostly shortly after sunrise, while the maxima occurred during the afternoon from around 1000 
to 2000, peaking around 1600. The amplitude of the intensity statistics was again greatest 
during summer at 37% and lowest during winter at 18%. Finally the most prominent diurnal cycle 
was observed for the rainfall amount, being the multiplication of occurrence and intensity, with 
maximum amplitude ratio of 61% in summer and minimum of 24% in winter. This suggests that 
the diurnal cycle of occurrence and intensity are mutually reinforcing, even though the timing of 
the maxima and minima are somewhat different. 
 
The amplitude of the diurnal cycle was also evaluated against latitude, with highest amplitude 
occurring for low latitude regions. The greatest difference in amplitude between latitudes 
occurred in spring, with the high latitudes having amplitudes much lower than 50% in almost all 
cases, while the low latitudes often exhibit amplitudes of 100% or more. This relationship was 
observed for occurrence, intensity and amounts. In contrast, no relationship in amplitude could 
be found with distance from coast or elevation, even though the timing of the maxima did show 
strong influences in the distance from the coast.  
 
Continuous rainfall simulation  
In this report, four conceptual approaches to continuous rainfall simulation are described which 
are designed to simulate the behaviour of historical rainfall variability at sub-daily and longer 
timescales. These methods include: 

•  Event-based models, such as the Disaggregated Rectangular Intensity Pulse (DRIP) 
model; 

•  Poisson cluster models, including the Bartlett-Lewis Rectangular Pulse and Neyman-
Scott Rectangular Pulse family of models; 

•  Multi-scaling models, such as the canonical and microcanonical cascades family of 
models; and  

•  Nonparametric resampling models, such as the k-nearest neighbour method of 
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fragments (MOF) approach. 
 
All of these models were developed specifically to represent sub-daily rainfall, and most have 
been the subject of several decades of extensive research and refinement. 
 
The outcomes of a literature review of a range of studies show that the DRIP, Poisson cluster 
models and MOF are each capable of simulating most of the properties of rainfall at most 
timescales, including many Intensity-Frequency-Duration (IFD) characteristics necessary for the 
simulation of flood estimation. Nevertheless, each of the models have weaknesses which 
highlight that no single model structure is likely to accurately capture all the statistics of rainfall 
at all timescales, so that the determination of the appropriate model will need to be application-
specific. 
 
An important application of continuous rainfall simulation is the generation of synthetic 
continuous rainfall sequences at locations for which little or no continuous data is available. 
Such situations require regionalised versions of the continuous simulation models, with the 
DRIP, Poisson cluster models and MOF each having a regionalised version available or under 
development. As no studies have been conducted comparing these regionalised continuous 
simulation models for Australian rainfall, at present it is not possible to describe the relative 
strengths and weaknesses of these models for applications where extended continuous data is 
unavailable. 
 
Future stages  
The work described in this report comprises the first of three phases associated with the 
development, testing and validation of procedures for generating continuous rainfall sequences. 
As a result of this work, the following tasks are recommended as part of the remaining stages of 
this project: 

•  Comparison of the MOF with DRIP and/or a Poisson cluster model at the same 10 
locations and using the same statistics as described in Frost et al (2004) together with 
statistics which describe the joint probability of antecedent rainfall (e.g. 1, 7, 30 and 90 
day aggregate rainfall) and the design rainfall event; 

•  Finalisation of the regionalised version of the MOF. The first phase of this work, which is 
nearing completion, involves the regionalisation of the MOF to any location for which 
extended daily data is available. A proposed additional phase involves the 
regionalisation to any location in Australia, by also incorporating a scheme for 
resampling from nearby daily rainfall gauges; 

•  Comparison of the regionalised version of DRIP, the MOF and possibly a Poisson cluster 
model for all the major climate regions in Australia; and 

•  Identification of alternatives to allow modification of selected methods for continuous 
simulation, for a number future time horizons under a number of assumed greenhouse 
gas emission scenarios. 
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1. Introduction 

The synthetic simulation of continuous rainfall sequences is becoming an increasingly important 
tool in flood hydrology, as a means of capturing the full joint distribution of flood-producing wet 
spells and the associated antecedent conditions leading up to the event. The benefits of such an 
approach were described at length in Kuczera et al (2006), in which continuous simulation 
together with event joint probability methods based on Monte Carlo simulation were suggested 
as viable alternatives to the design storm approach, particularly for volume-sensitive systems 
where the role of antecedent moisture conditions is expected to be important. 
 
The development of continuous simulation models has been an area of active research for many 
decades, with a wide range of models now available. The focus of the work described in this 
report is on those models which are capable of simulating rainfall at the sub-daily timescale, as 
rainfall variability at this timescale must be accurately preserved for flood estimation in most 
urban systems (e.g. Beecham and Chowdhury, 2009) as well as many rural systems. To this 
end, four conceptual approaches to continuous rainfall simulation have been identified which 
have demonstrated capabilities at simulating rainfall at both sub-daily and longer timescales. 
These include event-based models such as the Disaggregated Rectangular Intensity Pulse 
(DRIP) model of Heneker et al (2001), the Poisson cluster models including the Bartlett-Lewis 
Rectangular Pulse and Neyman-Scott Rectangular Pulse family of models (Eagleson, 1978; 
Rodriguez-Iturbe et al, 1984; 1987a,b; 1988), multi-scaling models such as the canonical and 
microcanonical cascades family of models (Schertzer and Lovejoy, 1987; Gupta and Waymire, 
1993), and nonparametric resampling models such as the recently developed method of 
fragments (MOF; Sharma and Srikanthan, 2006). 
 
There have been numerous studies evaluating the performance of each of the above continuous 
simulation approaches for locations where extended continuous data are available for calibration 
of the modelling parameters (e.g. Frost et al, 2004; Pui et al, 2009). Despite this, most modelling 
applications are likely to be at locations where extended continuous instrumental records are 
unavailable, such that some form of regionalisation becomes necessary. Research into 
regionalised versions of the above continuous simulation approaches is comparatively sparse 
and recent, although regionalised versions are now available for DRIP (Jennings et al, 2009) 
and the Poisson cluster models (e.g. Cowpertwait and O’Connell, 1997; Gyasi-Agyei, 1999; 
Gyasi-Agyei and Parvez Bin Mahbub, 2007).  
 
An underlying assumption of any regionalised continuous simulation approach is that the 
properties of sub-daily rainfall can be transferred to the location of interest from one or more 
nearby locations where extended data is available, either unmodified or through an adjustment 
of model parameters based on aggregate (e.g. daily-scale) rainfall characteristics. The degree to 
which such regionalisation is possible across Australia therefore requires an analysis of the 
homogeneity of various sub-daily rainfall properties, with a significant focus of the work 
described here being to examine commonalities and differences in scaling behaviour from daily 
to sub-daily rainfall across Australia, as well as an exploration of the diurnal cycle which not only 
informs the timing of precipitation events throughout the day, but also can be viewed as an 
indicator of the type of rainfall (e.g. convective or stratiform) which dominates at the location of 
interest (Dai, 1999).  
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Due to the promising performance of the MOF model for locations with extended continuous 
data (e.g. Sharma and Srikanthan, 2006; Pui et al, 2009), the question of whether this model 
structure is also amenable to regionalisation is also worthy of consideration. To allow for 
regionalisation, it will be necessary to resample sub-daily rainfall fragments from nearby 
continuous rainfall stations conditional to at-site daily rainfall amount and previous- and next-day 
rainfall occurrence. A further contribution of this study is therefore to develop a procedure for the 
identification of ‘similar’ continuous rainfall stations across Australia which can be used in the 
conditional resampling.  
 
The remainder of this report is structured as follows. In the next section, a detailed overview of 
the complete Australian continuous rainfall dataset is provided, including a discussion of data 
availability and record length, a description of the daily/sub-daily rainfall scaling behaviour, as 
well as a detailed description of the Australian precipitation diurnal cycle. In Section 3, a 
description is provided of the four main classes of continuous simulation models described 
above, including a discussion of conceptual strengths and weakness as well as the description 
of various empirical studies developed to test the models. Lastly, a detailed scoping of future 
stages is provided in the last section of this report, with a focus on the validation of alternative 
models identified here, as well as a more detailed examination of possible approaches for 
incorporating climate change into the continuous rainfall sequences.  
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2. The Australian continuous rainfall dataset 

The Australian continuous rainfall dataset used in this analysis comprises 1397 stations 
obtained from the Australian Bureau of Meteorology (pers. coms. Sri Srikanthan) distributed 
throughout the country, in increments of 6 minutes. The location of each gauging station is 
shown in Figure 1, together with an indication of the length of record at each station.  
 
As can be observed from this figure, of the 1397 available gauging stations, only 101 locations 
are of length greater than 40 years, and a further 331 locations are of length of between 20 and 
40 years, highlighting the relative scarcity of long continuous rainfall records. The spatial 
distribution of the gauging stations also is not homogenous, with a high density of gauges in the 
populated regions along the eastern coastal fringe of Australia and lower density elsewhere. 
Nevertheless, extended (>40 yr) records are available in all capital cities and many other urban 
centres, and the coverage does include all the major climate regimes in Australia.  
 
The number of gauging stations with continuous rainfall records is also plotted against the year 
of record in Figure 2. As can be seen, only a small number of gauging stations were available in 
the early 20th century (the longest record is available from Melbourne Regional Office, gauge 
number 086071, with data available from 1873 to 2008), with significant increases in recording 
density apparent in the 1960s. Unless otherwise indicated, subsequent analyses described in 
this report use only those stations with less than 15% of the record missing for the period from 
1970 to 2005, to both maximise record length and the number of stations with concurrent 
records.   

Figure 1: Spatial coverage and record length of the Australian continuous rainfall record. 
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In contrast to the continuous rainfall 
dataset, the Australian daily dataset 
comprises 17762 stations, of which 
1375 provide more than 100 years of 
record (Leonard, 2009). The significant 
difference in data availability across 
Australia at daily and sub-daily 
timescales suggests that, for 
continuous simulation to be considered 
as a viable alternative to the design 
storm approach across Australia, sub-
daily rainfall attributes will require some 
form of regionalisation. In the next 
section, the properties of various sub-
daily rainfall attributes will be examined 
conditional to daily rainfall, to determine 
the degree to which such regionalisation is likely to be possible using the more widely available 
daily dataset.  
 
2.1. Attributes of sub-daily rainfall 

The variability in aggregate rainfall, such as at the seasonal or annual scale, from one location 
to the next is generally well understood. For example, coastal regions in Australia are typically 
wetter than regions further inland. Furthermore, whereas locations such as Sydney show only a 
limited seasonal cycle in total rainfall amounts, other locations such as those in tropical northern 
Australia show a pronounced summer wet season and winter dry season.  
 
What is generally less well understood is the conditional behaviour of sub-daily to daily rainfall. 
For example, consider the case where we know the daily rainfall for a particular location on a 
given day was 50mm. How is this rainfall likely to be distributed throughout that day? Is it likely 
to occur as a single wet burst of 1 hour duration, or more evenly distributed as low intensity 
rainfall over the entire day? Importantly, if we had information on sub-daily rainfall characteristics 
at a nearby continuous rainfall gauge but only daily information at the location of interest, could 
the scaling behaviour between daily and sub-daily rainfall be used to represent sub-daily rainfall 
patterns at that location?  
 
To address these questions we classified a wet day as one with more than 0.3mm rainfall (the 
results were insensitive to the precise definition of wet day), and then for each wet day 
calculated the following sub-daily rainfall attributes: 
 
1) 6-minute maximum rainfall intensity; 
2) 1-hour  maximum rainfall intensity; 
3) 6-hour maximum rainfall intensity; and 
4) Fraction of day with no rainfall, estimated as the number of 6-minute intervals with no 

recorded rainfall divided by the total number of 6-minute increments (i.e. 240).  
 

Figure 2: Number of Australia-wide continuous 
rainfall records against year of record. 
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2.1.1. Preliminary example 

The conditional behaviour of sub-
daily to daily rainfall is illustrated for 
three locations in Australia: Hobart, 
Sydney and Darwin, for the months 
January, February and March. This 
is shown in Figure 3, with both 
daily and sub-daily rainfall plotted 
on a logarithmic scale. The 1:1 line 
in the joint probability plot 
represents the case where all the 
daily rainfall occurs within the 
maximum 6-minute rainfall burst, 
with all points in the plot necessarily 
falling on or to the right of this line. 
The 1-hour and 6-hour plots (not 
shown) behave similarly but are 
distributed closer to this 1:1 line, as 
clearly the maximum 6-hour burst 
contains a greater fraction of the 
day’s rainfall than the 6-minute 
burst. A LOESS smoother is also 
applied to the data in Figure 3 and 
represents a moving average at 
each location, and shows that the 
departure from the 1:1 line 
increases with increasing daily 
rainfall amount, suggesting that the 
proportion of the daily rainfall falling 
as the maximum short-duration 
burst is conditional to the total 
amount of rainfall for that day.  
 
An interesting result is the differing 
characteristics of Hobart, Sydney 
and Darwin sub-daily rainfall 
attributes. Specifically, on average 
the 6-minute rainfall storm intensity 
for Darwin (red line) is much closer 
to the 1:1 line, while the average 6-
minute storm intensity for Hobart is 
furthest from the 1:1 line, with the 
same conclusions derived for the 1-
hour and 6-hour storm burst. This Figure 4: as for Figure 3, but with fraction of wet day 

with no rainfall plotted against daily rainfall amount. 

 

Figure 3: Maximum 6-minute storm burst against daily 
rainfall for each wet day, for Darwin (red), Sydney 
(green) and Hobart (blue), plotted on a logarithmic 
scale. Mean response estimated using a LOESS 
smoother fit to the log-transformed data. Plot includes 
marginal histogram of 6-minute (left panel) and daily 
(bottom panel) rainfall, and joint scatterplot (centre 
panel)
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suggests that in Darwin, a greater proportion of the daily rainfall falls as high-intensity short-
duration storm bursts, while in Hobart the rainfall is more evenly spread throughout the day. 
 
A similar conclusion can be obtained by considering the relationship between daily rainfall 
amount and fraction of day with no rainfall as presented in Figure 4. Here, for all daily rainfall 
amounts Darwin rainfall shows a greater proportion of the day as dry compared with the other 
locations, with the actual dry fraction being highly conditional to the daily rainfall amount. 
 
2.1.2. Measuring similarity 

Although the preceding example visually highlighted distinct differences between the daily/sub-
daily relationships at three distinctly different locations, it is necessary to develop a metric that 
will allow for a quantitative comparison of the similarity between the daily/sub-daily attributes 
from a large number of continuous records, to determine under which conditions the continuous 
rainfall data at any two locations are likely to be ‘similar’, and therefore amenable for use in 
regionalisation. 
 
A nonparametric statistic known as the Mean Integrated Squared Error (MISE; see Scott, 1992) 
was developed for this purpose, as it is able to provide a measure of the departure of the 
empirical joint probability density function of daily and sub-daily rainfall attributes at any two 
locations. The empirical joint probability density function for each daily/sub-daily attribute 
relationship is estimated using a histogram approach, in which the sample is divided into equally 
spaced bins (with spacing in the logarithmic scale for all attributes except for fraction of day with 
no rainfall), and the number of occurrences in each bin then being counted. The frequency 
histograms are transformed to density histograms by dividing each bin by the total number of 
data points in all bins, with the joint density histogram integrating to unity. 
 
Letting vk denote the bin count of the kth bin, then the empirical histogram for daily rainfall and 
any one of the sub-daily attributes listed above at any given location is defined as: 
 
 !" # $%&'(')                      (1) 

 
where hx and hy are the bin widths in the x and y dimensions, and n is the total number of data 
points. The MISE of the density histograms at two locations can then be calculated as the 
integration of the squared difference of each histogram bin: 
 *+,- # - ./0!"1 2 !"345 678           (2) 

 
where the subscripts i and j refer to the two locations.  
 
In all cases the histograms are constructed by pooling rainfall from three consecutive months. 
For example, the data in Figures 3 and 4 were derived using data from Jan-Feb-Mar. This was 
done to maximise the number of data points (rain days) while simultaneously ensuring that 
seasonal effects did not unduly influence the results. Using data from 1970 to 2005, and 
assuming that about a third of the days in any given month are wet, the average number of 
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histogram data points is about 1000. Based on this number, Sturges’ number-of-bins rule 
suggests about 11 bins assuming a Gaussian distribution, with a slightly greater number 
recommended in the case of non-Gaussian distributions (Scott, 1992). We therefore selected a 
bin width for the joint distribution about double that used for the marginal distributions indicated 
in Figures 3 and 4. 
 
The MISE was calculated for all two station pairs for each of the four sub-daily attributes listed in 
the previous section, with the final skill score derived as the averaged MISE across each of the 
four attributes and across all seasons.  
 
2.1.3. Australia-wide analysis 

The approach described above was applied to the full Australian continuous rainfall record 
between 1970 and 2005 for which less than 15% of the record is missing, totaling 167 locations 
Australia-wide or 13861 station pairs. In addition to calculating the MISE skill scores, the 
following factors were calculated for each station pair: 
 

1) Distance metrics, including difference in total distance and the difference in latitude and 
longitude between stations; 

2) Differences in elevation; and 
3) Differences in the distance from the coast. 

 
It is hypothesized that each of these factors could act as a predictor of whether the conditional 
daily/sub-daily relationship at any two stations is similar.  
 
A regression model was developed in which each of the predictors was regressed against a log-
transformed version of each of the MISE skill scores (i.e., 6-minute, 1-hour and 6-hour rainfall, 
and dry fraction), as well as the average MISE for all four attributes. The use of a log-
transformation ensures that the regression residuals follow an approximately Gaussian 
distribution. The results using the MISE calculated for each sub-daily rainfall attribute were 
found to be similar, and as such only the results using the MISE averaged over all four attributes 
are presented.  
 
The coefficient of determination obtained after regressing the average MISE against each of the 
factors presented above is shown in Table 1. Considering the distance metrics first, it is clear 
that the greatest coefficient of determination is for the differences in latitude between respective 
station pairs, whereas very little influence could be observed for changes in longitude. The 
absolute distance has a coefficient of determination greater than that for longitude and less than 
that for latitude, suggesting that it is the difference in latitude which provides the most significant 
driver for whether the daily/sub-daily fragments at two stations are similar. 
 
Table 1: Log-transformed average MISE against a range of plausible predictors 

Predictor R2

Distance between stations (km) 0.25 
Difference in longitude 0.06 
Difference in latitude 0.40 
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Difference in distance from coast (km) 0.04 
Difference in elevation (m) 0.02 

 
A plot of the MISE against difference in latitude is provided in Figure 5. Although there is clearly 
a lot of scatter, the general trend of increasing MISE with increasing difference in latitude is 
clear. The line of best fit (red line) was developed through linear regression against the log-
transformed the MISE, and therefore is reasonably approximated as an exponential curve. The 
implications of such a curve are significant; the skill scores are relatively insensitive to small 
differences in latitude up to about 5° or 10°, whereas significant divergences in the daily/sub-
daily characteristics are apparent for greater latitude differences such as those observed in the 
Hobart, Sydney and Darwin rainfall shown in Figures 3 and 4.  
 
Finally, the results in Table 1 suggest that both the difference in distance from coast and 
difference in elevation yield low coefficients of determination, with values of 0.04 and 0.02 
respectively, suggesting that the daily/sub-daily rainfall relationship is relatively insensitive to 
these factors. This is not to say that daily rainfall does not change significantly as a result of 
changes in elevation or distance from the coast; rather, conditional to a given daily rainfall 
amount, the sub-daily attributes used in this analysis do not appear to be heavily influenced by 
these factors.  

 
The conclusion of this work is that latitude appears to be the primary determinant of the scaling 
between daily and sub-daily rainfall. This information is necessary in identifying nearby stations 
for regionalization of the nonparametric MOF approach developed by Sharma and Srikanthan 
(2006), and may also represent useful information for the regionalization of other daily to sub-
daily disaggregation approaches. The general lack of sensitivity to latitude for small changes in 
latitude, and absence of sensitivity to other factors such as elevation and distance to coast, 
suggests that provided adequate daily data is available, significant regionalisation is likely to be 
possible using the finite continuous dataset presently available for Australia. 
 

Figure 5: MISE averaged over all four sub-daily attributes for all station pairs, against 
difference in latitude between the station pairs (blue dots). Red line is the line of best fit after 
applying linear regression to log-transformed MISE. 
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2.2. The diurnal cycle 

An additional attribute of sub-daily rainfall which has received limited attention in the literature is 
the Australian rainfall diurnal cycle. This cycle represents an inherent property of sub-daily 
rainfall which cannot be resolved at daily and longer timescales, yet provides significant 
information on the nature of rainfall occurring at that location, including the relative contribution 
of stratiform and convective rainfall events to the daily total rainfall amount. The diurnal cycle 
may also significantly influence surface hydrology (e.g. evaporation, runoff), with rainfall in the 
afternoon likely to be evaporated more quickly than at night and thus potentially resulting in 
lower runoff. Finally, although not directly relevant to the work described in this report, an 
understanding of the diurnal cycle has been used to validate the performance of general 
circulation models (e.g. Dai, 2006), as correct simulation of the diurnal precipitation cycle is 
indicative of correct simulation of the underlying physics of precipitation formation.  
 
To our knowledge this study provides the first detailed review of the diurnal cycle in Australian 
rainfall using the complete continuous rainfall dataset.  
 
2.2.1. Review of previous work 

Although only limited work has been conducted specific to Australian conditions, a number of 
studies have been completed at the global scale using a range of land- and satellite-derived 
datasets, and which can be used as a basis to compare the findings of the Australian diurnal 
cycle described later. 
 
An important study of the global precipitation diurnal cycle used three-hourly weather reports 
from about 15000 stations around the globe (Dai, 2001) from 1975 to 1997, and found that over 
most land areas, drizzle and non-showery precipitation occurs most frequently in the morning 
around 0600 local solar time (LST), whereas showery precipitation and thunderstorms occur 
most frequently in the late afternoon. The proposed mechanism for this is a peak in atmospheric 
relative humidity (due to a trough in atmospheric temperature and an approximately constant 
specific humidity) contributing to an early-morning peak in low-intensity precipitation events, 
whereas solar heating on the ground produces a late-afternoon maximum in convective 
available potential energy (CAPE) in the atmosphere that favours late-afternoon moist 
convection and showery precipitation. Furthermore, when considering latitudinal variations in the 
diurnal cycle, it was found that in tropical regions for which convective precipitation represents 
the dominant precipitation inducing mechanism, the amplitude of the diurnal cycle is maximum, 
whereas in the high-latitude regions the diurnal cycle is weaker. 
 
A more recent study using satellite-derived tropical precipitation data from the Tropical Rainfall 
Measuring Mission (TRMM) dataset (Kikuchi and Wang, 2008) from 1998-2006 identified three 
distinct diurnal cycle regimes – oceanic, continental and coastal – which were distinguished 
according to the amplitude, peak time and phase propagation of the cycle. Consistent with the 
study by Dai (2001), the continental regime features a large amplitude and an afternoon peak 
around 1500-1800 LST, whereas the landside coastal regime featured peaks from 1200-2100 
LST. Although emphasising that a significant mechanism for the diurnal cycle is solar insolation, 
which thus explains the observed latitudinal and seasonal variability, the study acknowledges 
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there remain significant uncertainties as to the exact mechanism of the diurnal cycle across 
continental and coastal regimes. 
 
Finally, a notable study by Dai et al (1999) in the United States using a 31-yr hourly gridded 
precipitation product from approximately 2500 stations described in Higgins et al (1996) found 
significant interannual variability in the winter diurnal cycle, which was linked to the influence of 
the El Niño – Southern Oscillation (ENSO) phenomenon (Dai 1999), suggesting that the diurnal 
cycle, and the associated probability of convective and stratiform rainfall events, may not be 
stationary. 
 
2.2.2. The Australian diurnal cycle 

The diurnal cycle in Australian rainfall was examined using the historical record of continuous 
rainfall sequences from 1970 to 2005 described in Section 2.1.3. To ensure spurious results 
were not obtained due to small sample sizes, only those locations with more than 300 days 
rainfall in any given season were considered, so that locations such as southwest Western 
Australia during summer months and northern Australia during winter months were excluded 
from the analysis.  
 
The methodology used to analyse the Australian point-location rainfall diurnal cycle was the 
same as was used by Dai (1999) to study the diurnal cycle of gridded rainfall in the United 
States, and is described as follows. The 6-minute increment continuous data was converted to 
hourly data, and all days with any missing data (indicated by either -8888 or -9999) were 
excluded from the analysis. Then for each hour of the day, the seasonal average frequency 
(percentage of hours having rainfall during the season), the average intensity for each rainfall 
occurrence (the rate when rainfall occurs and expressed as mm/hr), and the total rainfall amount 
(the product of the frequency, intensity and the number of days for the season) was calculated. 
The amplitude (defined as the difference between daily maximum and mean) and the phase (the 
local solar time or LST when the maximum occurs) from the seasonally averaged hourly data 
was then calculated.  
 
An example of the diurnal cycle calculated for Sydney Observatory Hill (station number 066062) 
is shown in Figure 6. As can be seen, a distinct diurnal cycle is present for both frequency and 
rainfall amount, with a minimum occurring at 1000 and with a maximum occurring in the late 
evening around 2200. The intensity of rainfall shows similar timing of the minima and maxima, 
although there is significantly more scatter in the results. 
 
To better understand the behaviour of the diurnal cycle across Australia, a vector plot of 
frequency minima is presented in Figure 7 for summer rainfall,  with the direction of the vector 
pointing to the LST at which the minima occurs, and the length of the vector representing the 
amplitude of the diurnal cycle. As can be seen, the similarity in terms of the timing of the minima 
across all the stations analysed is striking, with a histogram of the minima timing shown in 
Figure 8 confirming that more than 80% of minima occur between the hours of 0900 and 1100 
LST.  
 
The histogram of frequency maxima is shown in Figure 9 for the same summer months, and 
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highlights a strong night time peak, with maxima occurring in the evening between about 1700 
and 2300. The partitioning of data into coastal (<50km from coast) and inland (>50 km from 
coast) stations is shown in Figure 10, suggests that inland rainfall tends to occur in the early 
evening, whereas coastal rainfall is more evenly distributed throughout the night time and early 
morning.  
 

 
Figure 6: The diurnal cycle of frequency, average intensity and total rainfall amount 
plotted against time of day for Sydney Observatory Hill during the summer. The hourly 
data was smoothed using a three-point smoother, with the timing of the minima and 
maxima represented by green and red dots, respectively. 

The diurnal cycle of rainfall intensity was also examined, and found to be slightly different than 
the diurnal cycle of rainfall frequency. Once again considering only summer rainfall, it can be 
seen in Figure 11 that the intensity minima occur in the period from 2200 to 0900, while the 
maxima shown in Figure 12 occur during the afternoon from around 1400 to 1900, peaking 
around 1600.  
 
Finally, the diurnal cycle of rainfall amounts (not shown), which is the product of frequency and 
intensity, was found to be at its minimum at around 0900 and maximum around 1700, and 
corresponds to the average of the frequency and intensity histograms. 
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Figure 7: Vector plot of diurnal cycle of summer (DJF) rainfall frequency minima. The 
vector length represents normalised amplitude in percentage. The direction to which an 
arrow points denotes the local time at which the maximum amplitude occurs as denoted 
by the clock on the top right (north = 0000 Local Solar Time; east = 0600 LST; south = 
1200 LST and west = 1800 LST). The length of the arrows on the clock corresponds to an 
amplitude of 50%.  

 

 
Figure 8: Percentage of stations with frequency minima against time of the day for 
summer.  
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Figure 9: Percentage of stations with frequency maxima against time of the day for 
summer. 

 
Figure 10: As with figure 8, but partitioned into inland (>50km from coast; blue) and 
coastal (<50km from coast; red).  

 

 
Figure 11: Percentage of stations with intensity minima against time of the day for 
summer 
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Figure 12: Percentage of stations with intensity maxima against time of the day for 
summer 

The results for all seasons are summarised in Table 2, where it can be seen that the timing of 
the diurnal cycle is generally consistent across seasons. In contrast, the amplitude varies 
significantly on a seasonal basis. For example, the frequency of rainfall events has a maximum 
average amplitude of 31% during summer, and minimum amplitude of 17% during winter. The 
intensity results are similar, with maximum average amplitude of 37% in summer and minimum 
amplitude of 18% during winter. Finally, the most prominent diurnal cycle occurs for rainfall 
amounts, being the multiplication of occurrence and intensity, with maximum average amplitude 
of 61% in summer and minimum of 24% in winter. This suggests that the diurnal cycle of 
occurrence and intensity are mutually reinforcing, even though the timing of the maxima and 
minima are somewhat different. 
 
To better understand drivers of this seasonal variability, a plot of frequency amplitude against 
latitude is shown in Figure 13 for spring, and shows the amplitude ratio of the diurnal cycle 
increases from about 20% in the high latitude regions through to 50-170% in low latitudes. 
Similar relationships were also observed for rainfall intensity and amounts, suggesting maximum 
amplitudes of the diurnal cycle in tropical regions of Australia. Unsurprisingly, the latitudinal 
dependence was lower in winter due to decreased amplitude in the sub-tropical regions during 
this season, and also lower in summer due to increased amplitude in the higher latitude regions 
during this time. 
 
In contrast, no relationship in amplitude could be found with distance to coast or elevation, even 
though as described earlier the timing of the maxima did show strong influences in the distance 
from the coast. These results are therefore consistent with the results described in the previous 
section on the scaling between daily and sub-daily rainfall, which highlight that as latitude 
decreases the proportion of high-intensity short-duration rainfall events (i.e. convective rainfall) 
increases as a fraction of total daily rainfall, with an absence of any relationship with distance to 
coast and station elevation. 
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Table 2: Summary of diurnal cycle results for each season, for frequency of rainfall occurrence, average intensity for each occurrence, and total 
rainfall amount. 

Season Number of 
stations  

Frequency (%) Intensity (mm/hr) Amounts (mm/season)

  Amplitude 
ratio  (90%ile 
range) 

Time of 
minima 
(80%ile 
range) 

Time of 
maxima 
(80%ile 
range) 

Amplitude 
ratio (90%ile 
range) 

Time of 
minima 
(80%ile 
range) 

Time of 
maxima 
(80%ile 
range) 

Amplitude
ratio  (90%ile 
range) 

Time of 
minima 
(80%ile 
range) 

Time of 
maxima 
(80%ile 
range) 

Summer 140 31%  
(13% - 65%) 

1000  
(0900-1100) 

1800  
(1700-2300) 

37%  
(16% - 61%) 

0400  
(2300-0900) 

1600  
(1500-1800) 

61%  
(23%-117%) 

0900  
(0200-1200) 

1700  
(1600-2000) 

Autumn 124 20%  
(9% - 50%) 

1000  
(0900-1100) 

1700  
(1500-0700) 

24%  
(11% - 52%) 

0700  
(2300-0800) 

1600  
(1000-1800) 

31%  
(11%-92%) 

1000  
(0100-1200) 

1700  
(1500-2100) 

Winter 111 17%  
(9% - 32%) 

1100  
(1000-1100) 

0600  
(1700-0600) 

18%  
(10% - 36%) 

0700  
(0100-0900) 

1100  
(1000-2000) 

24%  
(9% - 51%) 

1000  
(0400-1500) 

1800  
(1600-2300) 

Spring 126 27%  
(13% - 52%) 

1100  
(1000-1100) 

0600  
(1600-0700) 

30%  
(10% - 60%) 

0700
(0100-0900) 

1700  
(1400-1900) 

52%  
(17% -101%) 

0900  
(0200-1100) 

1800  
(1500-2000) 
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Figure 13: Frequency amplitude during spring. Results derived using a larger dataset 
(using all stations with <50% missing), and are qualitatively similar to the smaller dataset 
(<15% missing) used for the remainder of the analysis. 

In conclusion, a pronounced diurnal cycle can be observed in Australian rainfall, with remarkable 
spatial homogeneity as well as strong consistency between seasons. The geographic and 
seasonal influences resulted in larger diurnal cycle amplitudes at low latitudes, and larger 
diurnal cycle amplitudes in summer compared with winter, with both likely to be due to an 
increased prevalence of convective rainfall systems occurring in the afternoon and early evening 
due to warmer temperatures and associated atmospheric instability (e.g. see discussion in 
Peppler and Lamb, 1989). Furthermore, a distinct coastal influence could be observed regarding 
the timing of the diurnal cycle maxima, with inland locations exhibiting a pronounced early 
evening maximum whereas coastal regions showed maxima distributed throughout the night 
time. 
 
The implications of this analysis are several. Firstly, correct representation of the diurnal cycle in 
continuous rainfall simulation may result in better representation of runoff in cases where 
evaporative losses are expected to be important, with this expected to be most relevant for the 
reproduction of low flows. Secondly, the diurnal cycle is clearly related to rainfall-inducing 
mechanisms, which suggests that in regionalising the non-parametric MOF approach developed 
by Sharma and Srikanthan (2006), it will be necessary to select nearby stations with similar 
diurnal cycles, by, for example, only selecting stations at similar latitudes, and only selecting 
coastal stations if the location of interest is coastal.  
 
Finally, the influence of inter-annual or inter-decadal variability in the diurnal cycle, or the 
identification of possible trends related to anthropogenic global warming resulting in possible 
changes in rainfall-inducing mechanisms described for the United States by Dai et al (1999) and 
Dai (1999), have not been considered here and represents an intriguing area of future research. 
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3. Continuous rainfall simulation 

3.1. Overview 

Continuous rainfall simulation refers to the synthetic generation of continuous rainfall sequences 
using one or more stochastic models, with the focus of this report being on those models that 
are capable of simulating rainfall at a single point location. It is noted that the main argument for 
the use of continuous simulation in design flood estimation is the elimination of the assumptions 
involved with the selection of initial and continuing losses and identification of a single temporal 
pattern for the design storm, such that the models described in this report are those which are 
able to reproduce sub-daily rainfall features, as well as the longer-term persistence 
characteristics which inform the antecedent moisture conditions of the catchment.  
 
If extended, high-quality sub-daily rainfall data was available at any location of interest, the 
direct application the historical dataset to inform the rainfall-runoff modelling would in many 
cases be adequate for the purposes of flood estimation. Nevertheless, even for regions where 
significant sub-daily data is available, it should be remembered that the observed record 
represents only a single realisation of all possible rainfall sequences, such that the simulation of 
alternative sequences could be useful to better characterise flood quantiles at the point or in the 
system of interest.  
 
As described earlier in this report, however, long and accurate pluviograph records are generally 
unavailable  for most locations throughout Australia, although in many cases short-duration 
continuous rainfall data or extended daily data are available. This suggests that the greatest 
need for the generation of physically realistic, synthetic rainfall sequences most likely will be at 
locations where the instrumental record is at its most limited, with the hierarchy of data 
availability and associated assumptions described in Table 3. 
 
Table 3: Hierarchy of assumptions associated with continuous rainfall simulation. 

Data availability Applicability of continuous rainfall 
simulation  

Hierarchy of assumptions and 
sources of uncertainty1 

Extended, high-
quality pluviograph 
data 

Low to medium, as continuous 
rainfall sequences and associated 
statistics (e.g. IFD statistics) often 
can be derived directly from the 
historical record. Nevertheless, as 
the historical data represents only a 
single realisation of all possible 
rainfall sequences, generation of 
alternative sequences could assist in 
better characterising flood quantiles 
at the point or system of interest.  

Statistics of climate implied by the 
instrumental record valid for future 
period of interest. 

Limited pluviograph 
data, and extended 
daily data  

Medium, as recorded pluviograph 
data is insufficient to capture rainfall 
extremes or a sufficient 

Scaling behaviour between daily and 
sub-daily rainfall attributes over the 
pluviograph record is assumed to be 

                                                 
1 The term ‘hierarchy’ is used to highlight that assumptions in each row also apply for all subsequent rows 
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representation of climate variability.  stationary. 
No pluviograph data, 
and extended daily 
data 

High, as recorded pluviograph data is 
unavailable.  

Partial regionalisation. Nearby 
pluviograph records assumed to be 
representative of at-site daily/sub-daily 
attributes. 

No pluviograph data 
nor daily data 
available  

High, as recorded pluviograph data is 
unavailable.  

Complete regionalisation. Model 
parameters and/or daily/sub-daily 
fragments derived using nearby daily 
and pluviograph records. 

 
3.2. Description of continuous rainfall modelling approaches 

In this report, four conceptual approaches to continuous rainfall simulation are described which 
are designed to simulate the behaviour of historical rainfall variability at sub-daily and longer 
timescales. These methods include: 

•  Event-based models, such as the Disaggregated Rectangular Intensity Pulse (DRIP) 
model; 

•  Poisson cluster models, including the Bartlett-Lewis Rectangular Pulse and Neyman-
Scott Rectangular Pulse family of models; 

•  Multi-scaling models, such as the canonical and microcanonical cascades family of 
models; and  

•  Nonparametric resampling models, such as the k-nearest neighbour method of 
fragments approach. 

 
Each of these models has been developed specifically to represent sub-daily rainfall, and most 
have been the subject of several decades of extensive research and refinement. Attributes 
associated with these models are summarised in Table 4, and each of these models are 
described in more detail in the following sections. 
3.2.1. Event-based models 

Also known as ‘alternating renewal’ or ‘profile-based’ models, event-based models break the 
rainfall process into a series of events characterised by inter-arrival time, storm duration and 
mean storm intensity. Early work on such models by Eagleson (1978) involved simulating rainfall 
using a Poisson arrival process, the time between events and the event duration distributed 
exponentially, and the storm event depth following a gamma distribution. Since this time these 
models have undergone significant development, including the elucidation of the self-similarity 
concept, in which storms are found to exhibit similar internal structure despite differing durations 
and storm depths, thus providing a basis for the disaggregation of storm events into within-storm 
temporal patterns (e.g. Woolhiser and Osborne, 1985; Koutsoyiannis and Foufoula-Georgiou, 
1993),  and the development of a generalised exponential distribution for representing inter-
storm and storm durations (Lambert and Kuczera, 1998). 
 
The Disaggregated Rectangular Intensity Pulse (DRIP) model was developed by Heneker et al 
(2001) with the view to addressing several perceived deficiencies in existing event-based 
models, particularly with regard to the simulation of extreme rainfall and aggregation statistics. 
The DRIP modelling process is divided into two distinct stages. The generation stage (Figure 
14a) is represented by three random variables: dry spell or inter-event time ta, the wet spell or 
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storm duration td, and the average intensity, i, with ta and td both described by a generalised 
exponential distribution and the intensity described by a generalised Pareto distribution. In the 
second stage, the individual events are disaggregated through a constrained random walk 
(Figure 14b) to represent the rainfall temporal pattern for each event.  
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Table 4: Major classes of continuous simulation models, and associated attributes 

Conceptual 
approach 

Specific 
implementations 
and key 
references 

Regionalised 
methods 
available / 
under 
development?  

Software 
currently 
available for 
use by 
practitioners

Able to 
handle 
missing 
data 

Capable of 
simulating 
the 
seasonal 
cycle? 

Capable of 
simulating 
the diurnal 
cycle? 

Capable of simulating 
multi-scale persistence 

Developed 
methodology 
available for 
incorporation of 
climate change 

Event based 
models 

DRIP (Heneker et 
al, 2001) 

Jennings et al 
(2009) 

Y Y Y N Within-spell simulated; 
between-spell or low-
frequency not simulated. 

N 

Poisson 
cluster models 

Bartlett-Lewis 
and Neyman-
Scott Rectangular 
Pulse models 
Eagleson (1978); 
Rodriguez-Iturbe 
et al (1984; 
1987a,b; 1988) 

Gyasi-Agyei 
(1999);  
Gyasi-Agyei and 
Parvez Bin 
Mahbub (2007); 
Cowpertwait and 
O’Connell 
(1997) 

N Y Y N Within-spell simulated; 
between-spell or low-
frequency not simulated. 

N 

Nonparametric 
re-sampling 

k-nearest-
neighbour 
method of 
fragments 
(Sharma and 
Srikanthan, 2006) 

Westra and 
Sharma (2009) 

N Y Y Y Within-spell simulated; 
within-day simulated; low-
frequency conditional on 
daily model 

N 

Multi-scaling 
models  

Canonical and 
microcanonical  
cascades 
Schertzer and 
Lovejoy (1987) 
Gupta and 
Waymire (1993) 

 N Y Y N Within spell partially 
simulated; low-frequency 
conditional on daily model 

N 
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Figure 14: The Disaggregated Rectangular Intensity Pulse model (extracted from Heneker 
et al, 2001).  

Recently, DRIP has been extended to any location where sufficient daily data is available, thus 
greatly augmenting the domain of the approach. The basis of this regionalisation is a ‘master-
target’ scaling relationship in which model calibration is undertaken at a ‘master’ site with a long 
pluviograph record which is then updated and scaled to the ‘target’ site of interest using the 
information from either a short pluviograph or daily rainfall record (Jennings et al, 2009), with 
testing providing encouraging results for separations of up to 190 km between the master and 
the target. 
 
3.2.2. Poisson cluster models 

A related class of models are the Poisson cluster models, which are a generalisation of the 
event models proposed by Eagleson (1978) and were developed due to the observation that 
rainfall occurs as clusters of storm cells (Kavvas and Delleur, 1981). In the most general form, 
the Poisson cluster models simulate rainfall using clusters of rainfall cells temporally displaced 
from a storm centre, with the Neyman-Scott and Bartlett-Lewis rectangular pulse models 
developed by Rodriguez-Iturbe et al (1984; 1987a,b; 1988) in the context of rainfall simulation 
being two popular alternatives.  
 
The Bartlett-Lewis and Neyman-Scott point process models are shown in Figure 15a, with both 
models assuming a Poisson arrival process (rate λ). The basic form of the Bartlett-Lewis model 
then simulates the arrival of cells as another Poisson process (rate β), with the duration of 
activity of each storm being described by an exponential distribution (parameter γ) and the cell 
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depth and duration also distributed using an exponential distribution (parameters 1/µx and η). In 
contrast, the Neyman-Scott model assumes a random number of cell arrivals independent and 
identically distributed around the storm centre, with the number of cell arrivals following a 
geometric or Poisson distribution (mean µc) and the random depth and duration both following 
an exponential distribution (parameters 1/µx and η). The rectangular pulse part of both models is 
shown in Figure 15b, in which the evolution of the storm is simply described as the addition of 
each of the simulated storm cells. 
 
 

 
Figure 15: (a) Schematic for Poisson cluster point-process models; (b) schematic for the 
rectangular pulse model (extracted from Onof et al, 2000). 

Since these early papers, a number of developments have been made to both modelling 
approaches. For example the Bartlett-Lewis approach has been adapted for disaggregation from 
daily to hourly data through a conditional simulation approach (Glasbey et al, 1995) or a 
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proportional adjustment approach (Koutsoyannis and Onof, 2001). Additional developments to 
the Bartlett-Lewis model include the introduction of a high-frequency jitter to produce more 
irregular and realistic rainfall sequences (Onof and Wheater, 1994; Gyasi-Agyei and Willgoose, 
1997), the development of an approach to estimate model parameters using only daily data for 
cases where sub-daily data are unavailable or insufficiently reliable (Smithers et al, 2002), and 
the development of approaches for parameter regionalisation by Gyasi-Agyei (1999) and Gyasi-
Agyei and Parvez Bin Mahbub (2007). The Neyman-Scott model also has undergone significant 
development, such as parameter regionalisation by regressing model parameters on site 
variables such as altitude (Cowpertwait and O’Connell, 1997), spatial generalisation by the 
introduction of an additional parameter to represent cell radius (Cowpertwait et al, 2002), and 
the development of a mixed model to allow the supposition of independent rainfall processes 
such as convective and stratiform rainfall (Cowpertwait, 2003).  
 
Empirical and analytical comparisons of the two models are provided by Velghe et al (1994) and 
Cowpertwait (1998), respectively, with a detailed review of Poisson-cluster models provided in 
Onof et al (2000). 
 
3.2.3. Multi-scaling models 

Multi-scaling models are a class of disaggregation models that take advantage of the 
observation that rainfall behaves as a “scale-invariant” process (e.g. Mandelbrot, 1982; Lovejoy 
and Maldelbrot, 1985, Schertzer and Lovejoy, 1987; Lovejoy and Schertzer, 1990; Gupta and 
Waymire, 1993; Onof et al, 2000), such that once fluctuations at a given scale are understood, 
those at other scales can be deduced and need not be specified independently. This allows for 
the generation of synthetic high-resolution rainfall sequences based on observed or generated 
rainfall at coarser resolutions, with various multi-scaling approaches applied in hydrology to 
disaggregate from daily to fine-scale sub-daily rainfall (Olsson and Berndtsson, 1998; Menabde 
et al, 1999; Menabde and Sivapalan, 2000; Sivakumar, 2001).   
 
Two popular models are the canonical and microcanonical versions of the discrete multiplicative 
random cascade (Schertzer and Lovejoy, 1987; Gupta and Waymire, 1993; Over and Gupta, 
1994, 1996), and these are described in detail in Molnar and Burlando (2005). The structure of 
these models is shown in Figure 16 using a branching number b = 2. Here, the ith interval after 
n levels of subdivision is denoted ∆i

n, with dimensionless spatial scale defined as λn = b-n.  
 
The distribution of mass then occurs via a multiplicative process through all levels n of the 
cascade, so that the mass µn in subdivision ∆i

n is: 
 
 9&:Δ&1 < # =>?& ∏ A3:B<&3CD         
 
where r0 is an initial depth at n = 0 and W is the cascade generator. The difference between the 
canonical and microcanonical models is the treatment of W, with mass preserved on average for 
the canonical model and exactly between the n levels in the cascade for the microcanonical 
model. 
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Figure 16: Framework of canonical random cascade model with branching number b = 2 
and cascade generator W for scales n = 0, 1 and 2. r0 denotes rainfall amount at scale 0, 
which in many applications corresponds to daily rainfall (extracted from Molnar and 
Burlando, 2005). 

Two recent comparisons have been conducted of the canonical and microcanonical models. 
The first, by Molnar and Burlando (2005) using 20 year 10-minute rainfall records from the 
MeteoSwiss station in Zurich (1979-1998), found that canonical cascades are generally better at 
reproducing the distribution of rainfall at the 10-minute scale, whereas both models simulated 
the growth of intermittency across scales well. Although both models reproduced annual 
maxima properly, performance deteriorated for longer durations, suggesting potentially 
significant problems in simulating rainfall extremes. Finally, rainfall variability was found to be 
best simulated through the canonical models. Pui et al (2009) also compared both using Sydney 
Observatory Hill 6-minute incremented continuous rainfall data from 1916 to 2001, and found 
that the microcanonical model overestimated hourly variance by a large margin, whereas the 
canonical cascades model slightly underestimated variance. Both models were found to 
significantly underestimate wet spell length, with the canonical model in particular found to be 
poor in simulating fine-scale persistence structures.  
 
Finally, a number of researchers have shown that the inherent structures in rainfall are much 
more complex than what can be represented by low-dimensional chaotic or simple multi-fractal 
multiplicative random cascade models (Koutsoyiannis and Pachakis, 1996; Gaume et al, 2006), 
such that fitting the scaling model alone will not guarantee all the relevant attributes of the data 
will be adequately reproduced (Sivakumar and Sharma, 2008). 
  
3.2.4. Nonparametric re-sampling models 

Non-parametric re-sampling models are models which conditionally resample from the historical 
dataset. An attraction of this framework is that by sampling directly from the data they do not 
require the specification of distribution functions for the occurrence and amounts processes in 
precipitation (e.g. Wilks and Wilby, 1999). Examples include the use of a simulated annealing 
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algorithm for generating precipitation sequences (Bardossy, 1998) and the application of a k-
nearest neighbour (k-NN) bootstrapping approach by Lall and Sharma (1996) which has been 
further developed by Rajagopalan and Lall (1999), Buishand and Brandsma (2001) and Yates et 
al (2003), and Apipattanavis et al (2007).  
 
At the sub-daily timescale, a k-nearest neighbour method of fragments (MOF) approach has 
been developed by Sharma and Srikanthan (2006), in which temporal dependence is 
maintained at the daily timescale, and followed by the resampling of fragments at the sub-daily 
scale conditional to daily rainfall amount and the wetness state of the previous and next days. 
 
The method takes as its starting point the availability of extended daily data, which may be 
derived directly from the instrumental record or through the stochastic generation of daily rainfall 
sequences such as via the model described in Mehrotra and Sharma (2007). The algorithm for 
generating continuous rainfall sequences is therefore as follows: 

1. From daily rainfall (E1 # ∑ G1,HH ) where m represents the number of sub-daily 
increments, obtain the sub-daily fragment (!1,H # G1,H/E1) such that the sum of all sub-
daily fragments for each day is unity. 

2. To disaggregate daily rainfall Rt at time t, form a moving window of length l days centred 
around day t. Define l as 15 days if the historical record is longer than 40 year and 30 
days if shorter than 20 years. Interpolate for intermediate record lengths. Segregate 
historical rainfall data into the following four rainfall classes: 
 
  CLASS 1:  E3 I 0|:E3JD # 0,E3KD # 0<  
  CLASS 2:  E3 I 0|:E3JD I 0,E3KD # 0<  
  CLASS 3:  E3 I 0|:E3JD # 0,E3KD I 0<  
  CLASS 4:  E3 I 0|:E3JD I 0,E3KD I 0<  
 
where j represents a day falling within the moving window centred on the current day t. 

3. Identify the class corresponding to the daily rainfall Rt that is to be disaggregated. Denote 
the class ct where LM N O1 2 4Q. 

4. Identify the k nearest neighbours of the conditioning vector [Rt] as the days 
corresponding to the k lowest absolute departures |Rt - Rj| where L3 R LM  . Specify S # √U 
where n represents the sample size of the class members falling within the moving 
window. Sample neighbour i from the following conditional distribution: V:B< #  1/B∑ 1/WX3CD  

where p(i) represents the probability of selecting neighbour i, with i = 1 denoting the 
neighbour having the smallest absolute departure. Denoting (i) as the observation 
associated with the ith neighbour, the disaggregate series can be specified as GM,H # EM Y !:1<,H. 

5. Increment t and repeat steps 2 to 4 until disaggregation is completed. 
 
This approach has been tested using continuous data in Sydney Observatory Hill, and was 
found to perform well in reproducing a range of statistics including extreme statistics such one-
hour IFD behaviour, together with persistence attributes at a range of scales (see also Mehrotra 
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and Sharma, 2007; Pui et al, 2009).  
 
The above methodology was originally developed for locations with extended continuous data. 
Nevertheless, a limitation of this approach is that regardless of how much data is available, it is 
impossible to exceed the maximum recorded rainfall event through such a re-sampling algorithm 
(Furrer and Katz, 2008). Furthermore, as discussed previously, pluviograph data is often 
unavailable at the location of interest, which can severely restrict the application of this method.  
 
To this end, techniques for regionalisation are currently being developed, with preliminary 
results suggesting that sub-daily fragments from nearby pluviograph stations can be substituted 
for at-site pluviograph stations to form the basis for the re-sampling algorithm, potentially 
extending the approach to any location for which daily data is available (Westra and Sharma, 
2009). Sampling from a greater number of locations also provides a greater density of 
observations at the tail end of the distribution, therefore partially overcoming the limitations 
associated with representing the extremes described by Furrer and Katz (2008). The basis for 
identifying nearby locations was described at length in Section 2 of this report, with results 
suggesting that stations that are within a similar latitude band and distance from coast are likely 
to be substitutable, and with sampling recommended from multiple nearby stations to avoid any 
possible biases due to reliance on only a single nearby rain gauge. Furthermore, work is also 
underway to regionalising the daily rainfall generator of Mehrotra and Sharma (2007) by using a 
similar approach to draw on nearby daily rainfall gauges, thereby extending non-parametric re-
sampling approach of Sharma and Srikanthan (2006) to any location in Australia.  
 
 
3.3. Validation of continuous rainfall simulation models 

The validation of the continuous rainfall simulation models, preferably on statistics not used in 
the calibration of model parameters, is an important step in the development of 
recommendations for more widespread use of continuous rainfall approaches as a viable 
alternative to Intensity-Frequency-Duration (IFD) estimates in design flood estimation. Due to 
the complexity of rainfall (e.g. see discussion of high-dimensional chaotic properties of rainfall in 
Koutsoyiannis and Pachakis, 1996; Gaume et al, 2006), it is likely that none of the above 
models will be able capture all the attributes of rainfall in all regions throughout Australia, such 
that in many cases the appropriate model will depend on the specific application. 
 
Several studies are available comparing continuous simulation models using a subset of time 
scales. For example, Srikanthan et al (2005) compare two daily simulation models, namely the 
transition probability matrix (TPM) model of Haan et al (1976) and Srikanthan and McMahon 
(1985) with a non-parametric daily model for occurrences and amounts developed by Harrold et 
al (2003a,b), considering a combination of daily, monthly and annual statistics and finding that 
the nonparametric model provided marginally better performance at the cost of greater model 
complexity. Various other studies compared several of the previously described models using 
overseas data, such as the Poisson cluster models in the United Kingdom, and continental 
Europe (Onof et al, 2000), and a review of canonical and microcanonical cascade models in 
Zurich, Switzerland by Molnar and Burlando (2005). 
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Two studies have been completed recently in the context of Australian rainfall at timescales that 
include the sub-daily timescale. The first, by Frost et al (2004), compared a 30 parameter 
version of the DRIP model of Heneker et al (2001) with a six parameter version of the single-
point version of the spatial Neyman-Scott Rectangular Pulse (NSRP) model developed by 
Cowpertwait et al (2002). The models were compared using continuous rainfall data from 10 
major cities and regional centres: Adelaide, Alice Springs, Brisbane, Cairns, Darwin, Hobart, 
Melbourne, Perth, Sydney and Townsville, with all stations with the exception of Adelaide having 
45 years or more data. The models were compared using a large number of statistics which 
considered results at the 1, 6 and 24-hour aggregation levels, together with a large range of 
daily, monthly and annual aggregate statistics. The outcomes of the validation are summarised 
briefly below: 

•  Wet spell and dry spell probabilities at short (1,6 and 24 hour) timescales was 
reproduced well by DRIP, and less well by NSRP particularly with regard to the 
simulation of the seasonality of dry spell durations; 

•  The daily mean, standard deviation and skew was reproduced well by both models, 
although NSRP was found to outperform DRIP in reproducing daily autocorrelation 
statistics; 

•  The NSRP model simulates the annual rainfall distribution more satisfactorily than DRIP, 
with DRIP underestimating annual variance; and 

•  The NSRP was found to simulate IFD curves well for the 1, 6 and 24 hour timescales. 
DRIP was able to simulate finer (0.1 hr) timescales as well, and was found to perform 
satisfactorily in reproducing 1, 6 and 24 hour rainfall with the exception of the 
underestimation of 1 hour rainfall in Sydney and Melbourne for 2-10 yr recurrence 
intervals, and a severe overestimation of the short-duration (0.1hr) statistics for some 
tropical sites.  

The conclusion of this work is that, despite the differences described above, both models 
provide adequate reproduction over a wide range of statistics, with little overwhelming evidence 
in favour of either model structure. The DRIP model has since been included in the CRC for 
Catchment Hydrology’s toolkit, as it is capable of generating sub-hourly rainfall.  
 
A second comparison study by Pui et al (2009) focused on the capacity of a range of models to 
disaggregate from daily to sub-daily data, with the implicit assumption that daily data would be 
available or can be adequately generated at the location of interest. The models examined 
include the canonical and microcanonical cascade models using the methodology described in 
Gupta and Waymire (1993), Over and Gupta (1994; 1996) and Molnar and Burlando (2005), the 
Randomised Bartlett Lewis Model (RBLM) coupled with a proportional adjusting procedure 
(Koutsoyannis and Onof, 2001), and the nonparametric method of fragments (MOF) of Sharma 
and Srikanthan (2006), with all testing conducted using a single pluviograph record at Sydney 
Observatory Hill from 1916 to 2001. As this study has yet to be published, it is reproduced in 
Appendix 1 of this report. 
 
The models were evaluated based on their ability to simulate rainfall variability and 
intermittency, within-day wet spells, and extreme rainfall percentiles. The outcomes of the study 
are summarised as follows: 

•  All models were found to reproduce mean hourly rainfall well, although the 
microcanonical model overestimated hourly variance by a large margin. In contrast, the 
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canonical model slightly underestimates hourly variance; 
•  Wet spells were found to be captured best by the MOF model, with the mean spell length 

per day and the mean number of wet spells occurrences per day performing well. The 
canonical model was found to fail in generating within-day wet spells longer than four 
hours and overestimated the occurrences of short spells (1-2 hours), suggesting that it is 
unable to properly simulate rainfall persistence; and 

•  The MOF model performs well in reproducing IFD behaviour at an hourly time scale. In 
contrast, the canonical cascades model underestimated the extreme rainfall statistics, 
the microcanonical cascades model significantly overestimated the extreme rainfall 
statistics, and the RBLM model was found to be poor in reproducing low recurrence 
interval design rainfall values; 

The study concludes that the MOF model outperforms all the other models in reproducing the 
evaluated rainfalls statistics, with the RBLM model performing better than the cascade models 
although with slightly inflated simulation of proportions at an hourly timescale as well as an 
underestimation of extreme rainfall at low return periods.  
 
Unfortunately the studies of Frost et al (2004) and Pui et al (2009) are not directly comparable. 
The emphasis of the Pui et al (2009) study was on disaggregation from daily to sub-daily rainfall 
rather than on continuous simulation, and used a version of the Poisson cluster models 
specifically adapted for disaggregation. Furthermore, the non-parametric method of fragments 
approach was developed after the study by Frost et al (2004) and therefore has not been 
comprehensively tested against alternative continuous simulation models.  
 
Nevertheless, the results of both studies as summarised in Table 5 show that, with the 
exception of the canonical and microcanonical cascades models, all remaining model structures 
are capable of reproducing most of the statistics analysed, with the selection of the suitable 
model for the application in question likely to be determined by a combination of intended 
application and data availability.  
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Table 5: Summary of validation results from various studies comparing continuous simulation approaches. References are F04 (Frost et al, 
2004), MB05 (Molnar and Burlando, 2005) and P09 (Pui et al, 2009) 

Conceptual 
approach 

Reproduction of sub-daily 
statistics (e.g. mean, standard 
deviation, skew, 
autocorrelation, and dry- and 
wet-spells) 

Reproduction of aggregate 
(daily, monthly, annual) 
statistics? 

Reproduction of IFD statistics? Reproduction of low-frequency 
(i.e. interannual, interdecadal) 
variability? 

Event based models
(DRIP) 

Good, although slight 
overestimation of lag 1 hr and 
underestimation of lag 24 hr 
autocorrelation (F04) 

Most daily statistics reproduced 
well with exception of daily 
autocorrelation. Annual 
distribution reasonable at most 
locations but with underestimation 
of annual variance. (F04) 

Generally good with some 
exceptions particularly at sub-
hourly scale (F04) 

Untested, but likely to be poor.  

Poisson cluster 
models 
(NSRP/RBLM) 

Generally good, although the 
NSRP performed poorly for wet 
spell and dry spell statistics (F04) 

Most daily statistics reproduced 
well. Annual distribution for NSRP 
reasonable at most locations 
(F04) 

Good (F04). RBLM poorly 
simulates low ARI design rainfall 
values (P09) 

Untested, but continuous 
simulation versions (e.g. NSRP) 
likely to be poor.  

Nonparametric 
(Method of 
Fragments) 

Good (P09)  Good (P09) Disaggregation model only, so 
results conditional to daily 
simulation model 

Cascades (canonical 
and microcanonical)  

Hourly variance significantly 
overestimated by microcanonical 
model and slightly underestimated 
by canonical model. Cascades 
model also underestimates wet 
spell length (P09) 

 Questionable or poor reproduction 
of most IFD statistics (MB05; P09)

Disaggregation model only, so 
results conditional to daily 
simulation model 
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4. Conclusions and future stages 

As described in the Background section, this report describes the outcome of the first of three 
stages of work to develop, test and validate the procedures for generating continuous rainfall 
sequences at point locations in Australia, as well as suggesting modifications in existing 
methods to account for the impact of climate change. 
 
This report has focused on the identification and description of a range of alternative models that 
are capable of reproducing continuous sequences of rainfall at sub-daily and longer timescales, 
as well as providing a summary of a number of validation studies for each of the models. The 
outcomes of this review are that DRIP, the Poisson cluster class of models, and the MOF model, 
are each capable of simulating most of the statistics of rainfall, including IFD characteristics 
which are essential for simulation of flood behaviour. Nevertheless, the testing of the models in 
Australia has not been comprehensive, particularly with relation to the MOF model and 
regionalised versions of the remaining models, and recommendations for addressing these 
issues are described below. 
 
The other contribution of this report was the examination of daily/sub-daily properties of rainfall, 
with a focus on (a) the scaling behaviour of rainfall, and (b) the timing of rainfall as described by 
the diurnal cycle. This research showed that there was remarkable similarity in the behaviour of 
sub-daily rainfall conditional to daily rainfall amount for different locations, provided that the 
locations were at a similar latitude in the case of daily/sub-daily scaling and amplitude of the 
diurnal cycle, and that the locations were at a similar distance to the coast in terms of the timing 
of the diurnal cycle. This is reassuring given the limited availability of sub-daily rainfall in 
Australia compared to daily rainfall, suggesting that properties of sub-daily rainfall using data 
from nearby locations can be used to develop continuous rainfall sequences at the location in 
question provided an appropriate technique is used for the regionalisation. 
 
To provide validation of the continuous rainfall simulation as a total system for use in flood 
estimation and engineering design, there are a number of outstanding questions which require 
further work. These are described as follows. 
 
4.1. Regionalisation of the method of fragments method 

The development of a regionalised version of the method of fragments method developed by 
Sharma and Srikanthan (2006) is an important outcome of this project and work is well 
underway in developing a complete method. The proposed approach was described earlier, and 
is based on sampling sub-daily fragments from multiple ‘nearby’ continuous rainfall locations 
with similar daily/sub-daily rainfall properties, with the determination of ‘nearby’ locations likely to 
include the latitude and distance to coast. 
 
Although the conceptual approach has been well developed, there are a number of outstanding 
issues which require addressing. These include identification of the number of nearby stations 
used for resampling, and the handling of stations with different record lengths to ensure the 
sampling is unbiased to a particular climate regime. Furthermore, the method has yet to be 
carefully tested, and this testing will no doubt lead to further refinement.  



Australian Rainfall and Runoff Revision Project 4: Continuous Rainfall Sequences at a Point 

 
P4/S1/002 :Feb 2010 31 

 
It is furthermore proposed that this work be extended to develop a fully regionalised approach, 
by also incorporating the capability of re-sampling daily rainfall characteristics from nearby daily 
rainfall sampling locations. This will ensure that both daily and sub-daily rainfall can be 
generated at any gauged or ungauged location in Australia.  
 
Based on the positive results derived from preliminary testing, it is recommended that the 
regionalised method of fragments methodology be finalised in the next project stage. 
 
4.2. Validation of continuous simulation models 

As described in Section 3 of this report, significant validation already has been conducted on all 
the models described, and therefore a complete review of each of the models is unwarranted. 
Nevertheless, the following gaps were identified which require further investigation: 

•  The MOF model should be compared to the DRIP and/or the NSRP model for multiple 
locations around Australia, such as the locations used by Frost et al (2004) in validating 
the DRIP and NSRP models; and 

•  Due to the importance of simulating antecedent conditions prior to the flood-producing 
rainfall event as a justification for continuous simulation in flood estimation, the joint 
probability of antecedent moisture statistics (e.g. 1, 7, 30 and 90 day aggregate rainfall 
prior to extreme rainfall events) and design rainfall events should be assessed as part of 
the validation exercise. 

 
Furthermore, as described previously, the validation studies completed to-date have focused on 
results derived from models calibrated using extended at-site pluviograph data. In contrast, the 
value of continuous simulation is likely to be greatest at locations where long instrumental 
records are unavailable, such that the more important question is how the methods work in 
regionalisation. 
 
With the exception of the multi-scaling models, all the major model classes have regionalised 
versions available or under development. As such, it is recommended that the regionalisation 
capabilities of DRIP (e.g. Jennings et al, 2009), regionalised versions of the Poisson cluster 
model (e.g. Gyasi-Agyei, 1999; Gyasi-Agyei and Parvez Bin Mahbub, 2007; Cowpertwait and 
O’Connell, 1997) and the nonparametric resampling model (e.g. Westra et al, 2009) be tested 
for a range of locations around Australia. The validation statistics should include those 
developed by Frost et al (2004), together with testing of the preservation of antecedent moisture 
characteristics prior to extreme rainfall events of various storm durations.  
 
Finally, as continuous rainfall simulation results are expected to be used in rainfall-runoff models 
to generate flow series, the testing of differences in runoff assuming varying catchment 
characteristics for each of the continuous simulation approaches is warranted.  
4.3. Incorporation of climate change 

To accurately incorporate climate change projections into continuous rainfall sequences, it is 
necessary to capture projected changes in: 

•  Seasonal and annual aggregate rainfall statistics, including mean, variance and skew; 
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•  Large-scale global or regional climate drivers such as ENSO which drive low-frequency 
rainfall variability; 

•  The behaviour of rainfall extremes, such as the 1 in 100 year rainfall event with durations 
from fine-scale sub-daily (e.g. 10 minute) through to multiple consecutive days; 

•  The relative distributions of dry and wet spells associated with the differing projections 
for rainfall averages and extremes; and 

•  The character of sub-daily rainfall attributes such as the wet fraction for each daily 
rainfall occurrence, and the diurnal cycle. 

 
There is no methodology available that is able to capture the full range of changes which are 
likely to occur as a result of anthropogenic climate change, with climate impacts assessments 
usually considering only those aspects of future change which are most relevant for the intended 
study. For example, in considering likely changes in flood risk, the emphasis has been on 
applying regional climate models to derive change factors for short-duration events of a suitably 
rare recurrence interval (e.g. Abbs, 2007; Abbs and Rafter, 2008). In contrast, water resource 
assessments often focus on seasonal changes in rainfall such as described in CSIRO (2007), 
with less emphasis on changes to fine-temporal or special-scale rainfall patterns. 
 
It is generally understood that extreme rainfall is likely to increase over much of Australia, 
regardless of the direction of change of seasonal or annual rainfall, due to the strong physical 
link between temperature increases and the water holding capacity in the atmosphere (refer to 
Westra et al, 2009 and references therein, attached as Appendix 2 of this report). This 
suggests that the relationship between antecedent conditions and flood-producing rainfall is 
likely to change, with more extreme rainfall likely to fall on drier catchments. 
 
There are at least two general classes of approaches to generating continuous sequences of 
rainfall under a changed climate. The first, known as daily scaling (e.g. Chiew, 2006), involves 
the examination of the relative change in rainfall amounts using daily rainfall outputs from one or 
more General Circulation Models (GCMs) under historical and future conditions, with different 
scaling factors applied across the range of rainfall percentiles ensuring that different factors can 
be applied to the averages and extremes of rainfall. A limitation of this approach is the direct 
reliance on GCM outputs of rainfall, which is generally considered to be amongst the least 
reliable of the GCM variables (e.g. Johnson and Sharma, 2009).  
 
The second approach, known as statistical (or empirical) downscaling, arguably represents the 
most promising tool to generate extended continuous rainfall sequences (e.g. Fowler et al, 2007; 
Wilby et al, 2009). The benefits of this approach is that it is based on maintaining the conditional 
relationship between historical rainfall and a suite of large-scale climate variables for which 
GCMs have a demonstrated capability of simulating well, and is therefore likely to be the most 
robust approach for simulating the full range of changes likely to occur. For example, a recently 
developed suite of parametric and non-parametric approaches to generate daily rainfall has 
proved successful in simulating a range of statistics of historical climate (Mehrotra et al, 2004; 
Mehrotra and Sharma, 2005, 2006, 2007a,b), although the method still requires refinements to 
correctly simulate low-frequency variability at inter-annual timescales, and also requires testing 
in terms of its ability to reproduce daily rainfall extremes (pers. coms. Raj Mehrotra). Finally, to 
our knowledge no statistical downscaling methodology is available that also allows reproduction 
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of sub-daily rainfall sequences. This constitutes an important area of future research.  
 
Unlike the continuous simulation of rainfall to reproduce historical rainfall statistics, continuous 
simulation for a future climate is still at an early stage of research, with no tested methodology 
currently available capable of reproducing continuous sequences suitable for flood estimation. 
Two options for continuous simulation for a future climate that are viable are: (a) the 
development of a two-staged stochastic downscaling alternative, that first downscales (in space) 
GCM simulations to daily point rainfall, and then downscales (in time) the daily point rainfall to a 
sub-daily scale using a disaggregation (with possible conditioning on exogenous variables) 
alternative, and (b) a dynamical downscaling option that can be used to formulate a scaling 
transformation model that enables modification of observed continuous records to correspond to 
likely future conditions. It is recommended that work be commissioned to support research 
endeavours to this end. 
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Abstract 
Urban hydrology traditionally requires Intensity –Frequency – Duration (IFD) relationships to 
ascertain design storms for the purpose of design flood analysis. Design storm based 
alternatives pose uncertainty in the estimated flood as the influence of catchment antecedent 
conditions cannot be properly accounted for. Hence, generating continuous series of flows using 
stochastically generated rainfall that can better reflect antecedent characteristics presents an 
attractive alternative. This paper evaluates three methods of  disaggregating daily rainfall to 
near-continuous sequences, namely, the Random Multiplicative Cascades (Microcanonical and 
Canonical versions), Randomized Bartlett Lewis Model (RBLM) coupled with Proportional 
Adjusting Procedure, and the Method of Fragments (MOF). These methods are used to perform 
disaggregation from daily to hourly rainfall using 86 years (1916 – 2001) of continuous observed 
hourly rainfall data from Observatory Hill station in Sydney, Australia. Evaluation of the methods 
is based on the capability of the resulting sequences to represent rainfall variability and 
intermittency, within-day wet spells, and extreme rainfall percentiles. While all models are found 
to simulate well the commonly used statistical measures such as mean and dry proportions at 
an hourly time step, the Microcanonical model significantly overestimates the rainfall variance. 
With respect to extreme value characteristics, the MOF is found to match well the observed IF 
relationship at an hourly scale, with the cascade models underestimating (Canonical) and 
overestimating (Microcanonical) extreme rainfall. The RBLM poorly simulates the low average 
recurrence interval (ARI) design rainfall values. An analysis of the within-day wet spell 
distribution shows that the cascades models underestimate mean spell lengths. The MOF model 
replicates the observed wet spell distribution while the RBLM also performs fairly well.  
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1. Introduction 

A wide range of applications involving the planning, design and management of small 
(especially urban) water resources systems rely on the proper estimation of a design flood. A 
conventional approach is to ascertain the design rainfall intensity (or design storm hyetograph) 
from the available Intensity –Frequency – Duration (IFD) relationships developed for the region, 
and convert it to a corresponding flood hydrograph using a rainfall runoff model. However, the 
IFD based design storm poses uncertainty in the estimated flood as the influence of catchment 
antecedent conditions cannot be properly accounted for. Additionally, IFD relationships are 
typically developed using a single maximum rainfall event per year which may not necessarily 
translate to a corresponding annual maximum flow event for that year depending on catchment 
antecedent conditions. This non-consideration of antecedent conditions may subsequently lead 
to an underestimation of the design flood (Sharma and Srikanthan, 2006), especially for low 
return periods. For example, if the catchment is wet before a design event, the resulting flood 
will be greater than otherwise. Hence, an alternative to this design storm based approach is to 
use a continuous series of rainfall that can better reflect such antecedent characteristics. 
However, the existence of continuous rainfall data in reality is scarce due to the fact that its 
measurements are costly and time-consuming. To address this issue, previous studies have 
suggested the use of high resolution data generated from available low-resolution (daily) data 
through a data transformation procedure (Sivakumar and Sharma, 2008; Molnar and Burlando, 
2005; Menabde et al., 1999). A wide variety of models have been proposed in the literature to 
obtain fine temporal scale rainfall data from a coarser scale, namely from a daily to sub-daily 
level by way of rainfall disaggregation. Some common rainfall disaggregation models include 
Random Cascade Models based on scale invariance theory (Schertzer and Lovejoy, 1987; 
Olsson, 1998; Menabde and Sivapalan, 2000; Molnar and Burlando, 2005) as well as the 
Bartlett Lewis or Neyman Scott rectangular pulse models based on point process theory 
(Rodriguez -Iturbe et al., 1987).  
 
Given that there are a host of possible disaggregation methods achieving the same objective 
(i.e. converting lower resolution rainfall to higher resolution rainfall) available in the literature with 
different theoretical underpinnings, it is useful to compare the results produced by different 
models in light of the application of different theory behind these models.  As such, an attempt is 
made in the present study to evaluate the utility and suitability of different approaches for 
disaggregation of daily to sub-daily rainfall at a selected location. More specifically, we evaluate 
the performance of the canonical and micro canonical versions of the discrete multiplicative 
random cascades (Molnar and Burlando, 2005; Over and Gupta, 1994; Gupta and Waymire, 
1993), the Randomized Bartlett Lewis Model (RBLM) (Koutsoyannis and Onof 2001), as well as 
the non-parametric method of fragments approach (MOF) (Sharma and Srikanthan, 2006), with 
each model assessed in the context of approximately daily to sub-daily rainfall disaggregation. 
Cascades based models are chosen for study here in light of the encouraging results earlier 
studies have reported (Molnar and Burlando, 2005; Koutsoyiannis and Mamassis, 2001), and 
also their appeal from a practical viewpoint because they are parameter parsimonious. The 
RBLM, being a widely applied stochastic rainfall generator, has also formed the basis for the 
development of other variants such as the Bartlett Lewis based hybrid model (Gyasi –Agyei and 
Willgoose, 1997, 1999) as well as power law tailed – autocorrelation downscaling method 
applied in conjunction with the RBLM (Marani and Zanetti, 2007). Lastly, the MOF is included to 
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test the performance of a non-parametric model against its parametric counterparts. It is helpful 
to note that while the random cascades and method of fragments models have been exclusively 
used as ‘disaggregators’, the RBLM was initially formulated strictly as a rainfall simulator. The 
RBLM has since been modified and accorded an appropriate ‘adjusting procedure’ to enable it 
to be applied as a rainfall disaggregator (Koutsoyannis and Onof, 2001).  
 
In this study, we choose our target disaggregation time step as hourly. As this study is primarily 
conducted to obtain fine resolution rainfall for the purposes of flood design, we are especially 
interested in statistics that are pertinent to this objective: i.e. how realistically the models 
simulate rainfall variability and intermittency, rainfall extremes, within-day wet spells, along with 
low order moment and autocorrelation characteristics.  In addition, a measurement of the 
sensitivity of estimated parameters is conducted so as to assess the directions in which future 
improvements may be possible. The study is conducted using 86 years (1916 – 2001) of 
continuous hourly observed rainfall data from Observatory Hill, Sydney. 
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and p have been known to be scale dependent (Menabde and Sivapalan, 2000), we have also 
fitted the scale dependent behavior of these parameters by power functions with scale (not 
shown here). Results for these parameters are also listed in Table 1. 
 

 
 
 
 
 
Table 1: Parameter values for the Canonical and Microcanonical Cascades models. Note that while 
Canonical Model has constant parameters, the Microcanonical model parameters are time scale 
dependent. For example, Disaggregation Level 1,2…5  here corresponds to a  timescale of 192 to 960 
mins, 960 to 480 mins….. 120 to 60 mins. 

 
2.3. Randomized Bartlett Lewis Model (RBLM) 

The Bartlett Lewis Model (BLM) is a cluster-based model originally developed by Rodriguez-
Iturbe et al. (1987) that represents rainfall events as clusters of rain cells where each cell is 
considered a pulse with a random duration and random intensity. The original BLM process is 
characterized by 5 parameters (λ, β, γ, η, µx) with the following description. The first parameter 
(λ) characterises the expected value of the Poisson distributed storm generation process. Each 
storm origin will generate a variable number of “storm cells” until a certain time from the storm 
origin is exceeded, at which time cell generation ceases (see Fig 3).  The second parameter (β) 
represents the reciprocal of the expected value of another Poisson process representing the 
generation of additional cells in the storm (the first cell always coinciding with the start of the 
storm). The third parameter (γ) represents the reciprocal of the expected value of the storm 
generation duration which is characterised by an exponential distribution. In the original BLM, 
this time from the storm origin, often called the “generation duration” is taken to be exponentially 

distributed with an expected value of 1/ γ where γ = ϕ * η, where ϕ is a dimensionless 

Model Type Parameters 
Canonical β  =  0.368 

σ
2 
=  0.0201 

Microcanonical Disaggregation Level Dry Probability 
‘p ’ Variability Parameter ‘a ’ 

 1 0.647 0.445 
 2 0.553 0.671 
 3 0.473 0.918 
 4 0.405 1.295 
 5 0.346 1.387 
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Figure 3: Schematic showing RBLM process. Storm arrivals follow Poisson process with mean of 1/ λ, 
with generation duration of each storm exponentially distributed with mean 1/ γ .  First cell is fixed to 
occur at storm origin while later cells within a storm arrive by a second Poisson process with expected 
value of β. Duration of each cell is exponentially distributed with mean of 1/ η.  Each cell’s intensity is  
exponentially distributed with a mean of µx . 
 

Time between successive cells  (η) Time between Storms (1/λ)Generation Duration (γ)  

Cell 2 

Cell 1 

Cell 2

Cell 1 

Storm 
origin 

Next 
Storm 
origin 

Cell 3 

End of cell 
generation 

Cell Intensity 
(μx) (for cell 2) 

 

With reference to (7), the pre-set value, d, helps to reduce bias through firstly employing a 
logarithmic distance such that extreme values are not associated with undue weight, and 
similarly, that the constant “c” is introduced to avoid domination by very low values. L is the 
sequence of wet days generated while Z values are the historical (numerator) and generated 
(denominator) daily depths of day i.  In this study, the value of d is set to unity as the maximum 
allowable distance to avoid unacceptable bias.  The detailed algorithm for coupling of the RBLM 
with the adjusting procedure is set out in Koutsoyiannis and Onof (2001).  
 
The parameters for RBLM are estimated on a monthly basis, assuming local stationarity within 
the month (Bo et al., 1994) using the method of moments.  The set of parameters to be fitted is 
given by the set Θ, where Θ = {λ, µx, κ, φ, α, ν}. The second-order properties of the 
accumulated process over the time interval, T, which represent selected statistical attributes of 
the rainfall time series (Rodriguez-Iturbe et al., 1987), are estimated over varying levels of 
aggregation (1 hour to 48 hours). In this study, twelve statistical attributes (mean, variance, lag-
1- auto-covariance and dry proportion at the 1HR, 24HR and 48 HR aggregation scale) are used 
to ascertain parameters, as recommended by Koutsoyiannis (2000) using an objective function 
that sought to minimise the weighted sum of squared deviation of observed and modelled 
attributes. The optimised parameter values for each month are shown in Table 2. The ‘R-Project’ 
software is used to ascertain optimal parameters using the above objective function. Problems 
of parameter instability of the RBLM model have been reported in several previous studies 
(Onof and Wheater 1993; Khaliq and Cunnane 1996). The instability of parameters that control 
storm generation duration (φ, α, and ν ), would result in the frequent generation of storms of 
excessively long durations, which are physically not feasible. While the literature contains 
suggestions of alternate optimisation algorithms to circumvent this difficulty (Onof and Wheater, 
1993), we address this issue in our paper by imposing a constraint on the maximum storm 
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length which is assessed from the historical record by assuming storms to be separated by at 
least 5 consecutive hours of zero rainfall. These constraints (see Table 3) help stabilize the 
parameters to a large extent and prevent the trawling of ‘useless’ parameter space, while being 
flexible enough to allow for the possibility of a varying number of acceptable parameter 
combinations.  
 
Table 2: RBLM parameters estimated on monthly scale. Some of these parameters (φ, α, and ν) were 
constrained to prevent the trawling of ‘useless’ parameter space and help avoid local optima during the 
minimization computations. 

Parameter 
/Month λ (hr-1) κ = β/η φ = γ/η α ν (hr-1) µX (hr-1) 

JAN 0.014 1.367 0.100 2.267 0.221 4.167 
FEB 0.014 0.361 0.042 2.014 0.161 6.720 
MAR 0.015 0.466 0.049 2.153 0.174 7.130 

APRIL 0.013 0.677 0.035 2.162 0.129 5.602 
MAY 0.012 0.454 0.022 2.147 0.096 6.427 
JUN 0.011 0.235 0.010 1.923 0.094 5.907 
JULY 0.009 0.752 0.009 2.179 0.029 5.833 
AUG 0.009 0.732 0.012 1.958 0.030 6.420 
SEP 0.013 0.311 0.088 2.420 0.567 5.796 
OCT 0.013 0.311 0.088 2.420 0.567 5.796 
NOV 0.016 1.205 0.055 1.971 0.047 6.524 
DEC 0.012 0.197 0.032 2.636 0.324 5.835 

 
Table 3: Upper and Lower Limits of constraints applied to selected RBLM parameters 

Parameter Upper Limit Lower Limit 

φ 0.10 0.01 
α 10.0 1.00 

ν (hr-1) 10.0 0.01 
 
 
 
 
2.4. Method of Fragments (MOF) 

This method stands in contrast to the RBLM and Cascades models as it is non-parametric. As 
such, it makes no major assumptions about the nature of the relationship between continuous 
and aggregate rainfall. The MOF generates sequences of rainfall that exhibit persistence 
attributes similar to those observed by maintaining temporal dependence at a daily time scale, 
and then using a nonparametric disaggregation logic to impart dependence to sub-daily time 
steps (Sharma and Srikanthan, 2006). The methodology of MOF reflects how it represents daily 
temporal dependence by using high frequency rainfall predictors and longer term attributes such 
that distributional and seasonality characteristics. This is done by way of resampling a vector of 
fragments representing the ratio of the sub-daily to daily rainfall. Resampling is performed by via 
a modified K-nearest neighbour algorithm (Sharma and Srikanthan, 2006; Lall and Sharma, 
1996) on the basis of the two criteria as set out below:  
 

•  ‘Within day’ fractions are sampled from an ‘observational window’ that spans 15 days on 



Australian Rainfall and Runoff Revision Project 4: Continuous Rainfall Sequences at a Point 

 
P4/S1/002 :Feb 2010 51 

either side of our day of interest. This would increase the sample size available for 
sampling purposes and also account for effects of seasonality. For example, if we want 
to disaggregate daily rainfall on 15th Jan of our daily time series, we look into entire 
month of January (1-30) across the full observed record to find the nearest neighbor with 
reference to the daily rainfall total being disaggregated. 

 
•  The observational window is further narrowed by isolating days that coincide with the 

‘wetness state’ associated with the current day, this state (representing the rainfall 
occurrence across three consecutive days) being one of the following: 

 
o wet – wet – wet 
o dry – wet – dry 
o wet – wet –dry 
o dry – wet – wet 

 
This second criterion is especially important because it helps to identify whether our ‘wet’ day of 
interest lies at the start, the end or in the middle of a storm. As such, our ‘selected’ day from 
history is expected to be accorded with a more realistic distribution, compatible with our ‘wet’ 
day of interest.  The MOF further aims to appropriately represent characteristics in generated 
sub-daily sequences by ensuring that disaggregated sub-daily rainfall from model output sum up 
to the daily rainfall and that the model is sensitive to various sub-daily temporal patterns that 
shift with time of the year, and also the magnitude of daily rainfall.  The above conditions are 
reflected by its generation procedure, which operates under the assumption that daily rainfall 
values to be disaggregated are representative of daily rainfall formed by disaggregating 
observed continuous rainfall time series, and that sub-daily fractions represents temporal pattern 
applicable at for the site (Sharma and Srikanthan, 2006). 
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3. Results  

The entire historical rainfall record is used to calibrate the models (where parameters are used). 
Historical daily rainfall for the same record is then disaggregated to hourly rainfall, with a total of 
10 realizations performed. The RBLM is run using the HYETOS program (Koutsoyiannis, 2000), 
while software for the other methods are developed by the authors. The following sub-sections 
present the performance of each model with respect to their ability to simulate standard statistics 
such as mean, variance, lag-1- auto covariance and dry proportions, as well as other statistics 
important for design flood purposes such as wet spell lengths, their distribution and IFD 
relationships.  
 
3.1. Simulation of Low Order Moment Statistics 

All the models reproduced the mean hourly rainfall well (see Table 4). However, the 
microcanonical model overestimated hourly variance by a large margin. It is contended here that 
this may be due to the poor fit of beta distribution to Sydney rainfall data. Figure 4 illustrates the 
probability density plot of observed and generated breakdown coefficients (which are essentially 
cascade weights from scale n to n + 1) for Sydney rainfall for the disaggregation time steps. As 
noted in the microcanonical model description, the breakdown coefficients are used for 
estimating the ‘variability’ parameter a for non intermittent weights (0<W<1).  Importantly, the 
single parameter beta distribution is neither able to simulate the decreasing variance as we 
proceed to finer disaggregation levels, nor capture the pronounced ‘spike’ in the high number of 
cascade weights that are distributed between 0.4 and 0.6 (thus indicating low  rainfall variability) 
especially at the finest of disaggregation levels of 120  - 60mins and beyond (see Fig 4). 
 
The canonical cascades model slightly underestimates hourly variance albeit overestimating the 
variance of the aggregated hourly rainfall at daily level. This may be attributed to the fact that, 
while being parameter parsimonious, the parameters that control both rainfall variability, (σ2) and 
intermittency, (β) show fluctuations at both yearly as well as monthly time scales. Taking 
monthly β for instance, a lower β value would correspond to less frequent intermittent rainfall, 
which is representative of winter rainfall in Sydney dominated by frontal storms. A higher β value 
reflects greater chance of intermittency, which is consistent with higher occurrences of 
convective type rainfall during the hot summer months. Similarly, a lower (higher) σ2 value 
reflects lower (higher) rainfall variability, which is representative of the contrasting dominant 
rainfall mechanisms that operate during winter and summer months.  
 
By using over-arching parameters to encompass all years, there may have been a significant 
variance trade-off in favour of bias, resulting in the intangibility of the canonical model to capture 
both seasonal and other longer term rainfall attributes, thus possibly resulting in errors 
introduced in the estimation of variance  (see Figure 5). In addition, the inherent canonical 
model structure which does not preserve rainfall mass exactly at each disaggregation level 
explains the inflated variance when disaggregated hourly rainfall is aggregated to a daily time 
scale.  The MOF and RBLM models performed well in reproducing standard statistics at both 
hourly and daily time scale. 
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Table 4: RBLM parameters estimated on monthly scale. Some of these parameters (φ, α, and ν) were 
constrained to prevent the trawling of ‘useless’ parameter space and help avoid local optima during the 
minimization computations. Notation in bold highlights statistics that were not well simulated by the 
models 
Model Mean Variance lag-1-autocovariance Dry Proportion 

 1HR 24HR 1HR 24HR 1HR 24HR 1HR 24HR 
OBS 0.128 3.06 0.883 114.23 0.525 0.311 0.912   0.673  

RBLM 0.127 3.06 0.871 113.98 0.575 0.310 0.954 0.673
MOF 0.127 3.06 0.907 114.03 0.484 0.310 0.913 0.674

CANON 0.128 3.07 0.842 135.22 0.238 0.267 0.894 0.673
MICRO 0.128 3.06 2.398 116.56 0.116 0.248 0.913 0.612
 
 
 
 

Figure 4: Probability density plot of breakdown coefficients (which are essentially observed cascade
weights (0<W<1) from cascade level n to n + 1) (shown in red) and generated weights from the beta 
distribution (shown in blue) Cascade levels shown are (a) 1920-960mins, (b) 960- 480mins, (c) 480-
240mins, (d) 240-120mins, (e) 120-60mins, (f) 60-30mins. Note decreasing variance from higher to lower 
cascade levels (a) – (f). 
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3.2. Assessment of Extremes  

There are several ways of extracting extreme value information from available rainfall time 
series. The most straightforward and widely used approach selects the annual maxima. 
Frequency analysis of the resulting annual maximum series then provides an average range of 
application in terms of the return period from 1 to 1000 years (Verhoest et al., 1997). Here, IFD 
curves for the 1 and 24 hour durations are constructed based on empirical cumulative 
distribution of the rainfall series from observed and disaggregated rainfall series. For this 
procedure, annual maximum rainfall is ranked from highest to lowest, and empirical estimates of 
the annual exceedence probability (AEP) is estimated according to: 
 
AEP(m) = (m – 0.4) / (N + 0.2)       (8) 
 
where m  is the rank and N  is the length of record (Pilgrim and Doran, Australian Rainfall and 
Runoff, 1987) These AEP’s are then plotted against corresponding log-transformed rainfall 
intensities (see Fig 6) representing the IFD relationship for Sydney. For the 1HR duration case, 
the MOF model most closely reproduces the observed IFD, which is to be expected since it 
disaggregates by way of resampling fractions of observed rainfall and assuming that it picks up 
the days having observed maximum hourly rainfall during the resampling process. Both the 
canonical and RBLM models underestimate the hourly empirical IFD. The RBLM in particular 

Figure 5: Parameters of the canonical model estimated on an annual and monthly basis.
Note that the use of a single set of parameters fitted to the entire rainfall record therefore does
not account for inter annual and seasonal fluctuations. 

 
f
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significantly underestimates extreme rainfall at low return periods while the canonical model 
empirical IFD curve diverges from that of the observed at high ARIs, indicating that it 
underestimates the less frequent, large rainfall events which are important from a flood design 
perspective. The microcanonical model overestimates extreme rainfall at all AEPs by a 
significant margin which is consistent with the earlier results that the model provides an inflated 
variance of the disaggregated hourly data. With regards to the 24HR intensities, all models 
converge approximately to the observed intensity-frequency relationship. While one would 
expect the models that retain total rainfall mass exactly during disaggregation (such as the 
RBLM, MOF and Microcanonical models) to replicate the observed 24HR empirical IFD, this is 
not case. This is caused by the simple fact that  the aggregation process is not constrained to be 
‘within day’. This is based on the assumption that rainy intervals are allowed to occur at random 
when disaggregating intermittent (0,1) occurrences: i.e. two consecutive rainfall time steps could 
result in 4 possibilities: 1010, 0101, 1001, 0110, thus, fundamentally altering the aggregation 
properties of rainfall despite having conserved actual rainfall ‘mass’. Therefore, the maximum 
disaggregated 24 hour ‘spell’ could theoretically occur over more than one calendar day. 
 

 
3.3 Wet Spells 

This study has also investigated the ability of models to reproduce wet spells that are similar to 
that of observed rainfall. The generation of realistic wet spells is important from a design flood 
perspective because rainfall intermittency and persistence need to be quantified to gauge 
antecedent catchment soil conditions. This cannot be achieved simply by an undertaking an IFD 
analysis of extreme values. For purposes of this study, a wet spell is defined by consecutive 
hours of rainfall within a rainy day, in accordance with previous literature (Llasat, 2001; 
Menabde and Sivapalan, 2000). 
 
The MOF model best captures observed within day wet spell properties of interest such as the 
mean spell length per day (an average of all spells of different lengths occurring within a day) 
and mean number of spell occurrences per day. This is reflected by its ability to match the 

Figure 6: 1 and 24HR Empirical IFD curves for observed rainfall and disaggregated rainfall by the models.
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proportions of observed short, medium and long wet spells (see Table 5 and Fig 7).  Both 
versions of cascades models underestimate wet spell lengths. The canonical model in particular 
fails to generate within day wet spells longer than four hours suggesting that it poorly simulates 
rainfall persistence. This may be caused by the inherent model structure which does not require 
cascade weights to be conserved at each time step, thus resulting in possibility of generating 
physically unrealistic exclusively zero rainfall values at scale n + 1  although rainfall did occur at 
scale n. 
 
Table 5: Proportion of Within Day Wet Spell lengths estimated from observed and disaggregated rainfall. 
Short, medium and long spells encompass wet spells of 1-2, 3-4 and greater than 4 hours in length 
respectively. 

 Short Spells Medium Spells Long Spells 
OBS 0.548 0.222 0.230 
MOF 0.549 0.225 0.226 

CANON 0.912 0.081 0.008 
MICRO 0.805 0.159 0.035 
RBLM 0.658 0.201 0.141 

 
 

 
 

Figure 7: Within Day Wet Spell Distribution for disaggregation models compared to
observed wet spells.   
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4. Concluding Remarks 

This paper has evaluated the performance of some widely known daily rainfall disaggregators 
such as the RBLM, two versions of the random cascades model and MOF model using 
continuous rainfall data of Sydney.  In particular, the models are gauged in the areas of 
simulation of standard rainfall statistics, extreme values and reproduction of wet spells. In terms 
of reproduction of observed statistics, the MOF model outperforms the other models. This is not 
entirely unexpected given that the MOF logic operates based on resampling of observed rainfall 
fractions (at sub-daily time scale) and is therefore expected to produce statistics that bear the 
closest resemblance to observed data. The strength of this model, however, may also serve as 
a limitation because its applicability is confined to areas where continuous sub daily data is 
available. Also, the MOF is not flexible enough to simulate events beyond the limits of the 
historical record. As a result, without conditioning the MOF model on synthetic rainfall data 
representative of a future climate, it may not be able to factor the effects of climate change 
during the disaggregation process.  In the same vein, this argument holds true for the other 
models since their parameters were estimated based on observed historical rainfall only, 
followed by the assumption that these parameters remain valid for the future. However, it may 
be easier to condition the parameters based on climate change factors should these factors be 
ascertained. 
 
On a whole, the RBLM performs better than the cascade models albeit with a slightly inflated 
simulation of dry proportions at an hourly scale as well as an underestimation of extreme rainfall 
at low return periods. However, the model is not easy to be parameterised and the choice of 
statistics (and the time scales at which these statistics are gauged) remains subjective. Another 
concern is that model parameters may not necessarily represent actual physical quantities 
because they depend on the time scale that is chosen for fitting (Foufoula- Georgiou and 
Guttorp, 1986), resulting in the use of an intuitive parameter constraining procedure to ensure 
that somewhat realistic quantities are produced. The selection of the value for the pre –set value 
d  for the adjusting procedure is also somewhat arbitrary, with lower d values vastly increasing 
the number of iterations required to obtain close enough rainfall cell amounts match observed 
rainfall. This results in increased computation time, and occasionally created  ‘blocks’ (computer 
running out of memory) whereby the maximum number of iterations are reached but HYETOS is 
still unable to match up daily totals between disaggregated and observed data. 
 
The scaling models, in particular the micro canonical model, did not outperform its simpler 
counterpart (the canonical model) when applied to Sydney rainfall. Since the canonical model is 
parameter parsimonious, its performance is judged to be relatively satisfactory considering its 
simplicity. However, the micro canonical model performed poorly by generating inflated hourly 
rainfall variance and consequent overestimate of extreme rainfall at the same time step. This is 
primarily attributed to the inappropriate choice of the beta distribution to Sydney rainfall, 
therefore highlighting the importance of selecting an appropriate probability distribution 
considering that the model is wholly reliant on cascade weights. For example, perhaps the beta 
distribution may have been appropriate for the temperate, alpine Swiss rainfall (Molnar and 
Burlando, 2005) but is ill suited to Sydney’s Mediterranean, coastal climate. Other factors that 
may have affected the performance of the cascades models in general include the fact that 
physically different mechanisms (i.e. contrast between temporal distribution of convective and 
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frontal rainfall) are unlikely to be simply the result of drastically different realizations of the same 
parameters as well the effect of longer term persistence. With reference to Fig 5 in the section 
3.1 above, parameter uncertainty could have arisen from the failure to account for longer term, 
low frequency modes that influence South East Australian rainfall such as El- Nino Southern 
Oscillation, Indian Ocean Dipole and Interdecadal Pacific Oscillation type events as well as 
seasonality. Lastly, there could be the possibility of imperfect scaling behaviour (Veneziano et. 
al, 2006), i.e. that multi scaling behaviour may not be present within our time scales of interest – 
from a daily to hourly time step. According to Veneziano et al (2006), while it is widely accepted 
that rainfall inherits its scaling properties from atmospheric turbulence, the detailed transfer of 
multifractality from turbulence to rainfall remains unclear. In particular, rainfall may violate scale 
invariance even if atmospheric turbulence is perfectly multi-fractal, as found by spectral 
analyses of rainfall times series (Olsson, 1995).  
 
With the advent of climate change, we believe that discerning the relative weaknesses and 
strengths of each model is important as in future there is greater possibility of wider applications 
of the disaggregation methods to downscaled daily rainfall for proper assessment of the 
changes in the occurrence and frequency of extreme rainfall events in a changed climate . As 
such, information regarding the performance of the models is expected to guide hydrologists in 
applying daily to sub-daily ‘disaggregators’ with greater insight. We intend to focus future 
research on addressing the issues raised in this paper especially with regards to the cascades 
models, as well as extend analyses to other point locations (i.e. coastal versus inland) to discern 
the relative impact of local topography and large scale forcings on model parameters. 
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Abstract 
Present day flood estimation practise is underpinned by the assumption that flood risk in a 
future climate will reflect historical flood risk as represented by the instrumental record. This 
assumption, which is commonly referred to as the assumption of stationarity, recently has 
been questioned as a result of both an increased appreciation of the natural variability in our 
hydroclimate at temporal scales beyond that of the instrumental record, as well as the 
projected intensification of the hydrologic cycle due to anthropogenic climate change. These 
developments have led some authors to suggest that the stationarity assumption should 
henceforth be considered invalid, thereby calling into question all the methods that are 
underpinned by it, including flood frequency analysis using observed streamflow records and 
rainfall-runoff modelling informed by instrumental precipitation and streamflow records.  
 
In this paper we review a wide range of possible sources of non-stationarity in the Australian 
climate record, and highlight that the primary sources of non-stationarity relevant for flood 
risk assessments include natural climate modes that vary at timescales similar to the length 
of the instrumental record, as well as long-term trends and step changes that are attributable 
to anthropogenic climate change. Although prescriptive guidelines that describe how to 
address this non-stationarity are currently unavailable in Australia, this review nonetheless 
highlights the importance of using long records for flood analysis, possibly by extending 
records using nearby stations. Furthermore, it will become increasingly necessarily to 
develop plausible estimates of how the climate will evolve, and we describe some climate 
modelling tools which allow for the development of future climate scenarios. Finally, we 
emphasise that removing the assumption of stationarity will inevitably result in an increase in 
the uncertainty associated with future flood estimates, and suggest that may require new 
methods to conceptualise and manage future flood risk.  
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1. Introduction 

The field of flood hydrology is concerned with the reconciliation of the seemingly random 
behaviour of weather patterns with the need to provide fixed flood estimates of a desired 
exceedance probability for use in planning and engineering design. To this end, it is often 
assumed that although weather varies randomly from one day to the next, the long-term 
climate can be viewed as a stationary process, such that the statistics (including both 
averages and extremes) derived from the instrumental record can be assumed to remain 
valid for any future period of interest. This has formed the basis for most methods currently 
used in the quantification of flood risk, including flood frequency analysis based on historical 
stream flow records for cases where sufficiently long records are available and the 
catchment has not exhibited significant changes such as urbanisation, as well as the use of 
rainfall-runoff models informed by the instrumental precipitation record (e.g. see I.E. Aust, 
1997).  
 
The assumption of climate stationarity has always been questionable, although the 
implications of small amounts of climate variability and change usually have been perceived 
as negligible, particularly when viewed within the context of other sources of uncertainty 
such as that due to short instrumental records, measurement biases and modelling errors 
(Milly et al, 2008). Nevertheless, recent research into low-frequency ‘natural’ climate 
fluctuations has shown that the instrumental record is often inadequate to capture the full 
bounds of climate variability (Jain and Lall, 2001). Anthropogenic climate change resulting 
from historic and projected greenhouse gas emissions is also expected to push the climate 
outside the envelope of variability implied by the instrumental record, leading numerous 
researchers to proclaim that the assumption of stationarity ‘is dead’ (Milly et al, 2008). 
 
Although the limitations of stationarity are easy to identify, the transition from a stationarity to 
a non-stationarity framework in hydrology is likely to prove considerably more complex. In 
particular, if the instrumental record does not mirror what is likely to occur in the future, how 
does one estimate future flood risk? The purpose of this paper is to attempt to address this 
question, with a view to assisting practitioners of hydrology to better account for natural 
climate variability and anthropogenic climate change in flood estimation.  Specifically, we 
seek to answer the questions: what are the dominant sources of non-stationarity in our 
climate system, and to what extent are they likely to bias future flood estimates? What tools 
are available to quantify future precipitation intensity? What confidence can be ascribed to 
climate change projections, and what means are there of reducing this uncertainty? And 
finally – given the significant increase in uncertainty associated with the shift to a non-
stationary approach – is it time to change the way in which we conceptualise and manage 
flood risk? 
 
In the next section, we describe an idealised approach to representing non-stationarity, and 
emphasise that the optimal flood estimation approach will require both a diagnosis of the 
sources and behaviour of non-stationary influences in the instrumental record, and an 
estimate (or projection) of how such influences will evolve in the future. To this end, a brief 
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overview of recent developments in climate science is given in Section 3, with a focus on 
observations and projections associated with flood-producing precipitation events. Other 
climate variables influencing flood risk, including mean annual rainfall and potential 
evapotranspiration affecting antecedent moisture conditions, sea level pressure and wind 
speed and direction affecting storm surge, and sea level rise (CSIRO, 2007; IPCC, 2007), 
are not considered explicitly in this paper although many of the issues raised are more 
broadly applicable. Finally in Section 4 we provide conclusions and discuss broader 
implications associated with the shift to a non-stationarity approach in flood estimation. 
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2. Understanding non-stationarity: oscillations, trends and step 
changes. 

As suggested in the introduction, the transition from a stationary to a non-stationary 
framework requires both a diagnostics component, in which the nature of non-stationarity in 
the data of interest is identified, and the development of a plausible set of assumptions or 
‘projections’ about how the drivers of non-stationarity are expected to evolve in the future. To 
elucidate these concepts further, we present an idealised example of the types of non-
stationarity that might exist in our climate data, and the implications of each on the 
estimation of future flood risk. This example is presented in Figure 1, and was derived by 
randomly generating a time series of length 100, which can be considered analogous to a 
hydrologic time series such as mean annual rainfall, maximum annual rainfall or stream flow 
over the 20th century.  
 
We begin with the stationary situation in Figure 1a, which as discussed previously 
represents the situation assumed in most flood estimation approaches. The appeal of the 
assumption is obvious – to estimate the event which has a 1% chance being exceeded in 
any given year (henceforth referred to as the 1 in 100 Annual Exceedance Probability event), 
one simply needs to determine the underlying probability distribution (for example the 
normal, generalised extreme value or log-Pearson type 3) and then compute the magnitude 
of the event which is exceeded on average 1% of years.  
 
The sequence in Figure 1b was developed as the supposition of the stationary series in 
Figure 1a with a lower-frequency cyclical component. This can be considered analogous to 
the implication of natural modes of climate variability such as the El Niño Southern 
Oscillation (ENSO) phenomenon, which are known to vary at a frequency of between 3 and 
7 years (Goddard et al, 2001). The unconditional probability density function, which is simply 
the probability density function estimated from the full instrumental record, is presented on 
the right panel as a black solid line. We propose that this sequence can be considered to be 
effectively stationary, in the sense that the next 100 years of data will tend to have the same 
statistics as the observational data, so that one can extract various statistics such as the 
mean or the 1 in 100 AEP event in a similar manner to the first example. Nevertheless, if one 
is able to project the future evolution of the underlying low-frequency climate mode, such as 
is possible with the ENSO phenomenon by up to several seasons ahead (Goddard et al, 
2001), then one can provide better (in the sense of lower variance) near-term estimates of 
flood risk. This is illustrated in our example (right panel, black dashed line) where we 
forecast that the climate mode will shift to the positive phase in the short-term future, and 
then estimate the conditional flood risk by only including in our sample those flood records 
associated with the positive phase of the climate mode. Such conditional, or time-
constrained, flood estimates would be particularly useful if one is only concerned with flood 
risk over a short future time horizon up to about one year, such as during the construction 
phase of a major infrastructure project. 
 
 



Australian Rainfall and Runoff Revision Project 4: Continuous Rainfall Sequences at a Point 

 
P4/S1/002 :Feb 2010 66 

The sequence in Figure 1c appears similar to Figure 1b, with the important difference that 
the frequency of the underlying climate mode is much lower, such that the historical record 
only contains one or two periods in either phase. The implications of this type of variability is 
that the record may represent a biased estimate of what will happen in the future, with our 
example showing two periods of above average flood risk and one period of below average 
flood risk. The implications can be seen by considering the probability density functions 
shown in the right panel, in which the underlying population distribution (black solid line) 
provides the best estimate for what will occur on average over an arbitrary future time 
horizon, while the distribution derived just by considering the last 100 data points (black 
dashed line) shows a significant overestimation of flood risk due to the bias induced by the 
small sample size.  
 
Next, the sequence in Figure 1d concerns the case of a long-term trend component, which 
for the purposes of the example we assume to be linear. The source of such a trend might 
be due to climate oscillations at a frequency much lower than the period of record, or a 
gradual shift in climate such as might be attributed to anthropogenic climate change. 
Considering the right panel, the probability distribution indicated by the black solid line 
represents the variability over the full 100 year record, while the distribution indicated by the 
black dashed line represents the variability over the last half of the record, showing that flood 
estimation now becomes conditional to the period of record. Importantly, both estimates do 
not represent what will occur in the future, such that future flood risk can only be quantified 
based on some assumption as to the nature of the underlying trend.  
 
Finally, the sequence in Figure 1e shows a step change in the second half of the record, in 
which the climate shifts from one ‘state’ to another. This arguably represents the most 
difficult form of non-stationarity to address, since the timing and magnitude of such shifts are 
usually impossible to predict. Nevertheless, the implications of anthropogenic climate 
change are that the likelihood of such shifts will increase in the future (Lenton et al, 2008). 
Once again the probability distribution represented by the solid black line (right panel) was 
derived using the full instrumental record, while the black dashed line was derived using only 
data after the step change; the appropriate distribution depends on what is assumed for the 
future, and in particular on whether the step change is expected to be a permanent or 
temporary feature of the local hydroclimate.  
 
The obvious conclusion from this example is that the simple statement that the climate is 
non-stationary is not sufficient; one must understand the source(s) of non-stationarity if there 
is to be any chance of successfully representing future flood risk. In the next section we 
describe some of the sources of non-stationarity in the context of Australian flood risk.   
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Figure 1: The implications of different forms of non-stationarity in evaluating future flood risk. 
The left panels represent a randomly generated sample of length 100, and the right panels 
represent the underlying population distribution, including the unconditional sample 
distribution (black solid line) and a conditional distribution based on only a subset of the data 
(black dashed line). Panel (a) comprises a normally distributed stationary time series, with the 
remaining panels being the summation of the data in (a) (thin black line) and an underlying 
non-stationarity component (thick gray line). Specifically: (b) represents cyclical variability 
with a period much shorter than the period of record; (c) represents cyclical variability with 
period of similar length to the period of record; (d) represents a long-term trend; and (e) 
represents a step change.  
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3. Climate variability and change in Australia 

It should now be clear that different assumptions on the form of non-stationarity would lead 
to different conclusions about future flood risk. Using the idealised example presented in 
Figure 1 as our starting point, we now ask: what are the dominant sources of climatic non-
stationarity in Australian hydroclimatic data? And what approaches are available to estimate 
their future evolution? 
 
3.1. ‘Natural’ modes of climate variability  

It is now well understood that the climate varies naturally at scales ranging from sub-annual 
through to decadal and longer. Much of this variability is driven by low-frequency shifts in the 
atmosphere’s lower boundary conditions (Goddard et al, 2001) as these evolve at time 
scales much longer than that for individual weather events. Relevant boundary conditions 
include global sea surface temperatures (SSTs), soil moisture, vegetation, snow and sea ice 
cover, with SSTs generally regarded as the dominant forcing variable for atmospheric 
circulation at the seasonal time scale (Goddard et al, 2001; Barnston et al, 2005). By 
influencing the water and energy balance in the atmosphere, variability in these lower 
boundary conditions can influence the probability of below- and above-average precipitation, 
including the likelihood of flood-producing precipitation events. 
 
To simplify matters, these low-frequency variations are usually represented by climate 
indices, which are mathematically efficient representations of dominant modes of climate 
variability. These indices necessarily only partially represent all the relevant modes of 
precipitation variability (for example see Westra and Sharma, 2007, for a discussion on the 
limitations of using a single index of ENSO for capturing inter-annual and inter-decadal 
variability in annual average precipitation across Australia), but nevertheless provide a useful 
tool for identifying how climate influences flood risk. Climate modes and their respective 
indices which have been demonstrated to influence Australian precipitation include: 
 
•  the El Niño Southern Oscillation (ENSO) phenomenon, which is a coupled ocean-

atmospheric mode centred on the tropical Pacific Ocean, varies at a time scale of 3 to 7 
years and influences precipitation patterns across much of the world (Dai and Wigley, 
2000). ENSO constitutes the best known, and arguably most influential, source of 
interannual precipitation variability in Australia, with the El Niño (La Niña) phase typically 
corresponding to drier (wetter) than average conditions across most of the continent. 
 

•  the Madden-Julian Oscillation (MJO; Madden and Julian, 1972; Zhang 2005), which 
oscillates with a frequency of 30-80 days and most strongly influences tropical northern 
Australian summer rainfall, but recently also has been found to have some influence over 
much of extra-tropical Australia (Wheeler et al, 2009). 
 

•  the Indian Ocean Dipole (IOD), which is a coupled ocean-atmosphere phenomenon 
characterised by anomalous cooling of SSTs in the south eastern equatorial Indian 
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Ocean and anomalous warming of SSTs in the western equatorial Indian Ocean (Saji et 
al, 1999; Webster et al, 1999), although the representation of the IOD as a physically 
distinct mode has been recently questioned (Dommenget and Jansen, 2009). 
Nevertheless, Indian Ocean variability has been found to have a statistically significant 
influence on western, southern and south-eastern Australian rainfall at the seasonal or 
monthly scale (e.g. Ashok et al, 2003; Ummenhofer et al, 2009), with the implications on 
climate extremes are less well known. 
 

•  the Southern Annular Mode (SAM), which represents a pressure dipole between the 
high- and mid-latitudes of the Southern Hemisphere. This constitutes the principal mode 
of variability of atmospheric circulation in the southern hemisphere extra-tropics 
(Trenberth et al, 2007), and explains about the same amount of variance of south-
eastern Australia compared to that of ENSO. The positive phase is associated with 
below average rainfall in the southern regions of Australia and increases in the Murray-
Darling Basin in summer (Hendon et al, 2007). A recent study also linked both the ENSO 
phenomenon and the SAM to increases in summer extreme rainfall in the northwest of 
the basin in summer, and decreases over the southwest in winter in the Swan-Avon 
River basin in Western Australia (Aryal et al, 2009). 
 

•  the Inter-decadal Pacific Oscillation (IPO; Power et al, 1999), which represents a multi-
decadal sea surface temperature pattern centred in the Pacific Ocean. The degree to 
which the IPO and ENSO represent distinct physical phenomena has been subject to 
considerable debate (e.g. see discussion in Parker et al and references therein), with the 
IPO series being highly correlated to various indices of ENSO.  Nevertheless, this mode 
has been shown to influence rainfall patterns in the tropics (Meinke et al, 2005), and 
flood risk in parts of eastern Australia (Kiem et al, 2003; Micevski et al, 2006), with a 
partial correlation analysis of Jain and Lall (2001) showing that the inter-decadal mode 
provides some additional climate information beyond ENSO.  

Although each climate mode influences Australian rainfall variability and/or flooding, these 
modes are unlikely to impact on the stationarity assumption when estimating long-term flood 
risk unless: (1) the frequency of variability is approximately equal to or lower than the period 
of record, such that the instrumental record may be biased to one of the phases 
(corresponding to Figure 1c); or (2) the climate mode is observed or projected to change 
behaviour, possibly as a result of anthropogenic climate change, such that the past evolution 
of the mode is not an accurate reflection of how it will develop in the future (corresponding to 
Figure 1d or 1e).  
 
In the former case, the IPO is the climate mode that is most likely to impact upon future flood 
frequency estimates in Australia, as the period of oscillation is of a similar magnitude to a 
typical precipitation or flood record. The IPO index is reproduced in Figure 2, and shows that 
it has been in its positive phase approximately 65% of the time during the 20th century, 
including most of the period since 1977, with the positive phase corresponding to below-
average flood frequency in parts of eastern Australia (Kiem et al, 2003). In consequence, 
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using short flood records may result in an underestimation of future flood risk in regions 
where the IPO is found to be relevant, with an arguably better alternative being to use a 
historical sample which is unbiased to either IPO phase as a basis for developing the flood 
estimates. 
 
Care needs to be taken when extrapolating these results to the future. In particular, due to 
the approximately instantaneous relationships between sea surface temperature variability 
and precipitation (see Westra and Sharma, 2009), although the IPO is usually represented 
as a highly smoothed series (Figure 2, thick gray line), the precipitation variability is more 
likely to follow the variability represented by the unsmoothed series (thin black line). This 
means that, although the IPO tends to vary at a low frequency, the transition from a positive 
to a negative phase provides little indication that it will remain in that same phase for any 
prescribed period time, making long-term prediction difficult (see also Power et al, 2006). In 
addition, there is considerable debate about the spatial coherence of the IPO over the 
extended paleo-climatological record prior to the 20th century (for example refer to the 
discussion in Gedalof et al, 2002; Linsley et al, 2004; D’Arrigo et al, 2005; Verdon and 
Franks, 2006; Linsley et al, 2008), such that the long-term relationship between inter-
decadal variability in the Pacific Ocean and Australian rainfall variability is the subject of 
ongoing research. Finally, as will be discussed later, climate models have difficulty in 
accurately simulating variability at the interdecadal timescale (Lin, 2007), making inference 
about the future evolution of this mode as a result of anthropogenic climate change difficult. 
For these reasons we suggest that, at present, the principal value of the IPO index in applied 
flood hydrology is to emphasise the need to use a precipitation record which is not biased to 
a single IPO phase, with this being most easily achieved through use of long instrumental 
records as the basis of the analysis. 
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Figure 2: The Inter-decadal Pacific Oscillation (IPO) index from 1900 to the present obtained 
from www.iges.org/c20c/IPO_v2.doc. Two versions are shown: the smoothed version (thick 
gray line) derived after smoothing on time scales greater than 11 years, showing multi-decadal 
periods in which the index is either positive or negative; and the raw series (thin black line) 
which similarly shows dramatic step changes in 1945 and 1977, but which nevertheless 
highlights the difficulty in developing projections as to how this index will evolve in the future 
based on extrapolations alone. The correlation coefficient between the unsmoothed IPO series 
and the Niño 3.4 representation of ENSO over the period from 1871 to 2008 is 0.83, highlighting 
that these modes are closely related. 

The issue of possible shifts in the dynamics of key climate modes as a result of 
anthropogenic climate change is much more difficult to address, but potentially of much 
greater consequence. For example, recently the SAM has spent more time in its positive 
phase, potentially contributing to the observed decline in precipitation in much of Australia’s 
south (CSIRO, 2007; Aryal et al, 2009; Nicholls, 2009). The attribution of this trend remains 
unclear, however, and variously has been related to stratospheric ozone depletion, 
anthropogenic climate change or low-frequency variability resulting from natural forcing 
(Trenberth et al, 2007), with an extended reconstruction of the SAM suggesting that the 
recent warming may not be unusual over the historical record (Visbeck, 2009). In contrast, a 
recent reconstruction of ENSO events dating back to A.D. 1525 based on proxy records from 
a variety of sources (including tree-ring, coral, ice-cores and documentary evidence) 
concludes that although extreme ENSO events occurred throughout the 478 year 
reconstruction, 43% of the extreme and 28% of the protracted events occur in the 20th 
century, suggesting that ENSO may be strengthening due to anthropogenic climate change 
(Gergis and Fowler, 2009; see also Conroy et al, 2009).  Similarly, a reconstruction of the 
IOD back to 1846 suggests an increase in the frequency and strength of IOD events during 
the 20th century (Abram et al, 2008).  
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Thus we may be beginning to see observational evidence that several important modes of 
climate variability are changing behaviour as a result of anthropogenic climate change, with 
associated implications on stationarity. It is therefore reasonable to ask: what evidence is 
there of changes in the nature of extreme precipitation in the Australian instrumental record? 
And what can be said about how extreme precipitation may vary in the future?  
 
3.2. Anthropogenic climate change 

The discussion thus far has focused on a range of ‘natural’ modes of climate variability, and 
the associated implications for flood estimation. It was suggested that, in the absence of 
trends and step changes that might be attributable to anthropogenic climate change, the 
non-stationarity in these modes is relatively easy to handle provided one has available a 
historical dataset which is representative of the full envelope of variability represented by 
each of these modes. The most significant challenge concerns variability at decadal and 
longer time-scales, which can result in biased estimates of future flood risk (Jain and Lall, 
2001). 
 
Unfortunately, the validity of the historical record (including both the instrumental and paleo-
climate record) becomes increasingly questionable in directly evaluating flood risk in the light 
of anthropogenic climate change. In particular, the recent atmospheric concentration of 
carbon dioxide of about 380 ppm has exceeded the natural range of greenhouse forcing 
over at least the last 650,000 years (ranging from about 180 to 300 ppm; CSIRO, 2007), with 
further increases expected over the coming decades, such that the instrumental record does 
not capture the impacts of such enhanced greenhouse gas forcing. 
 
From a precipitation perspective, implications for flood risk are present both in possible 
changes to the likelihood of extreme flood-producing precipitation events, and in the 
seasonal or annual average precipitation which will influence antecedent moisture conditions 
and hence the conversion of rainfall to runoff, with the relative importance dependent on the 
hydrologic properties of the catchment being analysed (Hill et al., 1997). To determine the 
likely characteristics of future precipitation, we first evaluate the degree to which trends in 
the instrumental record can be observed in both the means and extremes of precipitation, 
and next describe some recent general circulation model (GCM)-derived projections. 
 
3.2.1 International trends 

While there have been numerous analyses of precipitation trends in the international 
literature, there are relatively few papers that focus on changes in precipitation extremes. 
Nevertheless, increases in the intensity of rainfall over extensive regions have been found by 
several authors. For example Pielke and Downton (2000) analysed data from the contiguous 
United States over the period 1932 to 1997, and found significant increases in the number of 
wet days and two-day precipitation extremes.  In Europe, Klein Tank and Konnen (2003) 
found evidence for increasing trend in six out of seven precipitation extremes averaged 
across Europe ; Schmidli and Frei (2005)  report a clear increasing trend in intensity of 



Australian Rainfall and Runoff Revision Project 4: Continuous Rainfall Sequences at a Point 

 
P4/S1/002 :Feb 2010 73 

winter and autumn heavy precipitation in Switzerland, and Brunetti et al (2004) found an 
increase in precipitation intensity in Italy. Despite a trend for decreasing total rainfall in Italy 
and Spain, Alpert et al (2002) found that extreme rainfalls have increased. In India, Roy and 
Balling (2004) found an increase in the frequency of large precipitation events over the 
period 1910 to 2000. 
 
3.2.2 Australian precipitation trends 

Recently a large number of studies have been conducted to analyse trends in Australian 
rainfall (see Gallant et al, 2007, for a summary of studies on changes in Australian rainfall 
conducted since 1992). Robust statistical results are best obtained by examining annual and 
seasonal rainfall, as well as ‘extremes’ which occur relatively frequently over the 
instrumental record, such as the 95th and 99th percentile daily rainfall event. Due to the 
comparatively high density of rain gauges measuring daily rainfall, the research emphasis 
also has been on trends in daily or longer timescales, rather than the sub-daily storm bursts 
which are particularly relevant for small urban catchments (Beecham and Chowdhury, 2009). 
Thus, there is limited information on flood-producing extreme precipitation events which 
occur with low exceedance probabilities (e.g. the 1 in 100 AEP event) and which are often at 
the sub-daily timescale. 
 
The most striking trend in the historical Australian precipitation record has been a decline in 
average annual rainfall in southwest Western Australia, with declines in south eastern 
Australia and the eastern coastal region also evident although with less statistical 
significance (Gallant et al, 2007; Alexander et al, 2007; CSIRO 2007). Changes in extreme 
rainfall in these regions have been found to be of generally the same sign as annual or 
seasonal averages (CSIRO, 2007), although Groisman et al (2005) show an increasing trend 
in the number of days with precipitation greater than the 99.7 percentile in south eastern 
Australia (see also Gallant et al, 2007, who find that the proportion of total annual/seasonal 
rainfall coming from events above the seasonal 95th percentile has increased significantly in 
this region since 1910). The northwest of Australia shows a positive trend in average 
summer rainfall since 1950 (CSIRO 2007), although the absence of high quality daily 
precipitation data in this region makes detection of trends in extreme rainfall difficult 
(Alexander et al, 2007).  
 
In describing these trends, it is important to note that much of the observed precipitation 
variability may be due to natural climate variability at inter-annual and inter-decadal time 
scales (e.g. Lambert et al, 2005), with the direction of the trend often being conditional to the 
time period of analysis (for example refer to the discussion in Gallant et al (2007) on 
observed trends in south eastern Australia). The limited historical record and strong 
influence of natural climate variability makes the detection of historical trends and attribution 
to anthropogenic climate change difficult (e.g. see discussion in Giorgi and Bi, 2009; 
Alexander and Arblaster, 2009), with associated implications for extrapolating observed 
trends into the future. 
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3.2.3 Climate change projections 

The above discussion highlights the difficulties in using the historical record for estimating 
what will occur in the future. As will be discussed in the sections that follow, projections for 
extreme precipitation under an anthropogenically warmed climate based on climate model 
simulations are generally for an increase across much of Australia (CSIRO, 2007), even for 
areas with projected decreases in average annual precipitation. The physical reasoning for 
this is that high-intensity short-duration events are more directly influenced by the water-
holding capacity of the atmosphere as governed by the Clausius-Clapeyron equation, rather 
than on the total energy budget of the atmosphere which constrains mean global 
precipitation increases (e.g. Frei et al, 1998; Trenberth et al, 2003; Meehl et al, 2007; Bates 
et al, 2008; Lenderink and van Meijgaard, 2008; Allan and Soden, 2008; Bengtsson et al, 
2009). In fact, the rate of increase in extremes can theoretically even exceed the Clausius-
Clapeyron scaling of about 7% per degree change in atmospheric temperature because the 
additional latent heat released in convective storms can feed back and further invigorate the 
storm (Rasmussen et al, 2008), with a recent study suggesting approximately double the 
Clausius-Clapeyron scaling for 1-hour precipitation extremes in Europe based on both 
observations and modelled output (Lenderink and van Meijgaard, 2008).  
 
An alternative to directly applying the historical record to estimating future precipitation 
changes involves the use of general circulation models (GCMs) to simulate how climate will 
respond to increased greenhouse gas forcing in the future. These GCMs encompass a 
broad class of numerical models that represent various components of the climate system 
including the atmosphere, oceans, land surface and sea-ice (CSIRO, 2007). The most 
complex GCMs are known as coupled Atmospheric-Oceanic General Circulation Models 
(AOGCMs), with a total of 23 AOGCMs used to support the most recent Intergovernmental 
Panel on Climate Change (2007) projections. How reliable are these models? And to what 
extent can they be applied directly to estimate changes to future flood risk? 
 
The IPCC, in their fourth assessment report, have found climate models to provide ‘credible 
quantitative estimates’ of future climate change, with models being unanimous in their 
prediction of substantial climate warming resulting from greenhouse gas increases, and with 
projections being consistent with independent estimates derived from other sources, such as 
from observed climate changes and past climate reconstructions (Randall et al, 2007). 
Despite this, the current generation of GCMs have significant limitations in providing 
projections necessary for flood estimation, in part because: 
 

•  Projections are generally significantly more robust at the continental and global scale, 
compared to the regional and catchment scales; 
 

•  Inter-annual and inter-decadal variability due to the ENSO phenomenon and other 
climate modes are often not accurately captured in climate model simulations (e.g. 
AchutaRao and Sperber, 2006; Lin, 2007), and the extent to which GCMs represent 
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key climate feedback processes is not fully determined; 
 

•  The intensity, frequency and distribution of extreme precipitation is generally not well 
simulated, as current climate models do not realistically represent many of the 
processes important to the formation of clouds and precipitation at the relevant 
temporal and spatial scales (Rasmussen et al, 2008). 

To illustrate these issues, a recent study on GCM consistency by Johnson and Sharma 
(2009) compared the outputs of nine GCMs for eight different variables and two emissions 
scenarios, using a specially developed Variable Convergence Score which evaluates the 
level of agreement between GCMs across Australia. The results, presented in Table 1, show 
that variables such as surface pressure and temperature have comparatively high levels of 
consistency, while precipitation, usually the most important variable from a flood risk 
perspective, scores the lowest. 
 
Table 6: GCM variable ‘skill score’ (expressed as a %) for a 20-year window centred at 2030 for 
two SRES emission scenarios (IPCC, 2000). These scenarios represent plausible future 
greenhouse gas emission trajectories, with the A2 scenario representing a future with high 
population growth, slow economic growth and slow technological change, while B1 represents 
a future with population growth peaking in mid-century and a rapid transition to a service and 
information economy. A skill score of 100% denotes consistency in future simulations across 
the GCMs (Johnson and Sharma, 2009). 

VARIABLE SRESA2 SRESB1 

Temperature 72 82 

Wind Speed 42 50 

Longwave Radiation 24 24 

Shortwave Radiation 68 69 

Specific Humidity 53 51 

Precipitation  7 7 

Precipitable Water 53 53 

Surface Pressure 97 99 

 
To overcome the limitations of GCMs in modelling the fine-scale processes relevant for 
evaluating the implications of climate change on extreme precipitation, it is necessary to 
downscale GCM results (Fowler et al, 2007). Downscaling approaches may be classified as 
either dynamical, where a higher-resolution regional climate model is embedded within a 
GCM, or statistical, for which empirical relationships are developed between climate fields 
derived from GCMs and the local climate variable of interest. Comparison studies of different 
downscaling approaches generally do not provide substantive evidence in favour of either 
dynamical or statistical approaches, with the absence of a consistently superior downscaling 
method indicating the need for a range of statistical and dynamical methods to be applied for 
climate impact assessments, with convergence between several of the independent 
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approaches adding confidence to the projections (see Fowler et al, 2007 for a detailed 
review). The inconsistent performance of downscaling approaches also highlights the need 
for the performance of the models over the 20th century to be explicitly described as part of 
any downscaling study, preferably on a validation dataset which was not used in training the 
downscaling model, so that decision makers can make inferences about the trustworthiness 
of the outputs in representing future change. In Australia, such analyses are urgently needed 
to better understand the certainty that can be ascribed to any downscaling projections. 
 
Although no Australia-wide projections of precipitation extremes are currently available, 
there have been numerous regional studies published which provide an indication of how 
extreme precipitation might change in the future. These studies largely have been derived 
using a regional climate modelling approach at the daily timescale, and typically find that the 
return period of extreme rainfall events will halve in the late 21st century simulations 
compared to the historical record (Christensen et al, 2007).  Recently, several studies which 
explicitly model sub-daily precipitation processes using CSIRO’s Regional Atmospheric 
Modelling System (RAMS), a high-resolution modelling system developed for the simulation 
of extreme rainfall events, show increases of 2-hr extreme precipitation of more than 70% for 
both 2030 and 2070 for southeast Queensland (Abbs et al, 2007), and of 10-20% by 2030 
and potentially more than 60% by 2070 for the Western Port region of Victoria (Abbs and 
Rafter, 2008). These results should be treated with caution, however, and significant 
additional work is required to develop improved uncertainty estimates, as well as reconciling 
observed trends in the historical record with projections of future changes. Nevertheless, 
such projections of a disproportionate increase in precipitation extremes for sub-daily rainfall 
would pose a significant challenge for urban systems, which typically have times of 
concentration much shorter than the daily timescale (Beecham and Chowdhury, 2009).  
 
Finally, in contrast to precipitation extremes, seasonally and annually averaged precipitation 
over much of Australia is projected to decrease (CSIRO, 2007), indicating that a greater 
proportion of the annual precipitation will be concentrated in a relatively small number of 
short-duration storm-bursts with a corresponding decrease in moderate precipitation days 
and increase in the number of dry days. The effects of antecedent moisture conditions 
therefore may become increasingly relevant in flood estimation in a changed climate, as this 
may partially offset the impacts of increased storm-burst intensity, particularly for catchments 
with high infiltration rates and/or large storage volumes. Continuous rainfall simulation, in 
which extended synthetic sequences are generated to preserve certain characteristics of the 
historic rainfall record, is likely to represent one of the principal tools to achieve this, and the 
development of approaches to account for anthropogenic climate change in these 
continuous rainfall sequences represents an important area of continuing research.  
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4. Implications on flood estimation practice 

Increasingly, the hydrological community needs to be cognisant of the implications of climate 
variability and change on hydroclimatic data relevant for the estimation of flood risk. This 
paper has sought to provide a brief overview of some of the key issues, including an 
appraisal of recent research on the sources of non-stationarity and a discussion of 
approaches for estimating future changes to flood frequency resulting from anthropogenic 
climate change.  
 
Based on our current understanding of climate variability and change, a prescriptive outline 
of how to address non-stationarity is not currently possible. Nevertheless, it is possible to 
provide the following general conclusions: 
 

1. Based on the analysis of instrumental and proxy records, it is apparent that the 
climate varies at a range of temporal scales, such that the use of short precipitation 
or flood records are unlikely to properly capture the envelope of climate variability. 
Although the ideal record length for flood estimation is highly subjective, it was 
recently demonstrated that a record length of 30 years would result in significant 
misspecification of flood risk (Jain and Lall, 2001; see also Thyer et al, 2006). It is 
worth noting that climate shifts tend to occur over large spatial scales, so that in 
cases where long records are not available in the catchment of interest, extended 
records in neighbouring regions might be useful to inform the estimation process (see 
Salas, 1993 for a discussion of available methods for record extension). 
 

2. The practice which we will term ‘non-stationarity diagnostics’, i.e. the analysis of 
instrumental data for cycles, trends and/or step changes, will become of increasing 
importance in the assessment of flood risk for large and/or significant projects.  
 

3. There is currently no consistent Australia-wide information on the implications of 
anthropogenic climate change on flood risk. It is still not clear what advice will be 
provided in the revised Australian Rainfall and Runoff guidelines in this regard, as 
this depends on the outcomes of future climate modelling studies. Nevertheless, it is 
recognised that for simple applications climate ‘factors’, possibly expressed as a 
percentage increase in precipitation intensity compared to Intensity-Frequency-
Duration relationships derived from the instrumental record, may be necessary. The 
extent to which such estimates can be generalised across space, recurrence interval, 
storm-burst duration, and future time horizon still require determination. 
 

4. For cases where the consequences of incorrectly specifying future flood risk are 
serious (such as in the design of large flood protection works), a more detailed site-
specific downscaling study may be useful to consider. Although downscaling 
approaches for estimating the probability of extreme hydrological events are still in 
their infancy, the advantage of these tools is that by comparing the performance of 
the downscaling model to historical data, the accuracy of future projections can be 
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explicitly described and thus accounted for when making decisions about future 
change. 
 

5. The estimation approach, and in particular the extent to which we account for 
anthropogenic climate change, must become conditional to a future time horizon. If, 
for example, one is concerned with flood risk only over the next few years, and no 
significant trend in flood risk has been observed over the historical record, then the 
implications of future climate change may be minor compared to the envelope of 
natural climate variability such that traditional flood estimation methods might still be 
applicable. In contrast, if one is concerned with the flood risk several decades or 
more into the future, then one must consider anthropogenic climate change explicitly. 
 

6. To account for the uncertainty inherent in the estimation of climate change and its 
impacts, it may be beneficial to develop a staged, adaptive approach to design. To 
this end we must provide an assessment of flood risk based on current conditions, as 
well as for conditions that will be applicable over the design life of the flood mitigation 
works. Depending on the nature of the works being considered, it may be cost 
effective for the works to be implemented in a staged fashion where the need for 
each successive step is evaluated on a regular basis. The implications of 
progressively increasing the degree of flood protection over time will need to be 
accommodated in the initial design, and the benefits of the staging will need to be 
explicitly balanced against the changing estimates of the annualised risk costs 
involved.  
 

7. Finally, practicing hydrologists increasingly will be called on to assess the 
implications of climate variability and change on the probability of extreme events, as 
well as appraising the strength and weaknesses of various estimation techniques. It 
therefore will be necessary for the applied and research communities to work 
together to ensure rapid dissemination of scientific developments as they occur.  

Having made the above points, it is necessary to ensure that any guidelines that are 
developed, take into account the significant uncertainty there exists in climate model 
simulations of the future (as illustrated by Johnson and Sharma, 2007, and Table 1 of this 
paper). If climate change “factors” are the way to provide recommendations for the future, 
they must be based on multiple climate model simulations instead of a single one. If 
“stationary” design estimates are desired representative of a fixed time window, climate 
model simulations corresponding to a fixed CO2 concentration (the so called stabilisation 
scenarios) should be employed. Needless to say, all of this is prohibitive from a 
computational point of view, pointing to the need for developing simulation options that are 
efficient and still acceptably accurate. There is a need for significant additional research in 
this area. 
 
To summarise, apart from a reaffirmation of the importance of long, accurate historical 
records, the optimum approach for flood estimation in our non-stationarity world will depend, 
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inter alia, on the size of the problem, the consequences of incorrectly specifying flood risk, 
and the future time horizon. Guidelines such as the forthcoming Australian Rainfall and 
Runoff will increasingly be called on to provide specific guidance. Nevertheless, as many of 
the themes described in this paper are the focus of an ongoing research effort, significant 
developments in our understanding will continue to occur in the coming years.  
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5. Conclusions 

The assumption of stationarity effectively imposes the constraint that what will occur in the 
future must mirror what has occurred in the past. The significant sources of uncertainty 
associated with non-stationarity as described in this paper, and thus the difficulty in providing 
specific advice on estimating future flood risk, comes necessarily from the rejection of this 
constraint; in effect, if the future does not reflect the past, then we must consider a much 
wider range of possibilities. Or, written differently, as a result of non-stationarity ‘we must 
expect to be surprised more than we expect’ (Jain and Lall, 2001). 
 
Importantly, in many cases even specifying the uncertainty bounds becomes difficult. For 
example we do not know what the future trajectory of greenhouse gas emissions will be; 
similarly, although the likelihood of dramatic climate shifts becomes increasingly high as the 
climate warms, the nature and timing of such shifts are generally unknown (e.g. Lenton et al, 
2008). Thus even the probability density function surrounding an estimate will contain 
significant subjectivity. 
 
We therefore conclude by suggesting that good design practice should henceforth include 
the need to address the non-stationary character of flood risk. To this end, the design 
process should include the need for a sensitivity analysis by simulating a range of plausible 
future climate scenarios and evaluating the consequences should any such scenario 
eventuate. This concept becomes increasingly relevant for cases where the consequences 
of incorrectly specifying future climate is deemed to be significant, and as such might form 
the basis of the design and operation of large infrastructure or the evaluation of the 
implications of planning decisions such as zoning for development. To accommodate this 
inherent uncertainty, it may be prudent to adopt a staged, adaptive approach to design, 
whereby solutions are implemented in a staged fashion and the need for each successive 
step is evaluated periodically. 
 
To inform such a sensitivity analysis, the specification of uncertainty might be expressed as 
a full probability density function based on a detailed downscaling study at the location of 
interest, or only be provided in qualitative terms – for example a particular outcome is ‘likely’ 
or ‘highly unlikely’ to occur – but this will nonetheless inform any decision based on risk and 
consequence. This conceptual approach provides an advantage over the assumption of 
stationary flood risk in that it allows the decision maker to consider a much broader range of 
possibilities, and weigh them against a range of non-scientific factors such as engineering 
(what are the technical alternatives? can the design accommodate staged construction?), 
economic (what is the present cost of action compared to the future cost of inaction? are 
there benefits to progressive implementation?) and political (what level of risk is 
‘acceptable’?) considerations.  
 
The concepts of sensitivity testing and adaptive design emphasises the need to consider 
many issues surrounding climate uncertainty and adaptation to climate change. The best the 
flood practitioner can do to inform this process is to remain aware of developments in climate 



Australian Rainfall and Runoff Revision Project 4: Continuous Rainfall Sequences at a Point 

 
P4/S1/002 :Feb 2010 81 

science, explain the range of possible outcomes resulting from different assumptions on how 
the climate will evolve, and accurately convey the relative confidence that should be held in 
any of their assessments and projections.  
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