

Since its first publication in 1958, Australian Rainfall and Runoff (ARR) has remained one of the most influential and widely used guidelines published by Engineers Australia.

One of the major responsibilities of the National Committee on Water Engineering of Engineers Australia is the periodic revision of ARR. A recent and significant development has been that the revision of ARR has been identified as a priority in the COAG endorsed National Adaptation Framework Climate Change.

Funding for Stages 1 and 2 of the ARR revision projects has been provided by the then Federal Department of Climate Change. Funding for Stages 2 and 3 of Project 1 (Development of intensityfrequency-duration information across Australia) has been provided by the Bureau of Meteorology. Funding for Stage 3 has been provided for by Geoscience Australia.

The update will be completed in three stages. This will be the first major revision of ARR since 1987. There have been significant technological advances in many areas of rainfall runoff assessment since the 1987 update as such 21 revision projects will be undertaken with the aim of filling knowledge gaps. The outcomes of the projects will assist the ARR editorial team compiling and writing of the chapters of ARR. Steering and Technical Committees have been established to assist the ARR editorial team in guiding the projects to achieve desired outcomes.

Revision Projects

PROJECT 1	Development of intensity-frequency-duration information across Australia		
PROJECT 2	Spatial patterns of rainfall		
PROJECT 3	Temporal pattern of rainfall		
PROJECT 4	Continuous rainfall sequences at a point		
PROJECT 5	Regional flood methods		
PROJECT 6	Loss models for catchment simulation		
PROJECT 7	Baseflow for catchment simulation		
PROJECT 8	Use of continuous simulation for design flow determination		
PROJECT 9	Urban drainage system hydraulics		
PROJECT 10	Appropriate safety criteria for people		
PROJECT 11	Blockage of hydraulic structures		
PROJECT 12	Selection of an approach		
PROJECT 13	Rational Method developments		
PROJECT 14	Large to extreme floods in urban areas		
PROJECT 15	Two-dimensional (2D) modelling in urban areas		
PROJECT 16	Storm patterns for use in design events		
PROJECT 17	Channel loss models		
PROJECT 18	Interaction of coastal processes and severe weather events		
PROJECT 19	Selection of climate change boundary conditions		
PROJECT 20	Risk assessment and design life		
PROJECT 21	IT Delivery and Communication Strategies		

For information on the ARR update process, proposed books and chapters, revision projects, workshops and to subscribe to the e-newsletter for latest information visit

www.arr.org.au

Revision Draft Chapters

Book I	SCOPE AND PHILOSOPHY	1 INTRODUCTION 2 FUNDAMENTAL ISSUES 3 APPROACHES TO FLOOD ESTIMATION 4 DATA 5 RISK BASED DESIGN
Book II	RAINFALL ESTIMATION	1 INTRODUCTION 2 RAINFALL MODELS 3 IFD RELATIONSHIPS 4 SPATIAL PATTERNS 5 TEMPORAL PATTERNS 6 CONTINUOUS RAINFALL SEQUENCES
Book III	PEAK FLOW ESTIMATION	1 INTRODUCTION 2 AT-SITE FLOOD FREQUENCY ANALYSIS 3 REGIONAL METHODS
Book IV	CATCHMENT SIMULATION	1 INTRODUCTION 2 CATCHMENT MODELLING CONCEPTS 3 TYPES OF CATCHMENT MODELLING SYSTEMS 4 CATCHMENT MODELLING SYSTEM PROCESSES
Book V	FLOOD HYDROGRAPH ESTIMATION	1 INTRODUCTION 2 TYPES OF HYDROLOGIC MODELS 3 HYDROLOGIC MODELS 4 BASEFLOW MODELS 5 LOSSES
Book VI	FLOW HYDRAULICS	1 INTRODUCTION 2 BASIC ASPECTS OF OPEN CHANNEL HYDRAULICS 3 HYDRAULIC STRUCTURES 4 NUMERICAL MODELS 5 ISSUES IN APPLICATION OF HYDRAULIC MODELS
Book VII	APPLICATION OF CATCHMENT MODELLING SYSTEMS	1 INTRODUCTION 2 CATCHMENT MODELLING PRINCIPLES 3 PARAMETER ESTIMATION TECHNIQUES 4 UNCERTAINTY DETERMINATION 5 APPLICATION FOR FUTURE CLIMATES 6 APPLICATION TO RURAL CATCHMENTS
Book VIII	LARGE TO EXTREME FLOOD ESTIMATION	 1 INTRODUCTION 2 PROCEDURES FOR ESTIMATION LARGE TO EXTREME FLOODS 3 ESTIMATION OF LARGE TO EXTREME RAINFALLS 4 ESTIMATION OF RAINFALL EXCESS 5 SELECTION, CONFIGURATION AND CALIBRATION OF ROUTING MODELS 6 DERIVATION OF DESIGN FLOODS 7 SPECIAL DESIGN CONSIDERATIONS
Book IX	RUNOFF IN URBAN AREAS	1 INTRODUCTION 2 ASPECTS OF URBAN HYDROLOGY 3 ESTIMATION OF STORM FLOWS 4 DRAINAGE SYSTEM HYDRAULICS 5 RUNOFF DETENTION AND RETENTION 6 SAFETY DESIGN CRITERIA 7 URBAN DRAINAGE MODELLING

For more information on the ARR Revision Projects please contact **arr_admin@arr.org.au** or visit **www.arr.org.au**.

